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This paper investigates the time-discrete multitapers that give a mean square error optimal Wigner spectrum estimate for a class
of locally stationary processes (LSPs). The accuracy in the estimation of the time-variable Wigner spectrum of the LSP is evaluated
and compared with other frequently used methods. The optimal multitapers are also approximated by Hermite functions, which is
computationally more efficient, and the errors introduced by this approximation are studied. Additionally, the number of windows
included in a multitaper spectrum estimate is often crucial and an investigation of the error caused by limiting this number is made.
Finally, the same optimal set of weights can be stored and utilized for different window lengths. As a result, the optimal multitapers
are shown to be well approximated by Hermite functions, and a limited number of windows can be used for a mean square error
optimal spectrogram estimate.

1. Introduction

A locally stationary process (LSP) has a covariance function
which is a multiplication of a covariance function of a
stationary process and a time-variable function, [1]. The pro-
cess is nonstationary with properties suitable for modeling
measured signals that, for example, have a transient ampli-
tude behavior, such as evoked or induced potentials arising in
the electroencephalogram, [2, 3]. To statistically differentiate
between responses from different types of stimuli, choosing
a spectral estimator with small bias and low variance is
important. Such estimators can be found but additionally
important is that the estimators have discrete-time and
discrete-frequency properties suitable from implementation
aspects, such as few choices of parameters and computational
efficiency.

The mean square error optimal kernel for the class of
Gaussian harmonizable processes has been obtained by Say-
eed and Jones [4], and further, the optimal time-frequency
kernel for LSPs, restricted to covariance functions defined
by a multiplication of two variable Gaussian functions, is
obtained in [5]. The calculation of the two-dimensional
convolution between the kernel and the Wigner distribution

of a process realization can be simplified using kernel decom-
position and calculating multitaper spectrograms, [6, 7]. The
time-lag estimation kernel is rotated, and the corresponding
eigenvectors and eigenvalues are calculated. The estimate of
the Wigner spectrum is given as the weighted sum of the
spectrograms of the data with the different eigenvectors as
sliding windows and the eigenvalues as weights, [8]. Different
approaches to approximate a time-varying spectrum with a
few windowed spectrograms have been taken, for example,
[9–15]. The sampling properties related to time-frequency
analysis are well covered in [16, 17], and differences in the
time-discrete case compared to the time-continuous case are
considered, for example, in [18, 19].

In this paper, the time-discrete multitapers correspond-
ing to the mean square error optimal time-frequency kernel
for a class of LSPs are computed and the performance of
the resulting estimator is compared to other well-known
algorithms. The approximation with Hermite functions are
also evaluated in the discrete-time case and appropriate
choices of the scaling of the Hermite functions are given for
different window lengths. A reasonable number of computed
multitaper spectrograms should be averaged for the final
Wigner spectrum estimate, and an evaluation of how this
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Figure 1: Examples of covariance matrices Rx of LSP for different parameter values with N = 256 and Fs = 7: (a) LSP: c = 1.1, (b) LSP:
c = 3, (c) LSCP: c = 1.1, m = 2, d = −2 (real-valued part only), and (d) MLSP: c1 = 1.1, c2 = 20.

number could be reduced without degraded performance is
done. Many applications where such an algorithm could be
useful for implementation can be found. In the present study,
examples are shown of the electrophysiological correlates of
toddlers’ watching of video clips displaying different types of
nonlinguistic communication between two actors.

The paper is organized as follows, Section 2 presents
examples of the class of LSPs used in the paper. Section 3
summarizes the estimation of the optimal kernel approach
and the corresponding multitapers and gives some exam-
ples. In Section 4, a comparison of several algorithms for

estimation of locally stationary spectra is given. Section 5
evaluates the approximation using Hermite functions, and
the reduction of the number of averaged multitaper spec-
trograms is investigated in Section 6. In Section 7, the
electroencephalogram data examples are shown, Section 8
concludes the paper.

2. Locally Stationary Processes

A zero-mean second-order continuous-time locally station-
ary process, {x(t)} has, per definition in [1], a covariance
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Figure 2: Process realizations corresponding to the covariance function rx(t, s) in Figure 1 for N = 256 and Fs = 7: (a) LSP: c = 1.1, (b) LSP:
c = 3, (c) LSCP: c = 1.1, m = 2, d = −2 (real-valued part only), and (d) MLSP: c1 = 1.1, c2 = 20.

function determined by two functions according to,

rLSP
x (t, s) = q

(
t + s

2

)
· r(t − s). (1)

In this paper, q(τ) = e−τ2/2, is a fixed Gaussian function with
a constant sign which we assume to be nonnegative, [5] and
the function r(τ) = e(−c/4)τ2/2, with c ≥ 1. When c� 4, r(τ)
decreases quicker than q(τ), and we approach a stationary
process as c → ∞. The opposite extreme with c = 1 gives
maximal nonstationarity. A locally stationary chirp process,
(LSCP), [5], is defined

rLSCP
x (t, s) = q

(
t + s

2

)
· r(t − s)eim(t−s)((t+s)/2−d), (2)

where m determines the chirp frequency and d the start of
the chirp frequency. The definition of LSP is also extended to
a sum of locally stationary processes,

rMLSP
x (t, s) =

J∑
j=1

q
(
t + s

2

)
· r j(t − s), (3)

a so-called multicomponent locally stationary process (MLSP)
where the variable Gaussian function r j(τ) = e(−cj /4)τ2/2 has
different cj for j = 1, . . . , J , [5].

The sampled versions of these definitions are given with
t = s = n/Fs, n = −N/2, . . . ,N/2 − 1, where Fs is chosen for
the Gaussian functions to become approximately zero for t =
±N/2Fs. The N × N covariance matrix Rx(t, s) is computed,
and in Figure 1 some examples of the shape of this matrix
for different parameter values are depicted for N = 256 and
Fs = 7.

To illustrate the processes for different parameters, a
number of realizations x = [x̂(0) . . . x̂(N − 1)]T , are sim-
ulated from

x = Hb, (4)

where b = [b̂(0) . . . b̂(N−1)]T is a sequence of realizations
from the a real-valued white Gaussian zero mean stochastic



4 EURASIP Journal on Advances in Signal Processing

process with variance one. The process-generating matrix H
is related to the covariance matrix as

Rx = E[xx∗] = HE[bb∗]H∗ = HH∗. (5)

In Figure 2, examples of the base-band shapes of such
processes are shown. Important to remember is that these
processes can be translated in frequency as well as in time,
and still the Cohen’s class estimators will give the same time-
and frequency-translated result, [8]. For a small value of c =
1.1, the realizations are narrow banded, Figure 2(a), but for a
larger c, the realizations are more wide banded with a more
irregular form, Figure 2(b). In Figure 2(c), the parameters
m and d are chosen for an increasing chirp frequency, but
the principal shape is the same as in Figure 2(a) as c = 1.1
(note that only the real part of these process realizations are
shown). The realizations in Figure 2(d) have the covariance
matrix of (3) with J = 2, c1 = 1.1, and c2 = 20, giving
realizations which are a combination of a narrow-banded
and wide-banded shapes.

3. Optimal Kernels andMultitapers

The optimal ambiguity domain kernel in the mean square
error sense for zero-mean Gaussian processes was estimated
in [4], and based on this, the corresponding kernels for the
processes defined in (1), (2), and (3) were derived in [5] as

φLSP
opt (ν, τ) = 1

2π
1

1 + c−1/2e(1−1/c)(2πν)2+((c−1)/4)τ2
,

φLSCP
opt (ν, τ) = 1

2π
1

1 + c−1/2e(1−1/c)(2πν−mτ)2+((c−1)/4) τ2
,

φMLSP
opt (ν, τ)

= 1
2π

⎛
⎜⎜⎝1
/
⎛
⎜⎜⎝1 +

∑
i, j

√
2/
(
ci + cj

)
e(−2/(ci+cj ))(2πν)2−τ2/4

(∑
i e−(2πν)2/2−((ci/8)τ2)

)2

⎞
⎟⎟⎠

⎞
⎟⎟⎠.

(6)

The optimal ambiguity domain kernels corresponding to the
covariance functions and processes of Figures 1 and 2 are
computed and plotted in Figure 3.

Instead of calculating the time-frequency estimate using
the ambiguity domain kernel, the calculations can be simpli-
fied by using a multitaper spectrogram, [8], where Cohen’s
class is written as

ŴC
(
t, f
)

=
∫∫

Ax(ν, τ)φopt(ν, τ)e−i2π(τ f−tν)dτ dν

=
∫∫

x
(
u +

τ

2

)
x∗
(
u− τ

2

)
ρopt(t − u, τ)e−i2π f τdu dτ.

(7)

With t = (t1 + t2)/2 and τ = t1 − t2,

ŴC
(
t, f
)

=
∫∫

x(t1)x∗(t2)ρopt

(
t − t1 + t2

2
, t1 − t2

)
e−i2π f (t1−t2)dt1dt2

=
∫∫

x(t1)x∗(t2)ρrot
opt(t − t1, t − t2)e−i2π f t1ei2π f t2dt1dt2,

(8)

where

ρrot
opt(t1, t2) = ρ

(
t1 + t2

2
, t1 − t2

)
. (9)

If the kernel ρrot
opt(t1, t2) satisfies the Hermitian property

ρrot
opt(t1, t2) = (ρrot

opt(t2, t1))∗, then solving the integral

∫
ρrot

opt(t1, t2)q(t1)dt1 = λq(t2) (10)

results in eigenvalues λk and eigenfunctions qk which form a
complete set. The time-lag kernel can be expressed as

ρrot
opt(t1, t2) =

∞∑
k=1

λkqk(t1)q∗k (t2). (11)

Using the eigenvalues and eigenvectors, (7) is rewritten as a
weighted sum of spectrograms,

ŴC
(
t, f
) =

∞∑
k=1

λk

∣∣∣∣
∫
x(t1)e−i2π f t1q∗k (t − t1)dt1

∣∣∣∣
2

. (12)

With just a few λk that differ from zero, the multitaper
spectrogram solution is an effective solution from imple-
mentation aspects.

Using discrete-time data, the windows and weights
are found from the solution of the corresponding matrix
equation

Roptqk = λkqk, k = 1, . . . ,N , (13)

where the eigenvalues are ordered according to λ1 ≥ λ2 ≥
· · · ≥ λN , and Ropt is the sampled matrix of size N × N
corresponding to ρrot

opt(t1, t2) in (9) where t1, t2 = n/Fs, n =
−N/2, . . . ,N/2 − 1. To extract the corresponding samples
of ρrot

opt(t, τ) in an easy way, the time-lag kernel, ρopt(t, τ)
should be sampled with 2Fs, that is, t = n/2Fs, with n =
−N , . . . ,N − 1 and τ = n/2Fs with n = −2N , . . . , 2N − 1 to
cover the required range for t1 and t2. The ambiguity domain
kernel φopt(ν, τ) sampled with 2Fs and the discrete fourier
transform (DFT) in the first variable will give the sampled
ρopt(t, τ) and the matrix Ropt. Examples of the eigenvalues
and eigenvectors connected to the corresponding matrices
Ropt are computed for N = 256 and Fs = 7 and depicted
in Figure 4 where the 10 first eigenvalues are plotted in
Figure 4(a) and the three first eigenvectors are seen in Figures
4(b),4(c),4(d), and 4(e) for the respective case.

Note that the eigenvalues which are optimal for the LSP
with c = 1.1 and LSCP with c = 1.1, m = 2, are equal,
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Table 1: The mean square error of the LSP-optimal multitapers and weights (LSPopt) compared to optimal choices of parameters of different
methods evaluating the class of LSPs when c = 1.1, 3, and 20.

Method c = 1.1 c = 3 c = 20

LSPopt 19.23 11.85 3.27

WIG 19.27 14.45 7.21

C-W 19.25 (σ = 38) 12.67 (σ = 1.45) 4.37 (σ = 0.15)

HANN 20.80 (Nw = 48) 11.97 (Nw = 37) 4.39 (Nw = 17)

WOSA 25.59 (Nw = 44,K = 2) 12.69 (Nw = 35,K = 2) 3.39 (N = 25,K = 3)

TH MW 25.26 (Nw = 54,K = 2) 12.51 (Nw = 42,K = 2) 3.40 (Nw = 29,K = 3)

PM MW 23.07 (Nw = 36,K = 2) 11.94 (Nw = 30,K = 2) 3.46 (Nw = 21,K = 8)

which was shown to be true in [5]. The eigenvectors for LSP
with c = 1.1 and c = 3 have a very similar shape, and it
was also shown in [5] that the eigenfunctions approximate
Hermite functions and differ with a specific scaling factor.
These approximations will be investigated in Section 4.

4. Evaluation

Using the set of windows and weighting factors described
in the previous section, a performance comparison of
different kernels and multitaper methods is made. For a fair
comparison, the optimal parameter values are found for all
methods in all evaluations. For the Wigner spectrum (WIG),
[20], the time-lag kernel of the Wigner distribution is defined
as

ρ(t, τ) = δ(t), (14)

and the Choi-Williams kernel (C-W), [21], has a time-lag
kernel defined as

ρ(t, τ) = πσ

|τ| e
−π2σt2/τ2

, (15)

where σ is optimized for the smallest mean square error in
each case. In the computer evaluation, the C-W time-lag
kernel for the discrete-time case proposed in [22], Chapter 6,
page 271, is used. For the single Hanning window (HANN),
the window length Nw is optimized in each case. For the
Welch method (WOSA), [23], also a Hanning window is
used with an overlap of 50 % between the windows, and the
optimal length Nw, and number of windows K is found for
each case. In the Thomson multitaper method (TH MW),
the lengths Nw of the K multitapers are optimized, and
the relation with the resolution bandwidth determined by
B = (K + 3)/Nw in each case, [24]. The peak matched
multiple windows (PM MW), [25], are designed to give
low correlations between subspectra when the spectrum
of the random process includes peaks, that is, a spectrum
corresponding to a process with large dynamics. It has been
shown that this method gives a small mean square error for
evoked potentials, [26] as well as for estimation of heart rate
variability (HRV), [27]. The window lengths Nw as well as
the number of windows K are optimized for the best result,
and the corresponding resolution bandwidth is determined
by B = (K + 3)/Nw, similarly as for TH MW in each case.
The weighting factors are chosen as the eigenvalues αk = λk,

k = 1, . . . ,K , as this choice is close to the optimal weighting
factors, [28]. The reason for comparing with these methods is
that either they are very frequently used various applications
or they are designed to be optimal for a similar type of
process.

The total mean square error is defined as

J =
∑

ν

∑
τ

E
[∣∣∣Ax(ν, τ) · γφopt(ν, τ)− E[Ax(ν, τ)]

∣∣∣2
]

, (16)

where E denotes expected value. Using a sufficiently
large value N and an appropriate sampling frequency Fs,
the discrete-time case will produce results close to the
continuous-time case. The parameter γ is used to adjust
the kernel φopt(ν, τ) to give the smallest possible mean
square error for every method and choice of parameters. The
parameter γ is optimized individually for all methods and
parameter cases and is found by derivation as

γopt =
∑

ν

∑
τ E[Ax(ν, τ)]2φopt(ν, τ)∑

ν

∑
τ E
[
A2
x(ν, τ)

]
φ2

opt(ν, τ)
. (17)

In the first simulation, the resulting total mean square
errors (MSE) of the LSP-optimal multitapers (LSPopt) for
three different processes defined by (1), with the parameter
c as c = 1.1, 3, and 20, ranging from nonstationary to more
stationary processes, are calculated for N = 256 and Fs = 7.
The results of the different methods are presented in Table 1.
The optimal choice is compared with a number of other
methods, also optimized for the smallest error. For C-W,
the parameter σ is varied in different ranges: σ = 1–38 for
c = 1.1, σ = 0.05–1.9 for c = 3, and σ = 0.01–0.38 for
c = 20, to find the minimum value in each case. The window
lengths Nw that give the optimum result for HANN, WOSA,
PM MW, and TH MW are varied between Nw = 30 and 140.
For WOSA, TH MW, and PM MW, a different number of
windows ranging from K = 2 to 8 are also tested to find the
number of windows that give a minimum error.

The results show that WIG and C-W give a mean square
error very close to the optimal error, Jopt = 19.23 when
c = 1.1 and that, out of the spectrogram methods, HANN
gives the best result. For c = 3, WIG as well as the result
of C-W are larger than the spectrogram methods where the
PM MW gives an error closer to the optimal mean square
error Jopt = 11.85. For c = 20, the result of the TH MW is
closest to the optimal error Jopt = 3.27. This example show
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Figure 3: The mean square error optimal ambiguity domain kernel corresponding to processes with covariance functions in Figure 1 for
N = 256 and Fs = 7: (a) φLSP

opt : c = 1.1, (b) φLSP
opt : c = 3, (c) φLSCP

opt : c = 1.1, m = 2, and (d) φMLSP
opt : c1 = 1.1, c2 = 20.

Table 2: The mean square error of the LSCP-optimal multitapers and weights (LSCPopt) compared to optimal choices of parameters of
different methods evaluating the class of LSCPs when c = 1.1, 3, and 20, and m = 2, d = −2.

Method c = 1.1 c = 3 c = 20

LSCPopt 19.23 11.85 3.27

WIG 19.27 14.45 7.21

C-W 19.33 (σ = 950) 13.23 (σ = 37.5) 4.88 (σ = 0.275)

HANN 25.49 (Nw = 24) 13.35 (Nw = 24) 4.44 (Nw = 17)

WOSA 30.64 (Nw = 21,K = 2) 15.76 (Nw = 21,K = 2) 3.81 (Nw = 21,K = 3)

TH MW 31.34 (Nw = 27,K = 2) 15.94 (Nw = 27,K = 2) 3.82 (Nw = 25,K = 3)

PM MW 26.65 (Nw = 20,K = 2) 13.76 (Nw = 20,K = 2) 3.77 (Nw = 19,K = 8)

the great variation in the properties of the class of LSPs when
c changes. When c increases from c = 1.1 to larger values the
process varies from being narrow banded to wide banded.
This is why WIG gives a closer optimum value for c = 1.1,
but TH MW gives the MSE closer to the optimal value for
c = 20. None of the established methods are able to give small
errors in all three cases, even if all possible parameters of the
methods are optimized.

The next simulation evaluates the performance for
an LSCP, (2) and the corresponding optimal windows,
(LSCPopt). In this case, we use m = 2 and d = −2 for the
simulation of all three processes using the same c-values as

in the preceding example. The evaluation is done using the
same methods with the C-W parameter varied in the range,
σ = 25–950 for c = 1.1, σ = 2.5–95 for c = 3, and σ = 0.025–
0.95 for c = 20. In Table 2, the results show that WIG and
the C-W are almost as optimal as LSCPopt for c = 1.1. The
optimal value for c = 3, Jopt = 11.85 is not reached by any
other method. For c = 20, the optimal result is Jopt = 3.27
and the three multitaper methods give the closest result.

The last simulation with results shown in Table 3 eval-
uates the performance for the optimal window and weights
of MLSP, (3), and (MLSPopt), using two different processes
in the sum for each of three examples, the first case with
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Figure 4: Optimal eigenvalues and eigenvectors corresponding to the ambiguity domain kernels in Figure 3 for N = 256 and Fs = 7: (a)
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c2 = 20.

Table 3: The mean square error of the MLSP-optimal multitapers and weights (MLSPopt) compared to optimal choices of parameters for
different methods evaluating the class of MLSPs in three cases: c1 = 1.1, c2 = 20; c1 = 2, c2 = 10; c1 = 4, c2 = 8.

Method c1 = 1.1, c2 = 20 c1 = 2, c2 = 10 c1 = 4, c2 = 8

MLSPopt 37.09 36.88 31.72

WIG 48.87 49.75 46.51

C-W 40.91 (σ = 1.1) 40.53 (σ = 0.8) 36.00 (σ = 0.55)

HANN 38.32 (Nw = 41) 38.10 (Nw = 35) 33.92 (Nw = 31)

WOSA 41.45 (Nw = 35,K = 2) 38.72 (Nw = 32,K = 2) 32.68 (Nw = 32,K = 2)

TH MW 41.44 (Nw = 41,K = 2) 38.33 (Nw = 39,K = 2) 32.30 (Nw = 35,K = 2)

PM MW 38.46 (Nw = 31,K = 2) 37.23 (Nw = 29,K = 2) 32.34 (Nw = 27,K = 3)

c1 = 1.1, c2 = 20, the second case with c1 = 2, c2 = 10, and
the third case with c1 = 4, c2 = 8. For the C-W, the evaluation
is done using σ that varies from σ = 0.05–1.9 in the first and
second case, and from σ = 0.025–0.95 in the third case. It is
seen that none of the methods reach the optimal mean square
error for this more complicated process. The HANN and the
PM MW, however, give small errors comparable to the error
of the MLSPopt multitapers in the first case. In the last case,
all the multitaper methods are able to reach a small mean

square error. The worst results are produced from the WIG
and C-W in all three cases.

5. Approximation ofWindows Using
Hermite Functions

In [5], the optimal multitapers of the proposed class of
LSPs are shown to approximate a set of Hermite functions.
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Figure 5: The dependence on Fs of the errors between the eigenvector optimal to LSP and the corresponding hermite function for different
c-values. The 1st, 2nd, 4th, and 10th eigenvectors are compared. The eigenvector length is N = 256.

This approximation is appropriate in the continuous infinite-
length case, but in the finite-length discrete-time case,
a set of Hermite functions might be far from the true
eigenvectors. How far, depends on the scaling of the matrix
Ropt with use of the sampling frequency parameter Fs.
If Fs is very small, the covariance values are large at
the edges of the matrix Ropt and the Hermite functions
certainly are inappropriate as eigenvectors. With Fs too large,
the larger part of the power of Ropt will be located in
just a few samples in the middle of the matrix, and the
eigenvectors will consist of a few values that differ from zero.
A proper choice between these extremes should be carefully
considered.

Another result from [5] is that the Hermite functions
can be dilated, where the dilation factors depend on c
according to c1/4/

√
2. If these results transfer to the time-

discrete case, a very efficient implementation of the method
is possible. Such an approximation is advantageous when
it comes to calculation, since only a limited number of
Hermite functions need to be calculated instead of solving
an possibly large-scale eigenvalue problem which is different
for all parameters c in the class. If, as well, the same set of
Hermite functions can be used for different c-values, an even
more efficient implementation can be done as the windowed
spectrograms can be computed once for all c-values and
weighted together using the different sets of eigenvalues for
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each c. Thereby, the whole range of c-values are easily tuned
by a new weighting of the set of computed spectrograms. A
scaling of the sampling frequency of the optimal kernel and
corresponding time-lag matrix Ropt is done according to

Fc
s =

Fsc1/4
√

2
. (18)

Instead of dilating the Hermite functions, the optimal kernel
is dilated for different c-values. Using this c-dependent
sampling frequency we investigate a set of Hermite functions,

h1(t) = e−t
2/2,

h2(t) = 2te−t
2/2,

hk(t) = 2thk−1(t)− 2(k − 2)hk−2(t), k = 3, . . . ,K ,

(19)

with t = n/FH for n = −N/2, . . . ,N/2 − 1. The resulting set
of vectors is

hFHk =
[
hk

(
− N

2FH

)
· · · hk

(
N

2FH

)]T
, k = 1, . . . ,K.

(20)

The square error

εk(Fs, c,FH) =
(
hFHk − q

Fc
s

k

)T(
hFHk − q

Fc
s

k

)
(21)

is computed for all sets of Hermite functions with FH varying
from 0.1 to 50 with a step of ΔFH = 0.1. The best set
of Hermite functions is chosen as the one where the sum
of square errors between the first eigenvector and the first
Hermite function is minimized, that is,

FHopt = arg min
FH

ε1(Fs, c,FH). (22)

Thereby, the whole set of optimal Hermite functions h
FHopt

k ,
k = 1, . . . ,K , is determined for a specific Fc

s . However, the
optimal set of Hermite functions found from this criterion
does not necessarily have FHopt = Fs. The resulting square
error εk(Fs, c,FHopt ) is studied for a number of different Fs
and c-values, where the sampling frequency Fc

s according to
(18) is used for the computation of the optimal kernel and
corresponding multitapers. The results are given in Figure 5
for N = 256 and in Figure 6 for N = 32. The logarithm of the
different error vectors for c-values c = 1.1, 3, 10, and 20 are
depicted in the same figure as a function of Fs and the results
are presented for the 1st, 2nd, 4th, and 10th eigenvectors.
The results in Figure 5 for N = 256 show that for the 1st
eigenvector, the sampling Fs is less sensitive than that of the
10th eigenvector. The range of Fs, where the error is small, is

between 2.5 and 20 for all q
Fc
s

1 where it is just between 4 and

15 for q
Fc
s

10, see Figures 5(a) and 5(d). However, with a proper
choice of Fs, the Hermite functions approximate the first 10
eigenvectors in an appropriate way for N = 256. Within this
range, it can also be verified that Fs = FHopt , and thereby the
same set of Hermite functions can be used independently of
the value of c.

Table 4: The appropriate range for Fs = FHopt for small errors when
using Hermite functions as multitapers optimal to LSP for different
values of N .

N 512 256 128 64 32

interval Fs 7–30 4–12 4–6 3–3.5 2–2.5

In Figure 6, the square error εk(Fs, c,FHopt ) is shown for
N = 32, where the error is small in the range of Fs between 2
and 2.5 with an maximum error of 10−7 (1.5 and 3.4 if we
allow a larger maximum error of 10−5). Also within these
ranges, it can be verified that Fs = FHopt . The error increases
for the 2nd and 4th eigenvectors. The range of the minimum

errors is, however, about the same as that of q
Fc
s

1 . For q
Fc
s

10

the error is much larger independently of Fs (note the larger
scale on the Y-axis). This means that for small N-values, the
higher order eigenvectors are not possible to approximate
as Hermite functions with a small error. The corresponding
ranges for N = 512, 128, and 64 have also been studied, and
the results are summarized in Table 4.

6. Reduction of the Number of
Averaged Spectrograms

The only variables left to adapt the optimal set of multitapers
to a certain process are the eigenvalues. In Figure 7, the
eigenvalues for different c are depicted where the calculations
are made for N = 512 and Fs = 15. Note the logarithmic X-
axis. Using other values of N with appropriate corresponding
Fs will give equal sets of eigenvalues. Changing Fs and N
do not alter the eigenvalues, as N and Fs just change the
sampling and size of the matrix Ropt. This is verified to
be true if Ropt is still sampled in an appropriate way, with
the choice of Fs in the intervals specified in Table 4. From
Figure 7, it is seen how the eigenvalues vary with c, for
example, the λ1 decreases slowly where λ2 is first negative and
then positive. For large values of c, several eigenvalues differ
from zero where, for example, for c = 2 there are just a few
eigenvalues that differ from zero.

An important aspect is that a multitaper spectrogram
should be calculated with a reasonable number of windows.
This is possible if a major part of the eigenvalues is close
to zero. Here, four different levels for the eigenvalues to
contribute to the final estimate are suggested based on

λδk =
⎧⎪⎨
⎪⎩
λk if

∣∣∣∣λkλ1

∣∣∣∣ ≥ δ,

0 otherwise,
(23)

where δ = 0 (i.e., all eigenvalues are included), δ = 0.01, δ =
0.05, and δ = 0.2. With this choice, the number of averaged
multiple spectrograms reduces according to Figure 8. With
the level set to δ = 0.01, the number of spectrograms vary
from K = 3 for c = 1.5 to K = 23 when c = 30, solid line
of Figure 8. As many as 23 averaged spectrograms are rather
impractical, and using the level δ = 0.05, K reduces to be
between 2 and 7, dashed line. In the last case with δ = 0.2, the
number of included eigenvalues might be too small to give an
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Figure 6: The dependence on Fs of the errors between the eigenvector optimal to LSP and the corresponding hermite function for different
c-values. The 1st, 2nd, 4th, and 10th eigenvector are compared. The eigenvector length is N = 32.

appropriate estimate, varying between K = 1–5, dash-dotted
line.

A set of Hermite functions h
FHopt

k , k = 1, . . . ,K , is
easy to compute, and as the set can also be used as
corresponding eigenvectors independently of the parameter
c the advantage is even larger. If we, by this approximation
of the eigenvectors, avoid solving an eigenvalue problem
from a matrix of size N × N , we should also use the
advantage that the eigenvalues can be computed once and
for all and stored to be utilized independently of the
value of N . We use the computed eigenvalues in Figure 7
and name them λstore

k . Using this set of windows and
eigenvalues, the mean square error JδMW is computed where
δ is determining the limit for the number of averages

in the spectrograms according to Figure 8. The result is
compared with Jopt. In Table 5, the results using N = 256
and Fs = 7 is shown. It is apparent that the use of the
Hermite functions does not degrade the result, and also that
using δ = 0.01 is equally optimal. With fewer windows
(larger δ), a small difference in the mean square error can be
seen.

In the next example, the window length is much shorter,
N = 32 and Fs = 2.5. The results are seen in Table 6. For
this short window length, the Hermite functions are not that
appropriate as approximations of the eigenvectors, at least
not for higher values of k, compare with Figure 6. This affects
the case c = 20 the most, as K is larger in this case. The effect
of reducing the number of windows is not that significant,
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Figure 8: Number of averaged multitaper spectrograms K for
different values of c; solid line = δ = 0.01, dashed line = δ = 0.05,
dash-dotted line = δ = 0.2.

Table 5: Results of the MSE of the LSP for different parameter
choices using Hermite functions as windows and a decreasing
number of eigenvalues, N = 256 and Fs = 7.

Method c = 1.1 c = 3 c = 20

Jopt 19.23 11.85 3.27

J0
MW 19.23 11.85 3.27

J0.01
MW 19.23 11.85 3.27

J0.05
MW 19.29 11.87 3.30

J0.2
MW 19.30 11.87 3.31

and the level δ = 0.01 gives the same result as using all
windows, (δ = 0).

The last example in Table 7 shows the result when N =
32, but Fs is now altered to be outside the appropriate range,
to Fs = 5. This choice of Fs gives a very large error when all
windows are included in the estimate, (δ = 0). The reason of

Table 6: Results of the MSE of the LSP for different parameter
choices using Hermite functions as windows and a decreasing
number of eigenvalues, N = 32 and Fs = 2.5.

Method c = 1.1 c = 3 c = 20

Jopt 19.23 11.85 3.27

J0
MW 19.23 11.86 3.32

J0.01
MW 19.23 11.86 3.32

J0.05
MW 19.23 11.87 3.34

J0.2
MW 19.29 11.87 3.34

Table 7: Results of the MSE of the LSP for different parameter
choices using Hermite functions as windows and a decreasing
number of eigenvalues, N = 32 and Fs = 5.

Method c = 1.1 c = 3 c = 20

Jopt 19.23 11.85 3.27

J0
MW 37.62 22.79 8.83

J0.01
MW 19.36 11.85 6.41

J0.05
MW 19.23 11.87 3.30

J0.2
MW 19.30 11.87 3.31

course is that the Hermite functions are not at all appropriate
to use for larger K , as they are no longer similar to the
eigenvectors. Reducing the number of windows, however,
δ ≥ 0.01, gives a mean square error sufficiently close to the
true Jopt. This shows that the Hermite functions together with
limiting the number of windows give an appropriate estimate
even if Fs is chosen inappropriately.

7. Estimation of Induced Potential Power in
the Electroencephalogram

To show the performance of the proposed method and
especially show the possibility to view the multitaper spec-
trograms for different model assumptions, that is, different
c-values, examples are shown of the electrophysiological
correlates of toddlers’ processing of imperative and declar-
ative gestures. Neural responses to video clips displaying
different types of nonlinguistic communication between
two actors are recorded. Results from investigations of
language learning, indicate that there may be important
developments in this domain in the second half of the second
year, [29]. The hypothesis was that if the comprehension
of declarative, but not imperative, communication acts is
specific to humans, the processing of these two types of acts
should be associated with different neural activity. There
is not much research on what young children understand
as onlookers of communication between other people. It is
important to find suitable models for the time-varying power
estimation of these signals.

The stimulus material consisted of different 13-second
video clips merged to a 2×15-minute continuous sequence,
intended to show the three kinds of social behavior; commu-
nicative (protodeclarative or protoimperative gestures) and
communicatively neutral parallel play. Silver-silver chloride
electrodes (EasyCap, Falk Minow) were placed according to
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Figure 9: Multitaper spectrogram estimation of induced potentials from Protodeclarative (PDec), Protoimperative (PImp) and neutral
parallel play (PPlay) shows, using N = 256, Fs = 12, c = 1.1, and δ = 0.05. The number of averaged power responses are for subject 1, 20
and for subject 2, 29.

the international 10–20 system. The vertical electrooculo-
gram (VEOG) was recorded from electrodes placed above
and below the right eye, and the horizontal electrooculogram
(HEOG) was recorded from electrodes placed lateral to the
left and the right eye. All electrodes were referenced to the
average of the left and the right mastoids. Impedances were
kept below 5 kΩ for all electrodes. The EEG was recorded
with a 0.1/70 Hz band-pass filter at a sampling rate of 500 Hz,
and amplified with a Neuroscan NuAmps amplifier. The
sampling frequency is reduced to 62.5 Hz by decimation in
Matlab and before and after the 2s epochs, zeros are added
to allow for the total data window length. The included data
epochs are limited so that the same number of epochs is
used for the declarative, imperative, and parallel play acts.
For subject 1, the number of epochs were 20 in each of the
three cases, and for subject 2, the number of epochs were 29.

The averaged power from two different subjects is
estimated using a set of Hermite functions with N = 256
and Fs = FHopt = 12. Different sets of eigenvalues are used
as weighting factors, corresponding to c = 1.1, c = 3,

and c = 20. Using δ = 0.05, the estimation of the
spectrogram is then done using a reasonable number of
averaged spectrograms, K = 10, K = 2 and, K = 6,
respectively. Remember, that with this procedure only the
averaging of the spectrograms need to be redone for a
new value of the parameter c, the individual single-window
periodograms with the set of chosen Hermite functions are
the same. The results of two subjects are shown in Figures
9, 10, and 11. For each subject, the averaged estimates
for all epochs are shown. The colormap used is the same
for each row (each subject) in all the figures. The results
show that the induced responses are stronger around 6 Hz
and between 0 and 1 s for the protodeclarative as well as
the protoimperative act compared to the parallel play act,
for both subjects. Similar performance is found for other
subjects. In the different figures, the resolution varies from
being similar to the Wigner distribution (c = 1.1) in Figure 9,
to almost a single-window spectrogram estimator (c = 3)
in Figure 10 (just K = 2 windows) and finally similar to
the usual multitaper estimator, for example, the Thomson
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Figure 10: Multitaper spectrogram estimation of induced potentials from Protodeclarative (PDec), Protoimperative (PImp) and neutral
parallel play (PPlay) shows, using N = 256, Fs = 12, c = 3, and δ = 0.05. The number of averaged power responses are for subject 1, 20 and
for subject 2, 29.

estimator, (c = 20) in Figure 11. This shows the possibility to
easily investigate a whole range of estimators when the data
model is not well defined.

8. Conclusions

The mean square error optimal multitaper spectrogram
estimator, for a class of locally stationary processes is
evaluated and compared to other frequently used methods:
the Wigner distribution, the Choi-Williams distribution,
the single Hanning spectrogram, the Welch method, the
Thomson multitapers, and the peak matched multitapers.
The results show that it is possible to find other methods that
give a result more or less close to the result of the optimal
multitapers in mean square error sense, but it is different
methods for different processes of the class. An evaluation is
also made for the classes of locally stationary chirp processes
and sum of locally stationary processes.

An investigation of the error shows that with a proper
sampling frequency of the windows, the windows are well
approximated by a set of Hermite functions where the same
set of functions is valid for the whole class if an appropriate
dilation factor is used. Another advantage is that the optimal
set of weighting factors can be stored and utilized for all
different window lengths. It is also investigated if the number
of included spectrograms in the average can be reduced, and
the results show that only a small number of windows, 1–
10, are needed for an appropriate approximation of the true
kernel.

The advantage of the usage of the Hermite functions
is that the multitapers as well as the corresponding spec-
trograms can be calculated and stored, and then a tuning
process using just one parameter, which determines the
weights, will give the final weighted multitaper spectrogram
estimate for a certain parameter of the whole class. Power
estimation of induced potentials of the brain from toddlers’
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Figure 11: Multitaper spectrogram estimation of induced potentials from Protodeclarative (PDec), Protoimperative (PImp) and Neutral
Parallel Play (PPlay) shows, using N = 256, Fs = 12, c = 20 and δ = 0.05. The number of averaged power responses are for subject 1, 20 and
for subject 2, 29.

processing of imperative and declarative gestures, are shown
as example of the use of the proposed method.
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