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Machine perception is a difficult problem both from a practical or implementation point of view as well as from a theoretical
or algorithmic point of view. Machine perception systems based on biological perception systems show great promise in many
areas but they often have processing requirements and/or data flow requirements that are difficult to implement, especially in
small or low-power systems. We propose a system design approach that makes it possible to implement complex functionality
using cooperative analog-digital signal processing to lower power requirements dramatically over digital-only systems, as well as
provide an architecture facilitating the development of biologically motivated perception systems. We show the architecture and
application development approach. We also present several reference systems for speech recognition, noise suppression, and audio
classification.

Keywords and phrases: low power, noise suppression, classification, speech recognition, cooperative analog digital, feature ex-
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1. INTRODUCTION

This paper describes our efforts toward making on-chip au-
ditory perception systems. With these systems we hope to
achieve human-like performance in various auditory tasks.
Part of the motivation in this arena comes from the fact that
humans outperform machines in most tasks of audio per-
ception; therefore, one way to improve the current machine
perception implementations is to mirror biological systems
as best as we can in hopes of obtaining comparable results.

In keeping with the current mainstream ideas in audio sig-
nal processing, the characteristics of biology could be pro-
grammed into a digital processing system, and the results
would likely be good. However, this is at the cost of high
power consumption and longer time requirements due to the
computational complexity. It is time we looked at different
perspectives of performing these tasks both in terms of hard-
ware innovation and algorithm development [1].

A major consideration while designing on-chip machine
perception is the flexibility, size, and power requirements of
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Figure 1: The traditional approach is to put an analog-to-digital
(A/D) converter as close to the sensor signals as possible, imple-
menting nearly all functionality in digital systems. An alternate
approach is to perform some of the computations using advanced
analog signal processing, requiring simpler A/D converters, and re-
ducing the computational load of resulting digital processors. The
question of where to put this boundary line strongly depends upon
the particular requirements of an application.

the actual hardware. In order to address these issues, we de-
scribe a two-pronged approach to developing on-chip solu-
tions using both programmable analog processing and digital
signal processing (an approach that we call CADSP for co-
operative analog-digital signal processing [2]). The resulting
systems are very low-power, small, and can efficiently imple-
ment a large class of signal processing systems.

In this paper, we present CADSP as a vehicle for imple-
menting auditory perception on a chip. The rest of the pa-
per is divided into four main sections. Section 2 discusses
the system technology. Section 3 introduces signal processing
algorithms that can be implemented using this technology
and some results. Section 4 gives a comparative analysis be-
tween CADSP and digital approaches. Section 5 discusses fu-
ture work towards the goal of implementing all stages (noise
suppression, feature extraction, symbol representation, and
higher-end processing such as recognition) in the signal pro-
cessing pathway on the CADSP platform.

2. CADSP SYSTEMOVERVIEW

Our approach to machine perception is unique in that it in-
troduces a novel hardware processing platform [4, 7] that is
low power, programmable, and versatile. In the works is the
development of a prototyping platform [8] that would con-
siderably reduce the hardware design cycle. The next section
introduces some of the basic ideas and guiding principles of
CADSP.

2.1. Introduction to CADSP

The CADSP approach addresses the problem of runaway
hardware complexity by adding increased functionality to the
analog subsystem. For example, offloading the task of ex-
tracting signal features to the analog circuits can reduce the
analog-to-digital converter requirements (i.e., reduction in
bits of resolution and bandwidth required) and reduce the
load on the digital processor. This is in contrast to the recent
trend of moving the analog-to-digital converter earlier in the
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Figure 2: Data showing the power consumption trends in DSP mi-
croprocessors [3] along with data taken from a recent analog signal
processing IC [4, 5, 6].

signal path and doing increasingly more computation digi-
tally. However, there are many operations that may be easier,
cheaper, and more efficient to perform with analog circuits.
CADSP allows for freedom of movement of the partition be-
tween the analog and digital systems. By adding functionality
to our analog systems, we enhance the capabilities of the con-
trolling digital system, and therefore, the entire product un-
der consideration (see Figure 1). Many of the tradeoffs have
yet to be investigated, but we include a brief discussion of
power, size, and resolution.

The CADSP approach of building machine perception
systems promises increased algorithmic sophistication at
substantially reduced power consumption. In particular, a
power reduction of 3–4 orders of magnitude over currently
available digital signal processing (DSP) systems is expected
for certain classes of systems. As shown in Figure 2, such a
gain in power efficiency is approximately equal to a 20-year
leap ahead relative to the projected power efficiency of digital
signal processors.

The analog circuits we present are very small—a char-
acteristic made possible by CMOS floating-gate technology
which allows for easy tuning and programming of the cir-
cuits. Each analog system discussed in this paper occupies
less than 2.25mm2 in a standard (digital) CMOS 0.5 µmpro-
cess. These circuits are generally operated in subthreshold
mode, yielding tremendous power savings.

It has been previously shown [9] that analog computa-
tion has significant advantage if the resolution of incoming
information is not too high, typically 10–12 bits or less. We
can safely say that doing more in digital hardware generally
increases both flexibility and power consumption and, be-
yond a certain point, can yield increased accuracy, whereas
analog implementations of parts of a system generally result
in significant power savings and space savings at the expense
of flexibility.
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Figure 3: Block diagram of our generic FPAA chip. (a) Architecture diagram of our generic analog programmable computing blocks.
Although in many cases, a generic, mesh-connected structure will be inefficient for many computations, small mesh-connected arrays will
be important in more optimized implementations. Also, this chip will allow for partitioning between medium-scale analog-digital design
problems. We expect to build a generic FPAA block with 100 computational analog blocks (CAB), each with 24 ports, to the mesh-switching
matrix. (b) Signal flow in a single CAB.

When implementing machine perception on a chip, the
use of low-power analog circuits provides increased compu-
tational ability while requiring less space and power. In par-
ticular, this is useful for creating biologically motivated per-
ception systems, since the complexity involved in such sys-
tems often makes them difficult to implement in low-power
systems. For instance, implementation of the biologically
motivated modulation spectra representation [10] would be
relatively straightforward to implement in a CADSP system
but it requires extensive computation when implemented in
programmable digital systems.

2.2. Floating gates overview

The core elements of the analog systems are CMOS analog
floating-gate devices. These elements add programmability
and increased flexibility and power savings to analog VLSI
circuits [11]. A floating gate is a polysilicon gate surrounded
by silicon dioxide. Charge on the floating gate is stored per-
manently, providing a long-term memory.

Floating gates are programmable in that the charge can
be modified using several methods. Electrons are removed
from the gate by applying large voltages across a silicon-oxide
capacitor to tunnel electrons through the oxide. Electrons
are added to the floating gate using hot-electron injection.
Programming of floating gate is accomplished by resetting
the floating-gate charge using electron tunneling, and setting
positive or negative offsets using hot-electron injection [12].

The floating gate can be used in computation since the
voltage, determined by the charge stored on the floating
gate, can modulate a channel between a source and drain.

Floating-gate devices can compute a wide range of static
and dynamic translinear functions by the particular choice
of capacitive couplings into floating-gate devices. This pro-
grammable analog CMOS technology is the basis for pro-
grammable and reconfigurable CADSP system.

2.3. Prototyping platform

The process of designing, fabricating, and testing an analog
chip requires certain expertise and is often long and expen-
sive. The process is not unlike designing digital ASICs (ap-
plication specific integrated circuits) except there are fewer
tools and libraries available to the designer. The difficulties
in digital ASIC design are largely ameliorated by using field-
programmable gate arrays (FPGAs). For digital circuits, FP-
GAs provide a fast, simple way to implement, test, and even-
tually compile custom circuits. We have built programmable
floating-gate analog devices that are similar to FPGAs in both
design and in the benefits they provide. The analog arrays,
dubbed field-programmable analog arrays or FPAAs, repre-
sent a significant advance in the field of analog signal pro-
cessing [8]. These chips are based on structures of floating-
gate analog circuits and they may contain tens of thousands
of analog elements as illustrated in Figure 3.

The arrays of analog circuits on which the FPAAs are
based consist of matrix/vector multiplies, filtering, and so
forth—not just a few op-amps with passive elements as with
commercial and other research FPAAs [13, 14, 15, 16, 17, 18,
19]. Relative to custom-designed analog circuits, a design im-
plemented in an FPAA will always result in higher parasitics
as well as increased die area for a given design; therefore,
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Figure 4: C4 second-order section circuit diagram.

the design will always possess some inefficiencies. On the
other hand, since analog-circuit design is often time consum-
ing, these adverse tradeoffs are well balanced by decreased
time to market. These FPAA chips are mixed-mode chips be-
cause the data-flow control and the programming and in-
terface control to the floating-gate devices are digital. Cur-
rently, we have well-defined digital control and protocols for
programming and controlling arrays of floating-gate devices
[20]. Figure 3a shows a block diagram of the generic FPAA
mesh architecture. Figure 3b shows the interconnection in
a single CAB element; we connect the buses from the four
edges of the chip and internal bus lines from the analog cir-
cuitry through a single switch matrix [8].

The development and use of FPAAs as described here is
an important step toward designing and deploying flexible
CADSP systems. We are in the process of building special-
ized FPAAs for audio signal processing that incorporate mi-
crophone inputs, distributed filter banks, distributed analog-
computational memory arrays, CAB blocks, and sigma-delta
analog-to-digital (A/D) converters. The CAB blocks used
with this chip will also contain some special circuitry such
as circuits for active noise suppression (as described in the
next section) and adaptive filtering.

3. APPLICATIONS

In this section, we present various audio processing applica-
tions that can be implemented using CADSP. We present re-
sults from fabricated chips for some of the applications and
simulation results for the rest.

3.1. Bandpass filtering

Spectrum decomposition is invariably the first step in most
audio processing applications. In this section, we present a
continuous-time bandpass filter element called the capac-
itively coupled current conveyer (C4) (Figure 4). Measure-
ment data from circuits fabricated on a 0.5 µm n-well CMOS
process is shown for frequency ranges from 10Hz to 100 kHz
(Figure 5).
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Figure 5: Programmed differential weights to the floating-gate
multiplier circuits (a single sine period).

C4 is a bandpass filter with electronically tunable corner
frequencies and ±40 dB/decade or greater rolloffs. The cor-
ner frequencies can be set independent of each other; there-
fore, the bandwidth can be tuned at will. Each corner can
have its own Q-peak, or, if the corners are brought close to-
gether, a very tight bandwidth with a single Q-peak develops
(see Figure 5). This leads to further isolation of any given fre-
quency and is thus useful for signal processing applications.
An array of these C4 second-order sections (SOS) with ex-
ponentially spaced center frequencies forms a good model of
the human cochlea where signals are decomposed with filter-
ing processes that have Q ≈ 30 [21].

3.2. Noise suppression

Audio signal enhancement by removing additive background
noise from a corrupted noisy signal is not a new concept.
While most noise suppression methods are focused on the
processing of discrete-time sampled audio signals, we use a
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Figure 6: Our continuous-time noise suppression system. (a) The overall structure of the system. The incoming noisy signal is divided
into exponentially spaced frequency bands using C4 second-order sections. Next, the optimal gain (gain calculation block) for each band is
computed. If the band has sufficient estimated SNR, the signal passes through with maximal gain, otherwise the gain is reduced dependent
upon the estimated SNR in that particular band. The resulting gain factor is multiplied with the bandlimited noisy signal to produce a
bandlimited “clean” signal. Finally, the output of all of the bands is summed to reconstruct the signal with the noise components significantly
reduced. (b) Experimental measurements of noise suppression in one frequency band. The light gray data is the subband noisy speech input
signal; the black waveform is the corresponding subband output after the gain function has been applied. The noise-only portions of the
signal have been significantly attenuated while a lesser attenuation is applied appropriately to the speech + noise portions.

technique for noise suppression in the continuous-time do-
main. We are building a system that operates in real time and
uses extremely low amounts of power. The result is a system
that performs a function normally reserved for digital com-
putation, freeing those resources for other operations in the
digital domain.

3.2.1. Structure of suppression system

Figure 6a shows the structure of a continuous-time noise
suppression system for real-time analog implementation.
The goal is to design a real-time system that generates some
optimal estimate of the actual signal from an additive mix-
ture of signal and noise. We assume that the additive noise is
stationary over a long time period relative to the short-term
nonstationary patterns of normal speech. A filter bank sep-
arates the noisy signal into 32 bands that are exponentially
spaced in frequency, similar to the human auditory system
for frequency domain processing.

After the incoming noisy signal has been bandlimited by
the filter bank, a gain factor is calculated based on the the en-
velopes of each observed subband signal and subband noise
signal. The first step in the gain calculation algorithm is to
estimate both the levels of the noisy signal and the noise (us-
ing a minimum statistics approach). Because one cannot ac-
curately determine the desired signal component of the in-
coming signal, the noisy signal is accepted as a reasonable
estimate. Currents that are representative of the noisy sig-
nal level and the noise level are divided to create an estimate

for SNR. Within each frequency band, the noisy signal enve-
lope is estimated using a peak detector. Based on the voltage
output of the peak detector, the noise level is estimated us-
ing a minimum detector operating at a slower rate than the
peak detector. The currents representing the noisy signal and
noise levels are input to a translinear division circuit, which
outputs a current representing the estimated signal-to-noise
ratio. A nonlinear function is applied to the SNR current to
calculate a gain factor.

Finally, a gain factor is calculated and multiplied with
the bandlimited signal to realize the noise suppression. The
gain factor may be expressed as a function of the estimated
SNR. Several different gain functions may be used but all of
them have the general characteristics of low gain for low SNR
and high gain (at or near unity) for high SNR, with vary-
ing smoothing between these two regions. The output of the
gain function is then multiplied with the original bandlim-
ited signal. Finally, the bandlimited signals are summed to
reconstruct the full-band signal estimate, with the additive
noise components suppressed.

3.2.2. System results

The experimental results presented in this paper are from
tests on individual components that have not yet been in-
tegrated into a larger system. Figure 6b shows a noisy speech
signal that has been processed by the components in our sys-
tem. The system is effective at adaptively reducing the am-
plitude of noise-only portions of the signal while leaving the
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Figure 7: Block diagram of a floating-gate system to perform cep-
strum front-end computation for speech processing systems. The
system contains 32 frequency taps that can be spaced arbitrarily by
programming the corner frequencies for the bandpass filter banks.
The peak detectors provide a power spectrum of the input signal for
any given time slice.

desired portions relatively intact. Any noise or distortion cre-
ated by the gain calculation circuits minimally affects the
output signal because these circuits are not directly in the sig-
nal path. While the bandpass filters and the multipliers will
inject a certain amount of noise into each frequency band,
this noise will be averaged out by the summation of the sig-
nals at the output of the system.

3.3. Feature extraction for audio processing

This section discusses our current work on a continuous-
time mel-frequency cepstrum encoding IC using analog
circuits and floating-gate computational arrays (more detail
is given in [6]). We also introduce biologically inspired audi-
tory features that are similar to the standard mel-frequency
cepstrum coefficients (MFCCs) but appear to bemore robust
to noise.

3.3.1. Continuous-time cepstrum

The mel-cepstrum is often computed as the first stage of a
speech recognition system [22]. The mel-cepstrum, as used
in digital signal processing (DSP), is based on a signal sam-
pled in time and in frequency. Figure 7 shows the block di-
agram for the analog cepstrum which is an approximation
to the mel-cepstrum. The output of each filter contains in-
formation similar to the short-time Fourier transform and
can likewise be assumed to represent the product of the ex-
citation and vocal tract within that filter band. The primary
difference here is that the DSP mel-cepstrum approximates
the critical band log-frequency analysis of the human ear by
combining DFT bands while the analog system actually per-
forms a critical band-like analysis on the input signal. Thus,
higher-frequency critical band energies are effectively com-
puted using shorter basis functions than the lower-frequency
bands [6]. This is more in agreement with analysis in the hu-
man auditory system and is better suited to identifying tran-
sients.
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Figure 8: Programmed differential weights to the floating-gate
multiplier circuits (a single sine period).

The basic building block of the continuous-time cep-
strum implementation begins with a continuous spectrum
decomposition and amplitude detection, similar to a discrete
fourier transform (DFT). The spectrum decomposition is
done using differential C4 second-order section bandpass
filters [21]. The magnitude function (inside the log) is
estimated using a peak detector rather than using the true
magnitude of the complex spectrum. Finally, we compute a
cosine transform on these results using a matrix transform
based on arrays of floating-gate multiplier circuits. Figure 8
shows the 32 programmed weight values (difference between
a positive and negative weight) for a single row of multipliers
programmed to a sine function.

This cepstrum processor can act as the front end for
larger digital or analog speech processing systems. Early data
from a related project gives confidence that this approach
will improve the state of the art at a given power-dissipation
level [23].

3.3.1.1. Simulation results

The cepstral coefficients were extracted using a Matlab simu-
lation of the analog cepstrum chip. A hiddenMarkov model-
(HMM-)based recognizer was used to perform continu-
ous word recognition on the TIDIGITS database. The tests
yielded a 98.2% word accuracy, which is comparable to that
obtained with standard MFCCs.

3.3.2. MFCC-like auditory features

This section discusses the extraction of biologically inspired
features for the task of audio classification.

Yang et al. [24, 25] have presented a biophysically de-
fensible mathematical model of the early auditory system.
The mathematical model consists of three stages—the analy-
sis stage that performs the filtering in the cochlea; the trans-
duction stage which mimics the inner-hair-cell stage and is
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to decorrelate the signal.

comprised of a time derivative, a nonlinear compression, and
a lowpass filter; and the reduction stage which consists of a
spatial derivative, a spatial lowpass filter, a half-wave recti-
fier, and a temporal integrator. The reduction stage models
the lateral inhibition in the cochlear nucleus (CN) and also
the inability of the CN neurons to respond to fast temporal
changes.

When viewing the way the cochlea acts on signals of dif-
ferent frequencies from an engineering perspective, it can be
seen that the cochlea has bandpass frequency responses for
each location. Ideally, one would have a bandpass filter with
center frequency corresponding to the resonant frequency of
every point along the cochlea—the cochlea has about 3000
inner hair cells acting as transduction points. In practice, 10–
20 filters per octave are considered an adequate approxima-
tion.

The block diagram for extraction of MFCC-like audi-
tory features is shown in Figure 9. The input speech signal
is passed through the bandpass filter bank, the 40 dB/decade
rolloff on the low frequency along with modeling the
cochlear filter also provides a time differentiation of the input
signal which models the inner hair cell coupling to the trav-
eling wave. Each of the bandpass filters is built with C4 SOS.
Following the bandpass filtering, each bandpassed signal is
then nonlinearly compressed followed by a difference with
the adjacent channels. The difference between channels is an
approximation of the spatial derivative that models the lat-
eral inhibition of the CN neurons. This is followed by half-

wave rectification and a smoothing filter. We then proceed to
compute a cosine transform of the logarithm of the output
of the smoothing filter.

3.3.3. Simulation results

A Matlab simulation of the above-described setup was used
to extract the features. The new features were used for a
four class audio classification problem to test their discrim-
inant capabilities. The database used for the classification
consisted of 4325 training files and 1124 testing files each
of a duration of one second. The four classes considered
were speech, music, noise, and animal sounds. A Gaussian
mixture model (GMM) was used to perform the classifi-
cation and four Gaussians were used for modeling each of
the classes. A classification accuracy of 92.97% was achieved.
Tests at different SNRs have shown these features to be robust
to noise [26].

3.4. Continuous-time VQ

The following section discusses our current work on
continuous-time vector quantization IC. Experimental data
is presented from circuits fabricated on a 0.5 µm n-well
CMOS process available through MOSIS. In this section, we
provide an overview of vector quantization (VQ), which is
typically used in data compression and in classifying signals
to symbols [27]. A VQ system will compute how faraway a
particular input vector is from the desired target vectors, and
pick the code vector that is closest to the input vector. For VQ,
some information is lost in the representation, but the goal is
that it should be a sufficient representation for the problem
at hand.

Figure 10 shows the circuit and measured data from the
VQ classifier array. Each cell in the array compares the value
of that column’s input to the value it has memorized; the
output current flows out of the Vout node. This circuit is a
variation on the bump circuit [28], which compares the two
inputs to this circuit; this cell returns a large current if the
two values match (minimal difference). This system outputs
a measure of the similarity; therefore, the outputs of all the
elements can be added (by KCL) and the largest output is
the vector with the maximum similarity. The sum of these
current outputs is sent through a winner-take-all circuit that
outputs the N largest results, where N can be 1 or more [29].

We utilize floating gate elements [30] at the inputs to
provide the ability to store and subtract off each cell’s mean
value. Figure 10b shows that the means in a VQ array can be
programmed to an arbitrary level.

Figure 10c shows the circuit and architecture for our
adaptive VQ system [31, 32]; we adapt the floating-gate
charge to the mean of the input signal by allowing an equilib-
rium to be set as a result of continuous tunneling and con-
tinuous injection currents. This equilibrium sets the input
offset voltage equal to the incoming signal mean. To get a
stable adaptive differential pair in both differential and com-
monmode, both drain voltages of the differential pair should
be connected to transistor current sources. We stabilize the
current sources using a common-mode feedback (CMFB)
circuit. We incorporate our CMFB circuit on the bottom of
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Figure 10: Basic circuit, architecture, and measurements from the VQ circuit. (a) The core cell is built from a floating-gate bump circuit,
which allows the targetmean value to be stored and subtracted from the broadcast input signal. (b) Results from programming the VQ circuit.
We see that output current (experimental measurements) of the middle leg of the bump circuit reaches a maximum at its center value, and
falls off exponentially as onemoves from that center value. This output current is summed together with the output from other bump circuits.
We use the RAm signal to select between adaptation or computation/programming along a given row; if only programming and computation
are required, then the circuit can be significantly reduced. We reconfigure the VQ circuit so that it fits within the standard floating-gate
programming architecture and algorithms [12]. We reset the floating-gate charge using electron tunneling, and program positive or negative
offsets using hot-electron injection. If we inject the floating gate associated with the positive input terminal, then we increase the offset. If we
inject the floating gate associated with the negative input terminal, then we decrease the offset. (c) The results of adapting the input signal
mean. The common-mode feedback (CMFB) circuitry is switched in from the bottom of the array. We show experimental measurements
showing the convergence of the floating-gate bump element with the CMFB circuitry. We show one drain voltage when connected to the
CMFB circuitry; if the drain voltage reaches equilibrium between the operating rails, then the circuit has converged to the signal mean.

the array, and connect to the selected element for adapta-
tion; typically we would only be adapting one element at a
given time. This approach requires some circuit reconfigu-
ration at the core cell; if only adaptation or programming
would be used, then the circuit remains simpler than shown
in Figure 10a.

4. COMPARATIVE ANALYSIS

In this section, we discuss the tradeoffs between analog
and digital implementations. We also provide a comparative
analysis of our CADSP approach with the standard digital
approach for an audio feature extraction application.
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Sarpeshkar [33] presents a good comparative study of
digital and analog systems. Power and area gains in analog
systems come primarily from the fact that one wire repre-
sents many bits of information, but a digital system is re-
stricted to one bit per wire. By using the device physics such
as the Kirchoff current laws, operations like 8-bit addition
can be made very cheap, essentially using only one wire.
In digital it would require an 8-bit adder. Similarly an 8-
bit multiply takes about 3000 transistors to implement in
digital logic using static CMOS whereas in analog it can be
implemented using 4–8 transistors. Since digital computa-
tions use more number of devices, there is more wiring and
computation overhead which in turn takes up more area and
dissipates power.

The disadvantage of analog systems is that of noise. The
noise in analog systems is essential due to thermal noise
and in a cascade of components the thermal noise adds
up. Additional compensation circuitry needs to be added
to counter these offsets and these additional circuits can
get expensive in terms of power and area. Typically for
SNRs lower than 60 dB, analog computation is more ef-
ficient compared to its digital implementation. CADSP is
the optimal approach in that it allows us to harness the
low power and smaller area of analog computations to per-
form low signal-to-noise ratio (SNR) computations and
thereby reducing the load on the digital processor that fol-
lows.

MFCCs are the standard features used in state-of-the-
art audio signal processing. MFCC computation by a dig-
ital processor would involve as a first step, converting the
incoming signal to a digital representation, computing the
fast fourier transform (FFT), weighting the frequencies to
group them on the mel-scale, taking a logarithm, and com-
puting the discrete cosine transform (DCT). If we assume
a sampling rate of 16 kHz and frame length for feature ex-
traction as 20msec with 50% overlap, the digital approach
would take about 9×105 fixed-point operations per second.
On a DSP processor performing at 20MIPS/mW, this would
result in a power dissipation of 45 µW. But in order to get
about 10 bits of resolution in some of the frequency chan-
nels, we would need a 16-bit A/D converter at the front
end.

For the analog approach, we use a 32-channel bandpass
filter bank with exponentially spaced corner frequencies for
the frequency decomposition. The frequency decomposition
is followed by a peak detector circuit and a log compres-
sion. The cosine transform is performed by storing weights
on the nodes of a floating gate multiplier. The filter bank
and peak detector circuit consume about 1.5 µW and 3 µW,
respectively. The log operation is essentially free in the ana-
log implementation. The multiplier consumes about 30 nW
of power. Since we used a bandpass filter upfront the band-
width and resolution requirements of the A/D converters are
reduced. We just need to use 32 10-bit A/D converters oper-
ating at 100Hz (or one converter operating at 3200Hz) since
we need to sample just one coefficient per frame. Assuming
that the 16-bit and 10-bit A/D converters have to maintain

the same figure of merit defined by [34]

F = 2R fsamp

Pdiss
, (1)

where R is the resolution of the ADC in bits, fsamp is the sam-
pling frequency, and Pdiss is the power dissipated. It is clear
that we have a reduction in power by a factor of approxi-
mately 2×103.

5. FUTUREWORK

By implementing the auditory processing in CADSP cir-
cuitry, we achieve enough power and computational gain
to start thinking about implementing algorithms and tech-
niques hitherto restricted due to these constraints.

Biologically inspired feature extraction leads to a much
richer feature space. MFCC-like auditory features are just
the first step towards harnessing the strengths of biological
representation of signals. Wang et al. [35] have shown that
modelling the auditory cortex yields features that open up
tremendous possibilities of future applications. This leads us
to consider designing back-end systems that can fully ex-
ploit this representation. Towards this goal we plan to de-
velop HMM-like recognizers that are inspired by the den-
dritic computations in biological systems, and we have made
initial strides in this direction. An ambitious yet plausible
aim would be to build an entire biologically inspired auto-
matic speech recognition system on a CADSP platform.

6. CONCLUSION

In this paper, we introduced CADSP systems based on pro-
grammable analog floating-gate circuits as a means for im-
plementing audio perception on a chip. The CADSP system
approach makes it possible to realize increasingly complex
biological models of perception without paying a large price
in power or size. System results for several different audio
tasks and results of the building blocks of others were pre-
sented to illustrate the potential of this approach. A rapid
prototyping platform that is currently under development
was also shown; this is an important part of designing fu-
ture systems. By using the systems and design approach de-
scribed, we hope to make complex machine perception on a
chip possible.
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