
EURASIP Journal on Applied Signal Processing 2005:7, 1024–1034
c© 2005 Hindawi Publishing Corporation

FPGA-Based Configurable Systolic Architecture
for Window-Based Image Processing

César Torres-Huitzil
Computer Science Department, National Institute for Astrophysics, Optics and Electronics, P.O. Box 51 and 216, 72000 Puebla, Mexico
Email: ctorres@inaoep.mx

Miguel Arias-Estrada
Computer Science Department, National Institute for Astrophysics, Optics and Electronics, P.O. Box 51 and 216, 72000 Puebla, Mexico
Email: ariasm@inaoep.mx

Received 13 September 2003; Revised 21 May 2004

Image processing requires more computational power and data throughput than most conventional processors can provide.
Designing specific hardware can improve execution time and achieve better performance per unit of silicon area. A field-
programmable-gate-array- (FPGA-) based configurable systolic architecture specially tailored for real-time window-based image
operations is presented in this paper. The architecture is based on a 2D systolic array of 7×7 configurable window processors. The
architecture was implemented on an FPGA to execute algorithms with window sizes up to 7× 7, but the design is scalable to cover
larger window sizes if required. The architecture reaches a throughput of 3.16 GOPs at a 60MHz clock frequency and a processing
time of 8.35 milliseconds for 7 × 7 generic window-based operators on 512 × 512 gray-level images. The architecture compares
favorably with other architectures in terms of performance and hardware utilization. Theoretical and experimental results are
presented to demonstrate the architecture effectiveness.

Keywords and phrases: FPGA, configurable system, real time, window-based image processing, systolic array.

1. INTRODUCTION

Designing a hardware processor core for data-intensive im-
age processing is a fundamental step in developing mod-
ern machine vision systems that can efficiently implement
computer vision related tasks. The wide interest in data-
intensive or window-based image processing is due to the
fact that more complex algorithms use the low-level re-
sults as primitives to pursue higher-level goals [1]. How-
ever, building such systems remains difficult because of three
main reasons [2]. First, most computer vision applications
are computational intensive tasks difficult to overcome using
conventional processors. The sequential nature of conven-
tional processors and the huge amount of redundant data in-
volved in an image slow down the performance of vision sys-
tems. Second, heterogeneity of computations in the process-
ing performed through an application limits the paralleliza-
tion. A mismatch, therefore, exists between the complex-
ity of the required operations and the processing power of-
fered by processors. Third, several vision applications require
systems with real-time performance. A real-time system is
one that must interact with its environment under response-
time constraints [3, 4]. Real-time image processing systems

interact with their environment, and thus they must produce
outputs that are not only numerically correct, but which also
meet timing constraints necessary for these interactions.

On the other hand, advances in computer technology
have made the building of machine vision systems a tractable
problem, resulting in a widespread use of these systems in ap-
plications such as robotics, multimedia, virtual reality, indus-
trial inspection, medical engineering, and autonomous nav-
igation. However, processing power, physical size, and power
consumption constraints restrict further the extent to which
these applications are solved under the perspective of systems
on a chip [5].

Previously, there have been several architectures pro-
posed in the literature to implement window-based image
processing algorithms [6, 7, 8]. However, almost all of them
focus on the performance of a single image processing al-
gorithm, usually 2D image convolution, without considering
implementation aspects such as flexibility, silicon area, and
power consumption.

In this paper, we propose an improved 2D systolic ar-
chitecture as an alternative solution to implement window-
based image processing algorithms on a single chip with
a good performance/area tradeoff. The rest of the paper is

mailto:ctorres@inaoep.mx
mailto:ariasm@inaoep.mx


FPGA-Based Configurable Systolic Architecture 1025

Input
image

Window

Function
Mask

Output
image

Figure 1: Conceptual view of a window-based operator.

organized as follows. Section 2 describes the basis of win-
dow-based image processing. The systolic architecture orga-
nization and the processing element structure are described
in Section 3. Section 4 presents the complexity and perfor-
mance issues of the architectural model. Experimental results
and the performance analysis of the FPGA implementation
are presented in Section 5. Discussion and comparison are
given in Section 6. Finally, conclusions and further work are
presented in Section 7.

2. WINDOW-BASED IMAGE PROCESSING

The first stages of computer vision require a large number of
repetitive neighbor or window-based operations over a mas-
sive amount of image data. The window-based operation do-
main is restricted to a small neighbor of image data centered
on a reference pixel. A conceptual view of window-based op-
erators is depicted in Figure 1. A window-based operation is
performed when a window, area of w ×w pixels, is extracted
from the input image and it is transformed according to a
window mask or kernel and mathematical functions to pro-
duce an output result [1, 9, 10]. The window mask is the
same size as the image window and their values are usually
constants through the entire image processing. The values
used in the window mask depend on the specific type of fea-
tures to be detected or recognized. Usually a single output
data is produced by each window operation and it is stored
in the same position as the central pixel of the window.

Window-based operations can be formalized mathemat-
ically as follows. Let I be theM×N input image, Y the output
image, andW aw×w windowmask. A 2Dwindow operation
can be defined as

Yrc=F
(
f
(
wij , Ir+i,c+ j

)) ∀(i, j) ∈ w×w, ∀(r, c) ∈M×N ,
(1)

where wij represents a coefficient from the window maskW ,
Ir+i,c+ j represents a pixel from a w × w window around the
(r, c) pixel in the input image, f defines a scalar function,
and a defines the local reduction function.

Window-based operators are characterized because the
same scalar function is applied on a pixel by pixel way to
each individual pixel of one or more input images to pro-
duce a partial result. Common scalar functions include rela-
tional operations, arithmetic operations, logical operations,

Table 1: Complexity of image convolution expressed in terms of
arithmetic operations.

Elemental operations Number of executions

Multiplication w2 ×M ×N

Addition (w2 − 1)×M ×N

Load/store (2×w2 + 1)×M ×N

and possibly look-up tables. The local reduction function re-
duces the window of intermediate results, computed by the
scalar function, to a single output result. Some common local
reduction functions employed are accumulation, maximum,
and absolute value. Scalar and local reduction functions form
the image algebra to construct window-based image appli-
cations [9, 11]. Thus, to design flexible hardware architec-
tures for window-based image processing, the architecture
instruction set must support these functions.

2.1. Computational requirements

Window-based image operations in computer vision are
computationally expensive tasks. The window-based oper-
ation complexity can be expressed in terms of the elemen-
tary arithmetic operations required to process an image [8].
In particular, analyzing image convolution, the total num-
ber of operations required to perform this task, excluding ad-
dress generation and other control actions, is summarized in
Table 1. The values presented in Table 1 were obtained con-
sidering the convolution of a w × w window mask on an
M ×N input image. In general terms, a window-based oper-
ator has a computational complexity ofO(w2×M×N). This
complexity can be reduced for special cases such as separa-
ble filters, but the general case is considered for explanation
purposes.

Window-based image processing also involves a high data
transfer rate (DTR) between the image acquisition module,
the image memory, and the processor. If a binary represen-
tation of b bits for pixels and an image processing rate of f f
images per second, the input data transfer rate is given by

DTRI = b × (2×w ×w)×M ×N × fF . (2)

In a similar way, the output data transfer rate is given by

DTRO = b×M ×N × fF . (3)

The high data transfer rates and computational complex-
ity involved in window-based image processing require an ef-
ficient use of communication channel bandwidth and the use
of parallel processing to achieve high processing efficiencies.

2.2. Implementation issues

Data-intensive image processing algorithms require the in-
put image memory to be accessed several times. This is par-
ticularly true for window-based operations. Considering the
gap between a processor speed and memory access time,



1026 EURASIP Journal on Applied Signal Processing

the memory access time overhead is a critical issue to face.
Although window-based image operations may access mem-
ory in different patterns, they share important features that
can be generalized as follows:

(i) window-based image operations are memory inten-
sive, at least one new pixel of data is typically needed
for each step in the computation,

(ii) a high potential for parallelism is available since win-
dow operations include a large percentage of indepen-
dent operations that are applied to each pixel or region
of a large 2D image array.

On the other hand, image data is usually stored in lin-
ear memory organizations so that neighboring pixels in the
image are not necessarily stored as neighboring elements in
linear memories. This obscures the spatial relationship be-
tween the pixels so the 2D data parallelism is hidden. If the
spatial data dependencies are exposed, it should be easier to
implement a hardware architecture to use uniform 2D data
access patterns that are needed for parallel execution. A re-
lated issue is that data for window operators usually overlaps
with the neighbor windows of the pixels surrounding. This
means that there is a great deal to create simple vectors of
data elements that can be processed by parallel vectorization
techniques [6, 8, 12]. However, introducing a high degree of
parallelism increases the requirements of internal local stor-
age and communication routing. Thus a compromise among
performance and silicon area should be chosen according to
a given application. However, the exposed drawbacks can be
partially solved using an adequate memory scan to reduce
the memory access time and exploit data parallelism through
parallel architectures [8]. The memory addressing used in
this work to exploit parallelism is explained in Section 2.3.

A key factor to take into account to implement a hard-
ware architecture is the implementation technology. In this
research, the field programmable gate array (FPGA) technol-
ogy was chosen due to the following characteristics [13, 14]:

(i) FPGA provides massive parallel structures and high
density for logic arithmetic,

(ii) in FPGA devices, tasks are implemented by spatially
composing primitive operators rather than temporally,

(iii) in FPGAs, it is possible to control operations at bit level
to build specialized datapaths,

(iv) FPGA technology can offer potentially two orders of
magnitude more raw computational power per unit of
area than conventional processors with shorter design
cycles compared to ASICs,

(v) FPGA technology is well suited for implementing par-
allel architectures such as SIMD-like and systolic pro-
cessors.

2.3. Data parallelism andmemory addressing

In this section, a technique for extracting the 2D spatial data
dependencies from window-based image processing is pre-
sented. It is based on a previous work reported in [15] where

Shared data for
three windows

Window (x, y)

Window (x + 1, y)

Window (x, y + 1)

Figure 2: Data-level parallelism in window-based image opera-
tions.

an efficient image addressing mode was used in an archi-
tecture for fast edge and corner detection. In this work the
addressing mode is generalized and extended for a generic
window-based operator and the design of a new architec-
ture is proposed. In Figure 2, a set of three windows is de-
picted on an input image. The center of two windows are
shifted, one column and one row, from a reference window
centered at position (x, y). The enclosed area by each win-
dow represents the number of pixels required to produce an
output data. As can be seen from Figure 2, some data is over-
lapped among the three windows. This implies that some
pixels could be used for the computation of three window
operations in the same reading cycle of the input memory
diminishing the number of memory accesses by a factor of
three on the shared-data area. The current read pixel could
be broadcast to different processors in order to compute sev-
eral window operators in parallel.

The idea exposed above can be extended for a greater
number of windows in the input image in a close neighbor
where data sharing can be exploited. The larger number of
windows considered in a close neighborhood, the less the
data overlapping. A criterion should be defined in order to
establish a good compromise between data overlapping and
the number of window operations performed in parallel.

The inherent data parallelism in window-based image
operators can be combined with loop unrolling in order to
diminish the memory access overhead of a purely sequential
implementation.

A traditional sequential implementation of a w × w
window-based operation would slide the window horizon-
tally across the image until it reaches the end of a given row,
thenmoves one row below and repeat the process. Under this



FPGA-Based Configurable Systolic Architecture 1027

w

NR − 1

Rows processed
in parallel

NR

First iteration

w

NR − 1

Rows processed
in parallel

NR

Second iteration

Figure 3: Column-based image addressing mode to exploit data
parallelism and loop unrolling.

approach, every pixel in the image is read several times. The
sequential memory time overhead can be diminished by par-
tially unrolling the loop and computing more than one win-
dow in parallel either in the vertical or in the horizontal di-
rection. Loop unrolling is a process of replacing the iterations
of a loop with noniterated straight-line operations [8, 16].
For the purpose of explanation, partial loop unrolling in the
vertical direction is considered but the horizontal direction
can be used interchangeably. The use of partial unrolling in
the vertical direction combined with an adequate addressing
scheme allows the processing of several rows in parallel.

The addressing mode used in this work is based on a
column-based order as shown in Figure 3. The number of
pixels read per column is directly dependent on the degree
of loop unrolling employed, that is, the number of rows pro-
cessed in parallel. If NR rows are processed in parallel over an
M×N image and a w×w windowmask, then the number of
pixels read per column is w +NR − 1. Figure 3 shows two it-
erations of the image processing whenNR rows are processed
in parallel. In the first iteration NR rows are being processed
in concurrently and when their processing is complete, then
the processing of another set of NR rows starts.

Under the proposed addressing scheme, the total number
of memory accesses NMA to process the image is given by

NMA = N × (w +NR − 1
)×

[
M

NR

]
, (4)

whereM×N is the image dimension,w the window size, and
NR the number of rows processed in parallel.

The term in parentheses in (4) represents the number of
pixels read per column and the term in brackets represents
the number of strips that the input image is divided into to
process several rows in parallel. According to (4), the num-
ber of memory accesses depends almost linearly on the win-
dow size in contrast to the quadratic dependence in the se-
quential implementation of a window operator. In fact, the
dependence tends asymptotically to be proportional with a
unit constant as the number of rows processed in parallel in-
creases.

3. SYSTOLIC ARCHITECTURE

In this section some details of the proposed hardware ar-
chitecture for window-based image processing are presented.
The architecture exploits data parallelism and reuse through
a column-based memory addressing mode and a set of pro-
cessing elements working in parallel. The computation core
of the architecture is organized under a 2D systolic array
of processing elements. The processing element specially de-
signed for the systolic architecture is called configurable win-
dow processor (CWP).

The architecture is a stand-alone processor, but themem-
ories for storage of the input image and the processed image
are external to the architecture. The architecture reads data
from the input memory banks where input image pixels and
windowmask coefficients are stored, denoted as P andW , re-
spectively. The image pixels are read in a column-based scan
and they are transmitted to the array of processing elements
to compute, in parallel, several window operations.

3.1. Array of configurable window processors

The array of processing elements is the computation core of
the architecture. The processing elements are arranged un-
der a 2D systolic approach. Figure 4 shows the 2D systolic
organization of the CWPs. The 2D systolic array extends the
concurrency of the architecture to 2D parallelism, that is,
the parallel computation of window operations through rows
and columns on the input image. In Figure 4, the module de-
noted by CWP represents a configurable window processor,
the module labeled by D represents a delay line or shift regis-
ter, and the module labeled with LDC represents a local data
collector. For each column of the systolic array there is a lo-
cal data collector that collects results of CWPs located in the
same column of the array. The global data collector mod-
ule collects the results and sends them to the output mem-
ory. The CWPs in the same column, enclosed by a rectangle,
compute a window operator on the same column of the in-
put image. This set of CWPs can be considered as a 1D sys-
tolic array. Data flows from top to bottom, and the CWPs
work progressively in a systolic pipeline. The control module
and the address generator unit are not shown in Figure 4 for
simplicity.

A delay line is required in the boundary of the CWPs in
a column in order to support partial unrolling. The delay
line is designed as a serial-input serial-output shift register.
Thus, the window coefficients are temporally stored in the
delay line, delayed for synchronization purposes, and then
transmitted to the next column of CWPs. The stage number
in the delay line depends on the loop unrolling degree em-
ployed. If NR rows are processed in parallel, then a delay line
with NR − 1 register is required because of a mismatch be-
tween the window mask size and the number of pixels read
per column. In other words, the number of clock cycles re-
quired to all the coefficients of a column of the windowmask
pass throw a column of CWPs is w +NR.

After w + NR clock cycles, the coefficients of the current
column of the windowmask are sent progressively to the next
set of CWPs and the coefficients of another column of the



1028 EURASIP Journal on Applied Signal Processing

P W From input
memory banks

LDC

CWP11

CWP21

CWP71

D

LDC

CWP12

CWP22

CWP72

D

LDC

CWP16

CWP26

CWP76

D

LDC

CWP17

CWP27

CWP77

D

Global data collector

Output memory

Clock
cycles

Configurable window processors
in a column

CWP11 CWP21 CWP31 · · ·

P11W11

P21W21

P31W31

P41W41

P51W51

P61W61

P71W71

P21W11

P31W21

P41W31

P51W41

P61W51

P71W61

P81W71

P31W11

P41W21

P51W31

P61W41

P71W51

P81W61

P91W71

· · ·

Partial
products

(a) (b)

Figure 4: (a) Systolic array for fast speed computing of window-based image operations. (b) Data flow and computation for some CWPs in
the same column for image convolution.

mask is fed to the current set of CWPs. A detail of the data
flow of window mask coefficients through CWPs is shown in
Figure 4.

The local data collector collects data from the CWPs,
and the captured result is sent out of the CWPs to a global
data collector. The local data collector scans progressively the
CWPs from top to bottom according to a control signal from
the control unit module in the architecture.

The interconnection of several columns of CWPs towards
a 2D systolic array extends the concurrency of the architec-
ture to 2D parallelism by exploiting data parallelism through
parallel processing, pipeline, and loop unrolling. The inter-
connection between columns of CWPs is straightforward
and it can be considered a cascaded connection of 1D sys-
tolic arrays. In the 2D array, data flows from top to bottom
of a column, and then left to right through columns.

As a whole, the architecture operation starts when a pixel
from the input image is broadcast to all the processing ele-
ments in the array. Each CWPworking in parallel keeps track
of a particular window-based operation. At each clock cycle,
a CWP receives a different window coefficient, stored in an
internal register, and an image pixel that is common for all
the processing elements. These values are used by each CWP
to carry out a computation, specified by a scalar function,
and to produce a partial result of the window operation. The
partial results are incrementally sent to the local reduction
function implemented in the CWP to produce a single result
when all the pixels of the window are processed. In Figure 4
a detail of the data flow and the computation steps for three
CWPs in the same column of the systolic array is shown for
several clock cycles when the systolic array is configured for
image convolution with a 7 × 7 window mask. Each CWP,

if enabled, performs the computation of a multiplication and
an accumulation.

After a short latency period, each CWP has progressively
computed an output of a window operation. The produced
result is captured by the data collectors and stored in the out-
put image memory. Once a result produced by a CWP is col-
lected, the processing element is ready to start a new com-
putation. The CWPs work progressively in the same man-
ner until all data in the input image has been processed. The
CWPs are continuously being reutilized for computing dif-
ferent windows in the input image.

3.2. Configurable window processor

Figure 5 shows a simplified block diagram of the processing
element designed to cover most window-based operations in
image processing. It is called a configurable window proces-
sor (CWP). The CWP is composed of a register, an arith-
metic processor (AP), and a local reduction module (LRM).
The AP is based on a similar scheme of an arithmetic logic
unit (ALU) and provides the hardware support for the scalar
functions. It includes a multiplier, an adder/subtracter, and
a distance computation module. The LRM module imple-
ments the local reduction function and it includes an accu-
mulator and a maximum/minimum computation module.
For instance, for image convolution, the AP module per-
forms a multiplication and the LRM module performs an
accumulation. Similarly, for gray-level dilation/erosion, the
APmodule and LRMmodule perform additions/subtraction
and maximum/minimum operations, respectively.

The CWP performs the computational work required in
a given window-based application. The CWP is configurable
by a control word selected by the end user. The CWP has two



FPGA-Based Configurable Systolic Architecture 1029

W P

Control
wordAP

z−1 LRM

Wd Pc

Figure 5: Block diagram of the configurable window processor.

operational inputs, pixels from the input image, and coeffi-
cients from the window mask, denoted by P and W , respec-
tively. Each CWP has two output signals. One of them is the
result of the window operation (PC) and the other one is a
delayed value of a window coefficient (Wd) that is transmit-
ted to its neighbor CWP or to a delay line. The CWP accepts
one pixel data and a window coefficient to compute one step
of a window operation in a clock cycle.

The functionality of the CWP is configured by a control
word in run time. The user sends a control word through a
port of the architecture to control the operation that the AP
and LRMmust perform according to an application.

In summary, on each clock cycle, each CWP executes in
parallel three disjoint operations:

(i) compute the pixel by pixel value to be passed to the
next computation cycle,

(ii) integrate the contents of the output register, calculated
at the previous clock cycle, with the new value pro-
duced by the AP module,

(iii) read a new window coefficient and store it into the reg-
ister then, transmit the previous coefficient to the next
CWP.

4. COMPLEXITY AND PERFORMANCE ISSUES

The hardware architecture presented in the previous sections
is dedicated to window-based image processing under real-
time constraints. The main concerns for the architecture de-
sign were a regular input data scheme with a small num-
ber of data input/output ports, and fast parallel processing
of window operations. In this section, some metrics are es-
tablished to evaluate the complexity and performance of the
architecture in term of architectural parameters. Throughout
the analysis, it is considered that the proposed architecture
consists of NCWP(R) rows of configurable window proces-
sors. Each row includes NCWP(C) configurable window pro-
cessors.

4.1. Processing time

The required processing time to process an input image with
a window-based operator is composed of twomain times: the
latency time and the parallel processing time.

The latency time corresponds to the time required to start
pipeline operation inside the 2D systolic array. The latency
time is measured between the activation of the first CWP un-
til the activation of the last CWP. The latency is significant
when the 2D systolic array starts the processing of a new set
of rows of the input image.

The time required to initialize full pipeline operation of
the parallel modules at the beginning of row processing is
given by

τl =
[
(MaskSize− 1)× (NCWP(R) +MaskSize− 1

)]

× 1
F
× M

NCWP(R)
,

(5)

where NCWP(R) is the number of rows processed in parallel,
MaskSize is the size of mask used in the computations, F is
the main clock frequency, M is the number of rows of the
image, and N is the number of columns of the image.

The parallel processing time is the time when all the CWPs
in the 2D systolic array are working in parallel. This is the
addition of all the computing times to process a set of rows,
without considering the latency at the start of processing.

The required parallel processing time to process M × N
pixels, without the initial latency is given by

τp =M ×N ×
[
NCWP(R) +MaskSize− 1

NCWP(R)

]
× 1

F
. (6)

The factor enclosed in brackets represents the average
clock cycle number to produce a result. The overall time
needed to process an (M × N)-sized image is given by the
summation of the preceding times:

T = τl + τp. (7)

From the architectural point of view, the performance is
compromised with the number of rows processed concur-
rently, hence with the silicon resources allocated to the ar-
chitecture.

4.2. Throughput

The throughput of a system can be expressed in terms of the
number of elemental operations that the system can perform
per second. In this sense, only the operations contributing to
the computation of a result are considered. In the particular
case of the architecture, two operations are of significance,
the scalar function and the local reduction function executed
on each clock cycle. Under these considerations, the compu-
tational throughput of the architecture can be calculated ac-
cording to the following equation:

Throughput = F × (NCWP(R)×NCWP(C)
)×NIPCWP, (8)

where F is the main clock frequency, NCWP(R) × NCWP(C)
the number of processing elements in the systolic array, and
NIPCWP the average number of elemental operations com-
puted per CWP on each clock cycle.



1030 EURASIP Journal on Applied Signal Processing

The NIPCWP parameter denotes the efficiency degree of
computational usage of each CWP in the 2D systolic array.
The NIPCWP depends on the topology of the systolic array
and the dimension of the problem to be solved. The NIPCWP

can be computed according to the following equation:

NIPCWP = 2× MaskSize
NCWP(R) +MaskSize− 1

, (9)

where MaskSize denotes the dimension of the window used
in the window-based image operator.

5. RESULTS

To achieve the required characteristics related to the architec-
ture performance and configurability, a fully parameterizable
VHDL description of the modules of the proposed archi-
tecture was carried out by making extensive use of generic-
type configurations inputs. Furthermore, a fully structural
description of these modules was also carried out, using only
the most elementary logic operations provided by the imple-
mentation library to achieve good optimization levels for the
main components of the architecture. Since structural VHDL
was used for a hierarchical design, the whole design is plat-
form, version, technology, and tool independent.

The modules and the complete architecture were synthe-
sized with the XST tool and placed and routed with Foun-
dation ISE from Xilinx. All the simulations were carried out
with Active HDL, both functional and postsynthesis simula-
tions.

5.1. Hardware resource utilization

This section presents the FPGA synthesis results for the main
modules of the architecture. The hardware resource utiliza-
tion is reported for an XCV2000E-6 VirtexE FPGA device.
The digital synthesis was carried out in a hierarchical and in-
cremental way. The results are summarized in Table 2, using
as main parameters the number of slices, and specifically the
number of flip-flops and look-up tables of the FPGA.

The results shown in Table 2 were obtained with the XST
synthesis tool configured to optimize for speed. A 7 × 7 sys-
tolic array of CWPs was synthesized. Since no temporal re-
strictions of low-level were imposed on the place and route
process, further improvements in area and speed can be ob-
tained if timing and area restrictions are imposed. The hard-
ware resource utilization is only a small part of the FPGA re-
sources, about 30 percent. In fact, the architecture suits well
for FPGAs with lower logic capacities.

An available prototype of the architecture, synthesized
for an XCV2000E-6 Virtex device, executes approximately
3.16 GOPs at a 60MHz clock frequency. The hardware ar-
chitecture was prototyped using an RC1000PP FPGA-based
board from Alpha Data. The FPGA-based board is centered
on a VirtexE device with an equivalent logic capacity of 2
million gates. The board is attached to the PCI bus of a host
computer, and it contains 8MB on-boardmemory organized
in four banks of 2MB each. The memory and hardware re-
sources available in the board can be accessed through an

Table 2: FPGA synthesis summary for the architecture and its main
modules.

XCV2000E-6 FPGA VirtexE device

Module
Number of 4-input Number of

slices LUTs flip-flops

CWP
101 190 24

address
Generator

154 269 97
unit
Control unit 5 10 3
A column of

840 1506 223
7 CWPs
Complete

6118 10734 1604
architecture

Table 3: Technical data for the systolic architecture for real-time
window-based image processing. The architecture was synthesized
for a 7× 7 systolic array.

Technical data for the systolic architecture
XCV2000E-6 FPGA Virtex device

Feature Specification

FPGA technology
0.18 µm 6-layer metal
process

Power supply 1.8 V
Number of processing

49
elements, CWPs
Clock frequency 60MHz
FPGA percentage for the

6118 slices, around 30%
complete architecture
FPGA percentage per

101 slices, less than 1%
CWP
FPGA percentage, address

159 slices, less than 1%
and control logic
Number of flip-flops 1604
Estimated power

1.56W
consumption
Off-chip memory data

21-bit address, 8-bit data
buses
On-chip memory 81 8-bit registers
Peak performance 3.16 GOPs
Number of pins 92

API developed in Visual C++. An experimental setup for ar-
chitecture prototyping with real images was built using this
board.

A summary of the technical data for the FPGA imple-
mentation of the current architecture prototype, highlight-
ing aspects such as technology, hardware resources, perfor-
mance, and power consumption, is shown in Table 3. The
current prototype is based on a systolic array of 7× 7 CWPs.
The estimated power consumption of the architecture was
obtained with the Xilinx XPower software tool using a clock
frequency of 60MHz.



FPGA-Based Configurable Systolic Architecture 1031

35

30

25

20

15

10

5

P
ro
ce
ss
in
g
ti
m
e
(m

s)

0 2 4 6 8 10 12 14 16 18 20

Number of rows processed in parallel

Figure 6: Architecture performance with different parallelism de-
grees.

5.2. Performance

In this section the results of the processing time of the pro-
posed architecture for performing window-based operators
on an input image are presented. The results and graphs were
obtained using the synthesis results and the equations pre-
sented and discussed in Section 4.

Figure 6 shows the processing time of the architecture
versus the number of rows processed in parallel. Per each
row, a set of MaskSize CWPs is employed in the 2D systolic
array. The processing time is the time required to process an
image on the proposed architecture when image data is al-
ready available in the input imagememory. All the additional
times needed for the I/O requests and data transfers are not
considered in the performance analysis of the architecture
since they are dependent on the prototyping platform. Thus,
the image acquisition overhead must be added to the pro-
cessing time. However, the image acquisition overhead can
be overcome in a hardware prototyping platform if an ap-
propriate double buffering is employed, that is, the acquisi-
tion process is performed concurrently with the processing
using independent memory banks.

A 512×512 image and a 7×7 windowmask were consid-
ered to plot the curves in Figure 6. An increase in the number
of CWPs produces an increase in the overall performance of
the architecture. As can be seen from Figure 6, a systolic array
with the capability of processing two rows in parallel would
be enough to fulfil real-time requirements, that is, processing
of 30 frames per second.

The processing times for a window-based operation on
512× 512 gray-level images using different window sizes are
plotted in Figure 7. The image processing time using a 7 × 7
window mask is 8.35 milliseconds, which leaves time for im-
age acquisition or image memory loading since about 30
milliseconds are required to achieve standard real-time con-
straints. Moreover post-processing on the resulting image
can be applied. The performance results for different window
sizes are plotted on the same figure. The 2D systolic array was

50

45

40

35

30

25

20

15

10

5

0

P
ro
ce
ss
in
g
ti
m
e
(m

s)

0 2 4 6 8 10 12 14 16 18 20

Number of rows processed in parallel

3× 3
5× 5
7× 7

9× 9
11× 11

Figure 7: Performance of the proposed architecture for a 512× 512
gray-level image with different window sizes where the array has an
equal dimension to window mask.

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

G
ig
a
op

er
at
io
n
s
pe
r
se
co
n
d

0 2 4 6 8 10 12 14 16 18 20

Number of rows processed in parallel

Figure 8: Throughput of the architecture for different configura-
tions of the 2D systolic array.

configured to use the same number of processing elements as
the window size. For all the cases, it is possible to achieve real-
time performance with low hardware resource utilization.

Figure 8 shows the achievable throughput of the architec-
ture when different parallelism degrees, number of process-
ing elements, are employed. The graph shows the number of
GOPs versus the processing elements employed. As can be
seen, the throughput increases with the number of process-
ing elements. However, if many processing elements are used
in the systolic array the utilization and activity efficiency of
the processing elements decrease. Thus, an appropriate reuti-
lization scheme should be investigated to increase the com-
putational density at the expense of an increase in the control
logic.



1032 EURASIP Journal on Applied Signal Processing

A performance improvement can be obtained-either op-
timizing the design mapped onto the FPGA or employing an
FPGA built with a better semiconductor technology. How-
ever, the performance of the architecture fulfils the real-time
requirements and provides the advantages of compactness
and scalability for further improvements. The results pre-
sented in this section can be used for rough estimation of
hardware resource utilization and evaluation of the architec-
ture performance. For reliable comparisons with other sys-
tems and architectures, it would be necessary to use the same
fabrication technology and equal amount of silicon area since
smaller geometries allow packing more computation into the
silicon area [13].

6. DISCUSSION

In this section, the window-based operation performance on
the proposed architecture is compared with other currently
available architectural solutions. Comprehensively compar-
ing image processing hardware architectures is undoubtedly
a complex task for a single research effort. Moreover, the lack
of standard metrics increases the complexity to do reliable
comparison. There are several parameters for comparison
and performance evaluation of hardware architectures and
systems. Some common parameters used in the literature for
comparison purposes are processing speed normalized for
chip area, power consumption, operation throughput, data
transfer efficiency, parallel efficiency, and the product of the
number of processing elements and the processing time for
one frame [7, 10]. However most of the metrics are rarely
reported in the literature for architectures and systems.

6.1. Comparisonwith other architectures

The first way to make a fair comparison between the pro-
posed architecture and other image processing architectures
is within the application scope of window-based operations.
The same set of algorithms should be performed on each ar-
chitecture to standardize themetric for performance. Among
the window-based image algorithmsmapped into the systolic
architecture are image convolution, template matching, and
gray-level image morphology.

The comparisons made on this work are intended to be
performed among several different array processor architec-
tures. In order to do fair comparison, the architectures are
compared under same conditions as

(i) they are used to deal with the same algorithm class,
(ii) the same image size is used, unless another case is es-

tablished,
(iii) the execution time, clock cycles, is used as the main

metric for comparison, since a lack of other metrics
reported in literature.

The timings for some window-based image operators
and their corresponding implementations on different hard-
ware architectures are summarized in Table 4. In the table,
the window-based image application, the machine architec-
ture, image size, and processing time are used as main pa-
rameters for comparison [7, 8, 15, 16, 17, 18].

The architecture performance is similar and even better
than other architectures and systems reported in the liter-
ature, as shown in Table 4. Since the architecture is not an
ASIC, its performance regarding ASIC architectures is signif-
icant without sacrificing flexibility. Moreover, if the proposed
architecture is implemented in an ASIC, it will provide a per-
formance improvement of one order of magnitude.

The architecture provides a high throughput, 3.16 GOPs
with power consumption of about 1.56W and the processing
time is independent of the window-based algorithmmapped
to the architecture. Regarding power consumption, the archi-
tecture provides an improvement over two magnitude orders
over Pentium processors. The power consumption of Pen-
tium IV is about 70W.

6.2. Area/performance tradeoffs

In order to analyze the requirements of area for different
configurations of the architecture, a graph of the number of
FPGA hardware resources used versus a particular window-
based application was obtained. As shown in Figure 9, the
hardware resources, number of LUTs, slices, and flip-flops in
the FPGA depend on a particular window-based image appli-
cation mapped to the FPGA. The most hardware demanding
application is the convolution since it requires a multiplier
per each CWP in the array to perform the operation.

From Figure 9, it can be shown that it is possible to
achieve real-time performance for window-based image pro-
cessing with very compact architectures. The low resource
utilization allows the architecture to be implemented in com-
pact mobile applications restricted to low-power consump-
tion. From results presented above, it is clear that the pro-
posed architecture obtains a very high efficiency, and it is
possible to state that it provides a high computational den-
sity due to the relatively small implementation area used of
the FPGA. Furthermore, since the current architecture con-
figuration provides a computational power greater than that
required for real-time performance, it is possible to reduce
at some extent the hardware resources or the main clock fre-
quency for power saving purposes.

6.3. Multifunctional architecture

One of the main advantages of the proposed architecture
is its configurability. The architecture is flexible enough to
support several variations of window-based image operators.
Thus, the architecture offers the possibility of addressing dif-
ferent image-based applications from the system-on-a chip
(SoC) perspective.

Due to its versatile, modular, and scalable design, the ar-
chitecture constitutes a platform to explore more complex
algorithms such as block matching for motion estimation,
stereo disparity computation, and discrete cosine transfor-
mation, among others. Some of these potential applications
are currently being developed. For instance, the following key
aspects have to be considered in order to map a block match-
ing algorithm into the architecture. First, the coefficients of
the window mask are variable and their values are obtained
of windows extracted from the reference image. Second, once
a coefficient window is extracted it remains constant through



FPGA-Based Configurable Systolic Architecture 1033

Table 4: Performance comparison of the architecture with other proposed systems for window-based image processing.

Performance benchmarks on different architectures

System Architecture Application Image size Timing

TMS320C80 Multiprocessor 5×5 Gaussian convolution 512× 512 40ms

TMS320C80 Multiprocessor 3× 3 gray-level dilation 512× 512 32.7ms

Splash 2 Multi-FPGA 3× 3 median filter 512× 512 27ms

PDSP16488 40MHz Hardwired ASIC 8× 8 convolution 512× 512 6.56ms

PPIP 64× 64 2D SIMD array 5× 5 Laplacian filter 512× 512 197 µs

PPIP 64× 64 2D SIMD array 5× 5 Gaussian convolution 512× 512 730 µs

LSI Logic’s L64240, 20MHz Hardwired ASIC 8× 8 convolution 512× 512 13.11ms

Blue wave system PCI/C6200 DSP-based, 3× 3 convolution 512× 512 7.2ms

Alacron’s AI-860 I860 processor 8× 8 convolution 512× 512 66.1ms

UWGSP5 DSP-based, MVP 3× 3 convolution 512× 512 19ms

IMAP vision SIMD, 256 PE 3× 3 convolution 256× 256 0.65ms

IMAP vision SIMD, 256 PE 3× 3 gray-level dilation 256× 256 0.31ms

DECChip 21064 Multiprocessor 5× 5 convolution 512× 512 220ms

MAP1000 200MHz Media processor VLIW 7× 7 convolution 512× 512 7.9ms

VP24000/10 Vector computer 8× 8 template matching 512× 512 40ms

500MHz Pentium III Superscalar 8× 8 convolution 512× 512 56.5ms

Proposed architecture Systolic
7× 7 generic window-based

512× 512 8.35ms
image operator

12000

10000

8000

6000

4000

2000

0

FP
G
A
h
ar
dw

ar
e
re
so
u
rc
es

Complete Convolution Template
matching

Morphology

LUTs
Slices
Flip-flops

Figure 9: FPGA hardware resources for different architecture con-
figurations.

the search area associated to the reference image. Similarly,
the stereo matching can be formulated as a window operator
such as the blockmatching. The difference for this case is that
two static images from two points of view are considered.

7. CONCLUSIONS

This paper has presented an alternative and flexible FPGA-
based architecture for window-based image processing under
real-time constraints. A set of processors is organized under a

systolic approach to form a programmable architecture. The
architecture can achieve a processing rate of near 3.16 GOPs
with a 60MHz clock frequency. The high-performance and
compact hardware architecture opens new and practical pos-
sibilities to mobile machine vision systems where size and
power consumption are hard constraints to overcome. The
architecture was derived from a functional decomposition of
window-based algorithms and operators. In order to cope
with a broad class of image processing algorithms, a com-
putational processing unit, called configurable window pro-
cessor, was defined.

The programmability of the proposed architecture pro-
vides the additional advantage of being more flexible than
the ASICs based on hardwired approaches. The configurable
window processor developed in this research can be used and
adapted to support different algorithms based on a window
processing scheme. The window-based image processing al-
gorithms addressed in this research include generic convolu-
tion, template matching, and gray-level image morphology.
Moreover, some other applications suit well for the architec-
ture such as block matching for motion estimation, stereo
disparity computation, among others. In this sense, a soft-
ware tool will be explored to synthesize dedicated modules
for low-level image processing using as a basis the addressing
mode and the parallel techniques employed in the proposed
architecture.

The performance comparison with other existing ar-
chitectures confirms the promising advantages of the pro-
posed FPGA-based systolic architecture over other con-
ventional approaches. Its performance has been evaluated
for many window-based target applications with excellent
results that validate the proposed high-performance archi-
tectural model.



1034 EURASIP Journal on Applied Signal Processing

REFERENCES

[1] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision,
McGraw-Hill, New York, NY, USA, international edition,
1995.

[2] N. Ranganathan, Ed., VLSI & Parallel Computing for Pattern
Recognition & Artificial Intelligence, vol. 18 of Series in Ma-
chine Perception and Artificial Intelligence, World Scientific
Publishing, 1995.

[3] P. A. Laplante and A. D. Stoyenko, Eds., Real-time Imaging -
Theory, Techniques and Applications, IEEE Press, New York,
NY, USA, 1996.

[4] P. M. Athanas and A. L. Abbott, “Real-time image processing
on a custom computing platform,” Computer, vol. 28, no. 2,
pp. 16–24, 1995.

[5] J. Silc, T. Ungerer, and B. Robic, “A survey of new research
directions in microprocessors,” Microprocessors and Microsys-
tems, vol. 24, no. 4, pp. 175–190, 2000.

[6] M. K. Ratha, Computer Vision Algorithms on Reconfigurable
Logic Arrays, Ph.D. Dissertation, Michigan State University,
1996.

[7] B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-
D convolvers for fast digital signal processing,” IEEE Trans.
VLSI Syst., vol. 7, no. 3, pp. 299–308, 1999.

[8] R. Managuli, G. York, D. Kim, and Y. Kim, “Mapping of two-
dimensional convolution on very long instruction word me-
dia processors for real-time performance,” Journal of Elec-
tronic Imaging, vol. 9, no. 3, pp. 327–335, 2000.

[9] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1982.

[10] D. Li, L. Jiang, and H. Kunieda, “Design optimization of vlsi
array processor architecture for window image processing,”
IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, vol. E82-A, no. 8, pp. 1475–
1484, 1999.

[11] A. Bouridane, D. Crookes, P. Donachy, K. Alotaibi, and
K. Benkrid, “A high level FPGA-based abstract machine for
image processing,” Journal of Systems Architecture, vol. 45, no.
10, pp. 809–824, 1999.

[12] V. Moshnyaga, N. Watanabe, and K. Tamaru, “A memory effi-
cient array architecture for real-time motion estimation,” IE-
ICE Transactions, vol. J81-D-I, no. 2, pp. 77–85, 1998.

[13] A. DeHon, “The density advantage of configurable comput-
ing,” Computer, vol. 33, no. 4, pp. 41–49, 2000.

[14] P. Marchal, “Field-programmable gate arrays,” Communica-
tions of the ACM, vol. 42, no. 4, pp. 57–59, 1999.

[15] M. Arias-Estrada and C. Torres-Huitzil, “Real-time field pro-
grammable gate array architecture for computer vision,” Jour-
nal of Electronic Imaging, vol. 10, no. 1, pp. 289–296, 2001.

[16] B. Draper, W. Najjar, W. Böhm, et al., “Compiling and op-
timizing image processing algorithms for FPGA’s,” in Inter-
national Workshop on Computer Architecture for Machine Per-
formance (CAMP ’00), pp. 240–246, Padova, Italy, September
2000.

[17] F. Lohier, Méthodologies de programmation et évaluation des
processeurs de traitement de signal paralleles por le traitement
d’images en temps réel, Ph.D. Dissertation, L’Universite Pierre
Et Marie Curie (Paris 6), 2000.

[18] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,
and E. M. Chaves Filho, “Morphosys: an integrated recon-
figurable system for data-parallel and computation-intensive
applications,” IEEE Trans. Comput., vol. 49, no. 5, pp. 465–
481, 2000.

César Torres-Huitzil received his B.S. de-
gree in electronic engineering from the Uni-
versidad Autónoma de Puebla (BUAP) in
1995, and his M.S. degree in electronics and
his Doctor degree in computer science from
the National Institute for Astrophysics, Op-
tics and Electronics (INAOE), Puebla, Mex-
ico, in 1998 and 2003, respectively. Since
1998, he is a Researcher of the Digital Sys-
tems Design Group in the Electronics Fac-
ulty, BUAP. Currently, he is a Postdoctoral Fellow at Laboratoire
Lorrain de Recherche en Informatique et ses Applications (LORIA),
France. His research activities include work on computer vision ar-
chitectures for real-time operation, reconfigurable computing, evo-
lutionary computation, and HDL modeling of digital systems. The
current emphasis of his work is on FPGA implementation of high-
density neural networks.

Miguel Arias-Estrada received the B.Eng.
degree in communications and electron-
ics, and the M.Eng. degree in electronics
from the Universidad de Guanajuato, Mex-
ico, in 1990 and 1992, respectively, and the
Ph.D. degree in electrical engineering from
the Université Laval in Quebec, Canada, in
1998. From 1997 to 1998, he was with the
Electrical and Computer Engineering De-
partment, Université Laval in Canada. Since
1998 he is a Researcher at the Computer Science Department,
the National Institute for Astrophysics, Optics and Electronics
(INAOE) in Puebla, Mexico. His current research interests are in
FPGA and VLSI architectures for real-time computer vision, real-
time 3D recovery, FPGA implementation of spiking neural net-
works, smart cameras, and evolutionary engineering applied to
hardware design.


	1. INTRODUCTION
	2. WINDOW-BASED IMAGE PROCESSING
	2.1. Computational requirements
	2.2. Implementation issues
	2.3. Data parallelism and memory addressing

	3. SYSTOLIC ARCHITECTURE
	3.1. Array of configurable window processors
	3.2. Configurable window processor

	4. COMPLEXITY AND PERFORMANCE ISSUES
	4.1. Processing time
	4.2. Throughput

	5. RESULTS
	5.1. Hardware resource utilization
	5.2. Performance

	6. DISCUSSION
	6.1. Comparison with other architectures
	6.2. Area/performance tradeoffs
	6.3. Multifunctional architecture

	7. CONCLUSIONS
	REFERENCES

