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We propose a new multiway filtering based on fourth-order cumulants for the denoising of noisy data tensor with correlated
Gaussian noise. The classical multiway filtering is based on the TUCKALS3 algorithm that computes a lower-rank tensor approx-
imation. The presented method relies on the statistics of the analyzed multicomponent signal. We first recall how the well-known
lower-rank-(K1, . . . ,KN ) tensor approximation processed by TUCKALS3 alternating least square algorithm exploits second-order
statistics. Then, we propose to introduce the fourth-order statistics in the TUCKALS3-based method. Indeed, the use of fourth-
order cumulants enables to remove the Gaussian components of an additive noise. In the presented method the estimation of the
n-mode projector on the n-mode signal subspace is built from the eigenvectors associated with the largest eigenvalues of a fourth-
order cumulant slice matrix instead of a covariance matrix. Each projector is applied by means of the n-mode product operator
on the n-mode of the data tensor. The qualitative results of the improved multiway TUCKALS3-based filterings are shown for the
case of noise reduction in a color image and multicomponent seismic data.

Keywords and phrases: multicomponent signals, tensors, Tucker3 decomposition, HOSVD, cumulant slice matrix, subspace
methods.

1. INTRODUCTION

In many fields so diverse as chemometric, psychology, data
analysis, or signal processing, a multidimensional and multi-
way modelling can be adopted in which data are represented
by higher-order tensors [1]. A tensor of orderN is as a multi-
dimensional array whose entries are accessed viaN indices. It
is noted A ∈ RI1×···×IN , where each element is ai1i2···iN , and
R is the real manifold. Index in refers to the n-mode of tensor
A.

In signal processing, tensors are built on vector spaces
associated with physical quantities such as length, width,
height, time, color channel, and so forth. Each mode of the
tensor is associated with a physical quantity. For example,
in image processing, color images can be modelled as third-
order tensors: two dimensions for lines and columns, and
one dimension for the color map. In seismic and underwater
acoustics, when a linear antenna is used, a three-dimensional
modelling of data can be chosen as well: one mode is associ-
ated with the spatial sensors of the antenna, one mode with
the time, and one mode with the wave polarization compo-
nents.

In the classical processing based on algebraic methods,
multidimensional and multiway data are split or unfold into
observation vectors or matrices in order to apply the classical
methods usually based on the covariance matrix. Then, the
processed vectors or matrices are merged or rearranged in
order to retrieve the size of the initial tensor.

The splitting of multidimensional data may reduce the
quantity of information related to the whole tensor as the
possibility of studying the relations between components of
different slices of data is lost. To overcome this problem, new
methods, in which multidimensional data are considered
as indivisible whole tensors, have recently been proposed
[2, 3, 4, 5]. These methods are based on multilinear alge-
bra and on Tucker3 tensor decomposition [6, 7] also known
as higher-order SVD (HOSVD) and lower-rank-(K1, . . . ,KN )
tensor approximation [8, 9]. The Tucker3 decomposition
generalizes the matrix singular value decomposition (SVD)
[10] to tensors.

Another tensor decomposition model called PARAFAC/
CANDECOMP that performs a canonical decomposition of
a tensor into a sum of rank-one tensors has also been pro-
posed by Kruskal [11, 12] and Harshman and Lundy [13].
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Some PARAFAC/CANDECOMP algorithms have been de-
veloped [12, 13, 14] and applied in food industry [15], ar-
ray processing [16], and telecommunications [17]. More-
over, several studies on lower-rank-one tensor approxima-
tion have been proposed [9, 18, 19], however, so far, no al-
gorithm is able to perform an orthogonal canonical decom-
position of a tensor [20].

The HOSVDmathematical tool has been recently used in
image processing for facial expression analysis on data mod-
elled by third-order and fifth-order tensors [21, 22].

In [3, 4], a new concept of multiway filtering has been
proposed, in which each n-mode of an Nth-order data ten-
sorA is filtered by a matrix Hn called n-mode filter. Each n-
mode filter Hn is applied to the corresponding n-mode vec-
tors of data tensorA by means of a multilinear algebraic op-
erator called “n-mode product” [8, 9], and denoted by ×n.

In the framework of multidimensional data denoising,
two methods have been recently proposed in order to de-
termine the form of n-mode filters Hn. In these two meth-
ods, the multidimensional noise is assumed to be additive,
white, and Gaussian. In the first method [4], for every n-
mode, the n-mode filter Hn is the projector on the n-mode
signal subspace. These n-mode filters are determined thanks
to the lower-rank-(K1, . . . ,KN ) noisy data tensor approxima-
tion, after convergence of TUCKALS3 algorithm [7, 8, 9].
This method generalizes to tensors the initially developed-
in-seismic classical matrix filtering [23, 24, 25, 26, 27, 28, 29].
In the second method [3], n-mode filters Hn are determined
by minimizing the mean square error between the estimated
signal and the desired signal. This minimization leads to the
so-called estimated n-mode filters which can be considered
as the extension of the well-known Wiener filter in a partic-
ular mode.

In both methods the n-mode filters can be considered as
the projectors on the left singular vectors associated with the
largest singular values of the n-mode unfolding matrix of the
noisy data tensor, or as a weighted version of these projectors.

In this study, we first recall how the singular vectors
on which the n-mode filters are built can be considered as
the eigenvectors associated with the largest eigenvalues of
the data n-mode vector covariance matrix. Then, we pro-
pose a new method to estimate the basis vectors of the n-
mode signal subspace no more based on second-order mo-
ments, but on the noisy data tensor n-mode vectors fourth-
order cumulants. The goal of this approach is to use the
well-known property stating that the higher-order cumu-
lants of a random variable that follows a Gaussian den-
sity probability law are null, in order to remove the Gaus-
sian component of the noise. In order to reduce the com-
putational load, and based on the well-known array pro-
cessing results [30, 31, 32], in which the determination of
the wave directions of arrival (DOA) is estimated from the
fourth-order cumulant slice matrix, we also propose to esti-
mate each projector on the n-mode signal subspaces thanks
to the lower-rank approximation of the fourth-order cu-
mulant slice matrix of the data n-mode vectors instead of
the fourth-order cumulant tensor lower-rank approxima-
tion.

This paper is organized as follows. Section 2 gives
the problem statement. Section 3 presents the multiway
and multidimensional filtering of a data tensor based on
lower-rank-(K1, . . . ,KN ) tensor approximation (LRTA-(K1,
. . . ,KN )). TUCKALS3 alternative least square algorithm that
performs LRTA-(K1, . . . ,KN ) is presented and an interpre-
tation in terms of multiway principal component analysis
(PCA) is given. In Section 4 a modification of the multi-
way filtering is proposed by replacing some n-mode vector
covariance matrix involved in TUCKALS3 algorithm by the
fourth-order cumulant slice matrix of these n-mode vectors.
In Section 5 this new multiway filtering method is applied to
noise reduction in a color image and multicomponent seis-
mic data, in the case where the additive Gaussian noise is cor-
related and independent of the signal.

2. PROBLEM STATEMENT

The classical data model is the following. The measurement
of a multidimensional and multiway signalX by multicom-
ponent sensors with additive white and Gaussian noise N ,
statistically independent of the signal, results in data tensor

R =X +N . (1)

Assuming that X and N are Nth-order tensors from
RI1×···×IN , the goal of this study is to estimate the desired
signal X thanks to a multidimensional filtering of the data
[3, 4]:

X̂ =R ×1 H
(1) · · · ×N H(N), (2)

where ×n is the n-mode product, whose properties can be
found in [8, 9]. The n-mode product between a data tensor
R and matrix H(n) represents the consecutive matrix prod-
ucts between matrix H(n) and the n-mode vectors of tensor
R defined as the In-dimensional vectors obtained fromR by
varying index in and keeping the other indices fixed. Given
A ∈ RI1×···×IN and a matrix U ∈ RJn×In , B = A ×n U is a
tensor of RI1×···×In−1×Jn×In+1×···×IN , whose entries are given by

bi1···in−1 jnin+1···iN =
In∑

in=1
ai1···in−1inin+1···iN ujnin . (3)

From a signal processing point of view, the n-mode prod-
uct betweenR andH(n) is an n-mode filtering of data tensor
R by n-mode filter H(n). Consequently, for all n = 1 to N ,
H(n) is the n-mode filter applied to the n-mode of the data
tensorR.

We define E(n) the n-mode vector space of dimension In,
associated with the n-mode of tensor A. By definition, E(n)

is generated by the column vectors of the n-mode unfold-
ing matrix, where the n-mode matrix unfolding An of tensor
A ∈ RI1×···×IN is a matrix from RIn×Mn , with

Mn = I1 · · · In−1In+1 · · · IN . (4)
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The columns of An are the In-dimensional vectors obtained
from A by varying index in and keeping the other indices
fixed, and represent by definition, and in all the following,
the n-mode vectors of tensorA.

3. MULTIWAY ANDMULTIDIMENSIONAL FILTERING

In the tensor signal processing assumptions [2, 4, 7, 9], E(n)

is the superposition of two orthogonal subspaces:

(i) the signal subspace E(n)
1 of dimension Kn,

(ii) and the noise subspace E(n)
2 of dimension In − Kn,

such that E(n) = E(n)
1 ⊕ E(n)

2 .
Supposing the dimension Kn of the signal subspace is

known for all n = 1, . . . ,N , one way to estimate the desired
signal tensorX from the noisy data tensorR =X +N is to
orthogonally project every n-mode vector of tensorR on the

n-mode signal subspace E(n)
1 , for all n = 1, . . . ,N . This state-

ment is equivalent to replacing in relation (2) filters H(n) by
projectors P(n) on the n-mode signal subspace:

X̂ =R ×1 P
(1) · · · ×N P(N). (5)

This multidimensional andmultiway filtering generalizes
the classical matrix filtering methods [23, 24, 25, 26, 27, 28,
29].

In the one-dimensional case, the definition of the projec-
tor on the signal subspace is based on the eigenvectors asso-
ciated with the largest eigenvalues of the observation vector
set covariance matrix [28].

In the multidimensional and multiway case, the projec-
tors on the n-mode vector spaces are determined by com-
puting the lower-rank-(K1, . . . ,KN ) tensor approximation
(LRTA-(K1, . . . ,KN )) of noisy data tensor R [2, 4], in which
Kn is the n-mode signal subspace dimension for all n =
1, . . . ,N .

3.1. Lower-rank-(K1, . . . ,KN ) tensor approximation

The lower-rank-(K1, . . . ,KN ) approximation of a tensor de-
fined in [8, 9] is a concept based on Tucker3 tensor decom-
position [6] that generalizes to tensors the singular value de-
composition (SVD) [10] and lower-rank approximation of
matrices.

The best lower-rank-(K1, . . . ,KN ) approximation [8, 9]
of a given tensor R, named B, is the tensor of rank-
(K1, . . . ,KN ) minimizing the Frobenius quadratic distance:

‖R −B‖2F . (6)

The least mean square solution [7] implies that

B =R ×1 P
(1) · · · ×N P(N) (7)

with projectors P(n) defined by P(n) = U (n)U (n)T for all
n = 1, . . . ,N , where the column-wise orthonormal matrices
U (n) ∈ RKn×In maximize the function

g
(
U (1), . . . ,U (N)) = ∥∥A×1 U

(1)T · · · ×N U (N)T
∥∥2
F . (8)

3.2. ALS algorithm
The maximization of function g with respect to (U (n),
. . . ,U (N)), subject to U (n) being a column-wise orthonormal
matrix for n = 1, . . . ,N , is a difficult nonlinear least square
problem which is generally solved thanks to TUCKALS3 al-
ternative least square algorithm [7] that can be summarized
in the following steps.

(1) Initialization, k = 0: for all n = 1, . . . ,N , P(n)
0 =

U (n)
0 U (n)T

0 .U (n)
0 is the matrix of theKn left singular vec-

tors associated with the Kn largest singular values of
tensorR n-mode unfolding matrix Rn.

(2) ALS loop: repeat until convergence, that is, for exam-
ple, while ‖Bk+1−Bk‖2F > ε, ε > 0, prior fixed thresh-
old,
(a) for n = 1 to N ,

(i) B(n),k = R ×1 P(1)
k+1 · · · ×n−1 P(n−1)

k+1 ×n+1

P(n+1)
k · · · ×N P(N)

k ;
(ii) n-mode unfold tensor B(n),k into matrix

B(n),k
n ;

(iii) compute matrix C(n),k = B(n),k
n RT

n ;
(iv) process C(n),k eigenvalue decomposition

(EVD), put the Kn eigenvectors associated

with the Kn largest eigenvalues into U
(n)
k+1;

(v) compute P(n)
k+1 = U (n)

k+1U
(n)T

k+1 ;
(b) computeBk+1 =R×1P

(1)
k+1 · · ·×N P

(N)
k+1, k ← k+1.

(3) Output:Bkstop =R×1P
(1)
kstop
· · ·×NP

(N)
kstop

, the best lower-
rank-(K1, . . . ,KN ) approximation of R, where kstop is
the last iteration after convergence of TUCKALS3 al-
gorithm.

Note that in steps (2)(a)(iii)-(iv) an improvement of
TUCKALS3 algorithm which decreases the computational
load by using a fast algorithm for the determination of ma-
trix C(n),k eigenvectors has been proposed in [8, 9], but will
not be discussed in this paper.

3.3. LRTA-(K1, . . . ,KN ) andmultiway PCA

In step (2)(a)(i), at TUCKALS3 algorithm kth iteration, and
for a given n-mode, tensor B(n),k represents data tensor R
which is filtered in every m-mode except in the n-mode, by

projectors P(m)
l in which index l = k + 1 form < n and index

l = k form > n.
We give a physical sense to matrix C(n),k from step

(2)(a)(iii). We define by b(n),kj , j = 1, . . . ,Mn, with

Mn = I1, . . . , In−1In+1, . . . , IN , (9)

the n-mode vectors of tensor B(n),k, that is, n-mode un-
folding matrix B(n),k

n column vectors. We define as well by

r(n)j , j = 1, . . . ,Mn, the n-mode vectors of tensor R. Matrix

C(n),k = B(n),k
n RT

n can be written as

C(n),k =
[
b(n),k1 , . . . ,b(n),kMn

][
r(n)1 , . . . , r(n)Mn

]T = Mn∑
j=1

b(n),kj r(n)
T

j .

(10)
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As a consequence, up to the multiplicative factor 1/Mn, ma-
trix C(n),k can be considered as an estimation of the covari-
ance matrix between data tensorR n-mode vectors and ten-
sorB(n),k n-mode vectors. Hence, theKn eigenvectors associ-
ated with the largest eigenvalues of matrix C(n),k from which

projector P(n)
k+1 is built at step (2)(a)(v) are the mutual princi-

pal components of tensor R and tensor B(n),k n-mode vec-
tors. Thanks to projectors P(m)

l , l = k + 1 for m < n and
l = k for m > n, from the expression of tensor B(n),k (step
(2)(a)(i)), these principal components in the n-mode depend
on the principal components in them-modes, form �= n.

Thus the lower-rank-(K1, . . . ,KN ) tensor approximation
of data tensor R consists of a principal component analy-
sis processed alternatingly on every n-mode, where all the
n-mode principal components are interdependent, and are
supposed to define the signal subspace entirely.

Consequently, in the context of signal processing, the
TUCKALS3 algorithm gradually refines, with respect to it-

eration k, the estimation of orthogonal projectors P(n)
k+1 on

associated n-mode signal subspace, for all n = 1, . . . ,N . In
the next sections the goal of our study is to improve the esti-
mation of these orthogonal projectors on the n-mode signal
subspaces. A proposition of improvement based on higher-
order statistics, in the case of an additive correlated Gaussian
noise, is presented.

4. MULTIWAY FILTERING USING THE
FOURTH-ORDER CUMULANTS

4.1. Second-ordermoments in TUCKALS3 algorithm

In previous Section 3.3, it is shown that, up to the multiplica-
tive factor 1/Mn, matrix C(n),k is an estimation of the covari-
ance matrix between data tensorR n-mode vectors and ten-
sorB(n),k n-mode vectors. Considering, in relation (10), that

{r(n)j , j = 1, . . . ,Mn} and {b(n),kj , j = 1, . . . ,Mn} are the Mn

realizations of two random vectors r(n) and b(n),k associated,
respectively, with the n-mode vectors of data tensors R and
B(n),k, matrix C(n),k can be written as a second-order mo-
ment:

C(n),k = E
[
b(n),kr(n)

T ]
, (11)

where E[·] denotes the expectation operator.
Thus, in TUCKALS3 kth iteration, orthogonal projec-

tor P(n)
k+1 on the n-mode signal subspace is estimated from

a second-order moment since it is built from matrix C(n),k

eigenvalue decomposition (EVD).

4.2. Proposed TUCKALS3 algorithm based
on fourth-order cumulants

In practice, the noise whiteness is not always fulfilled. In the
case of additive correlated Gaussian noise, the estimation of
orthogonal projector P(n)

k+1 on the n-mode signal subspace
cannot be achieved correctly with the classical TUCKALS3
algorithm since it is based on the second-order moments.

One way to improve the estimation of the orthogonal

projector P(n)
k+1 on the n-mode signal subspace in the case

of additive correlated Gaussian noise is to replace second-
order moment matrix C(n),k with higher-order cumulants.
Indeed, the use of higher-order statistics consists of a clas-
sical means to remove the noise Gaussian components since
the higher-order cumulants of a Gaussian random variable
are null [33, 34].

Then, the goal of the proposed method is to estimate or-

thogonal projector P(n)
k+1 on the n-mode signal subspace no

more with second-order moment matrix C(n),k, but with the
higher-order cumulants of the associated n-mode vectors.

4.2.1. Fourth-order cumulants

As noticed in Section 4.1, matrix C(n),k, at step (2)(a)(iii) and
TUCKALS3 algorithm kth iteration, is defined as a second-
order moment. In order to remove the noise Gaussian com-
ponent, we propose to use the fourth-order cumulant tensor

C(n),k = Cum
(
b(n),k,b(n),k

T
, r(n), r(n)

T )
, (12)

where Cum(·) denotes the cumulant operator. C(n),k is
a fourth-order supersymmetric tensor from RIn×In×In×In ,
whose generic term at position (i1, i2, j1, j2) is given by

C(n),k
i1,i2, j1, j2 = Cum

(
b(n),ki1 , b(n),ki2 , r(n)j1 , r(n)j2

)
, (13)

where b(n),ki and r(n)j are the ith and jth components of ran-

dom vectors b(n),k and r(n) associated, respectively, to n-mode
vectors of tensor B(n),k and R. According to [33, 35], the
generic term of C(n),k can be expressed, thanks to the expec-
tation operator, and for centered random variables, as

C(n),k
i1,i2, j1, j2 = E

[
b(n),ki1 b(n),ki2 r(n)j1 r(n)j2

]
− E

[
b(n),ki1 r(n)j1

]
E
[
b(n),ki2 r(n)j2

]
− E

[
b(n),ki1 r(n)j2

]
E
[
b(n),ki2 r(n)j1

]
.

(14)

At step (2)(a)(iv), the determination of the Kn eigenvec-
tors associated with the Kn largest eigenvalues of covariance
matrix C(n),k amounts to compute its best lower-rank-Kn ap-
proximation according to Eckart-Young theorem [36]. One
way to generalize matrix C(n),k lower-rank approximation
to fourth-order cumulant tensor C(n),k is to compute C(n),k

lower-rank-(Kn,Kn,Kn,Kn) tensor approximation, thanks to
TUCKALS3 algorithm [8, 37]. Using the fact that C(n),k is a
supersymmetric tensor, we get [8, 37]

C(n),k = S(n),kKn
×1 U

(n)
k+1 ×2 U

(n)
k+1 ×3 U

(n)
k+1 ×4 U

(n)
k+1, (15)

in which S(n),kKn
∈ RKn×Kn×Kn×Kn is Tucker3 core tensor [7],

and matrix U (n)
k+1 ∈ RIn×Kn is a column-wise orthogonal ma-

trix.
A good approximation of matrix U (n)

k+1 involved in
C(n),k lower-rank-(Kn,Kn,Kn,Kn) tensor approximation con-
sists in keeping the Kn first orthogonal vectors of unitary
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matrix V (n)
k+1 involved in tensor C(n),k HOSVD, in which

matrix V (n)
k+1 satisfies relation (15) in the particular case

when Kn = In. This process is usually called rank-
(Kn,Kn,Kn,Kn) HOSVD truncation of tensor C(n),k. The
rank-(Kn,Kn,Kn,Kn) HOSVD truncation of tensor C(n),k is
not the best lower-rank-(Kn,Kn,Kn,Kn) tensor approxima-
tion of C(n),k [8, 9]. Nevertheless, according to [8, 9] and
confirmed by several experimental simulations [5], the er-
ror done at the minimization of ‖C(n),k − B‖2F , with B being
a rank-(Kn,Kn,Kn,Kn) tensor (see relation (6)), is low com-
pared to the gain in computational time earned by avoiding
the ALS loop of TUCKALS3 algorithm.

However, the main drawback of this method is the high
computational time to build every fourth-order cumulant
tensor associated to the n-mode of the data tensor. This com-
putational time depends on the size of data tensorR, that is,
the values of In, for all n = 1 . . . ,N . One way to reduce the
computational load is to use the fourth-order cumulant slice
matrix which is extracted from the fourth-order cumulant
tensor. This is done in the following subsection.

4.2.2. Fourth-order cumulant slicematrix

In many applications of array processing [32, 38], the fourth-
order cumulant matrix consisting of all possible permuta-
tions of the four indices {i1, i2, j1, j2} is used rather than
fourth-order cumulant tensor C(n),k. The cumulant matrix
is a matrix representation of the cumulant tensor. In order to
reduce the computational time necessary to build and anal-
yse the cumulant matrix, a cumulant slice matrix ofC(n),k has
been introduced in [30, 31, 32].

The cumulant slice matrix associated with the first com-
ponent of vector b(n),k is given by the following (In × In)-
Hermitian matrix [30, 31, 32]:

C(n),k
1 = Cum

(
b(n),k1 , b(n),k1 , r(n), r(n)

T
)
. (16)

The generic (i, j)-term of cumulant slice C(n),k
1 expressed

with the expectation operator is

C(n),k
1i j = E

[(
b(n),k1

)2
r(n)i r(n)j

]
− 2E

[
b(n),k1 r(n)i

]
E
[
b(n),k1 r(n)j

]
.

(17)

The practical estimation of C(n),k
1 uses the Mn realiza-

tions of random vectors r(n) and b(n),k, where Mn is defined
in relation (9). Defining by b(n),ki j and r(n)i j the (i, j)-term of

n-mode unfolding matrices B(n),k
n and Rn, the estimation of

C(n),k
1i j (i, j)-term is given by

C(n),k
1i j = 1

Mn

 Mn∑
p=1

(
b(n),k1p

)2
r(n)ip r(n)j p


− 2

M2
n

 Mn∑
p=1

b(n),k1p r(n)ip

) Mn∑
p=1

b(n),k1p r(n)j p

.
(18)

Relations (17) and (18) can be adapted to noncentered ran-
dom variables [33, 35].

Initially, the use of the fourth-order cumulant slice ma-
trix has been proposed in the array processing field for locat-
ing sources [30, 31, 32]. The results obtained in array pro-
cessing state that the use of the fourth-order cumulant slice
matrix, instead of the cumulant matrix, gives a good com-
promise between the localisation performances and the com-
putational load [38].

In this paper, our aim is to improve the LRTA-
(K1, . . . ,KN )-based multiway filtering of multicomponent
seismic data and color images, in the case of additive
correlated Gaussian noise. As shown in Figures 1 and 2,
the performances of the improved fourth-order-cumulant-
based LRTA-(K1, . . . ,KN ) filtering involving, respectively, the
fourth-order cumulant tensor and the fourth-order cumu-
lant slice matrix are sensibly identical. Thus, according to
the results obtained in array processing [30, 31, 32], and ac-
cording to our simulations on multicomponent seismic sig-
nal and color image filtering, we have used the cumulant slice
matrix in order to reduce the computational load of the im-
proved fourth-order cumulant-LRTA-(K1, . . . ,KN )-based fil-
tering.

The gain in computational load brought by the use of the
fourth-order cumulant slice matrix rather than the cumulant
tensor can be explained by at least two reasons.

(1) Firstly, as the fourth-order cumulant tensor in the n-
mode consists of I4n elements, the number of oper-
ations required for its construction is squared com-
pared to the one required for the construction of the
cumulant slice matrix which only consists of I2n ele-
ments.Moreover, depending of the data size, themem-
ory space occupied by the fourth-order cumulant ten-
sor can become too important for usual computers.

(2) Secondly, the estimation of the projector on the n-
mode subspace requires only one EVD when the cu-
mulant slice matrix is used where as it requires 4
SVDs multiplied by the number of iterations neces-
sary for the convergence of TUCKALS3 algorithm in-
volved in the fourth-order cumulant tensor lower-
rank-(Kn,Kn,Kn,Kn) tensor approximation. We note
that the determination of the eigenvectors (or singu-
lar vectors) associated with the largest eigenvalues (or
singular values), involved in the construction of the
projector on the n-mode subspace, can be accelerated,
thanks to fast algorithms such as the power method
[10] (for the cumulant slice matrix) or the higher-
order power method [8, 9] (for the cumulant tensor).

Hence, in the following section, in regard to the filtering
simulations treated in this paper, we consider that the eigen-
vectors associated with the largest non-zero eigenvalues of

fourth-order cumulant slice matrix C(n),k
1 consist of a good

approximation of the n-mode signal subspace basis since the
fourth-order cumulant tensor of noise N n-mode vectors is
null and since the probability density function of random
vector x(n) associated with signal tensor X n-mode vectors
is not Gaussian.

In the following subsection, the proposed algorithm is
summarized.



1152 EURASIP Journal on Applied Signal Processing

LRTA-(30, 30, 2)
4th-order cumulant slice matrix LRTA-(30, 30, 2)
4th-order cumulant tensor LRTA-(30, 30, 2)

−5 0 5 10 15 20 25

SNR (dB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R
Q
E
=
||X

−
X

es
ti
m
||2

/||
X
||2

Figure 1: RQE evolution with respect to SNR (dB) for LRTA-
(30, 30, 2)-based (square), fourth-order-cumulant-slice-matrix
LRTA-(30, 30, 2)-based (circle), and fourth-order-cumulant-tensor
LRTA-(30, 30, 2)-based (asterisk) multiway filterings of Baboon
standard image.

4.2.3. Proposed algorithm

The proposed method is based on the classical multiway fil-
tering method. In step (2)(a)(ii), and iteration k of TUCK-
ALS3 algorithm involved in data tensor R lower-rank-
(K1, . . . ,KN ) tensor approximation, and as far as the n-mode
is concerned, matrix C(n),k representing the covariance ma-
trix between data tensorR and tensorB(n),k n-mode vectors
is replaced by the fourth-order cumulant slicematrixC(n),k

1 of

the same n-mode vectors. C(n),k
1 is built by using, for exam-

ple, the first component of b(n),k random vectors as the refer-
ence element associated with the fourth-order cumulant slice
matrix. The practical estimation of its generic term is given

in relation (18). Then, in step (2)(a)(v), projector P(n)
k+1 rep-

resents the projection on the Kn eigenvectors associated with
theKn largest eigenvalues of fourth-order cumulant slice ma-

trix C(n),k
1 .

TUCKALS3 algorithm initialization step is also modi-
fied by using the fourth-order cumulant slice matrix. For

n = 1, . . . ,N , matrix U (n)
0 , with which initial projector P(n)

0

is built, is the matrix of the Kn left singular vectors asso-
ciated with the Kn largest singular values of n-mode un-

folding matrix Rn. By definition, U (n)
0 is the matrix of the

Kn eigenvectors associated with Hermitian matrix RnRT
n ,

which, according to the remarks made on relation (10), con-
sists of an estimation of data tensor R n-mode vector co-
variance matrix. In the proposed method, in the initializa-
tion step, matrix RnRT

n is replaced with C(n),0
1 , the fourth-

order cumulant slice matrix of data tensor R n-mode vec-
tors, which is estimated, thanks to relation (18), by re-

placing the element b(n),k1p by the element r(n)1p for all p =
1, . . . ,Mn.

LRTA-(1, 1, 1)
4th-order cumulant slice matrix LRTA-(1, 1, 1)
4th-order cumulant tensor LRTA-(1, 1, 1)
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Figure 2: RQE evolution with respect to SNR (dB) for classical
LRTA-(1, 1, 1)-based (square), fourth-order-cumulant-slice-LRTA-
(1, 1, 1)-based (circle), and fourth-order-cumulant-tensor-LRTA-
(1, 1, 1)-based (asterisk) multiway filterings applied on a multi-
component seismic wave with totally correlated Gaussian noise
(Figure 5).

The improved fourth-order cumulant-slice-matrix-
LRTA-(K1, . . . ,KN )-based multiway filtering, for which the
first component of every random vector has been chosen as
the reference element for the fourth-order cumulant slice
matrix computation, can be summarized as follows.

(1) Initialization, k = 0: for all n = 1, . . . ,N , P(n)
0 =

U (n)
0 U (n)T

0 . U (n)
0 is the matrix of the Kn eigenvectors

associated with the Kn largest eigenvalues of fourth-

order cumulant slice matrix C(n),0
1 of tensorR n-mode

vectors.
(2) ALS loop: repeat until convergence, that is, for exam-

ple, while ‖Bk+1−Bk‖2F > ε, ε > 0, prior fixed thresh-
old,
(a) for n = 1 to N ,

(i) B(n),k = R ×1 P(1)
k+1 · · · ×n−1 P(n−1)

k+1 ×n+1

P(n+1)
k · · · ×N P(N)

k ;
(ii) compute cumulant slice C(n),k

1 associated with
the fourth-order cumulant of tensor R and
tensor B(n),k n-mode vectors. Every element

of C(n),k
1 is given by relation (18);

(iii) process matrix C(n),k
1 eigenvalue decomposi-

tion (EVD) and put the Kn eigenvectors as-
sociated with the Kn largest eigenvalues into

U (n)
k+1;

(iv) compute P(n)
k+1 = U (n)

k+1U
(n)T

k+1 ;
(b) computeBk+1 =R×1P

(1)
k+1 · · ·×N P

(N)
k+1, k ← k+1.

(3) Output: X̂ = Bkstop =R ×1 P
(1)
kstop
· · · ×N P(N)

kstop
.

In the next section, this algorithm is used to estimate sig-
nal tensor X̂ from noisy data tensor R representing multi-
component seismic waves, and color images.
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5. SIMULATION RESULTS

In the following simulations, the fourth-order-cumulant-
slice-matrix-lower-rank-(K1, . . . ,KN)-tensor-approximation-
based and the classical lower-rank-(K1, . . . ,KN ) tensor-
approximation-based multiway filterings are applied to
noise reduction in a color image and a multicomponent seis-
mic wave, both of which can be modelled by a third-order
tensor from RI1×I2×I3 . In both applications, the efficiency of
the denoising is tested in the presence of additive correlated
Gaussian noise.

5.1. A quality criterion

According to the previous assumptions, the multidimen-
sional and multicomponent noisy data tensor can be mod-
elled by R = X + N , in which X is the signal tensor to
estimate andN is the additive noise tensor. Using the tensor
Frobenius norm, we define the signal-to-noise ratio (SNR in
dB) in the noisy data tensor by

SNR = 10 log

(
‖X‖2F
‖N ‖2F

)
. (19)

The estimated signal tensor is given by

X̂ =R ×1 P
(1) ×2 P

(2) ×3 P
(3), (20)

in which P(n), n ∈ {1, 2, 3}, is the estimated projector on
the n-mode signal subspace after convergence of the classical
LRTA-(K1,K2,K3)-based or the fourth-order-cumulant-slice
matrix-LRTA-(K1,K2,K3)-based algorithm.

In order to a posteriori verify the estimated signal tensor
quality we propose to use the relative quadratic error crite-
rion (RQE) defined by

RQE
(
X̂
) = ∥∥X̂−X

∥∥2
F

‖X‖2F
. (21)

The RQE criterion enables a qualitative comparison between
the multiway filtering using the lower-rank-(K1,K2,K3)
tensor approximation and the proposed fourth-order-
cumulant-slice-matrix-LRTA-(K1,K2,K3)-based method.
Considering this criterion, we expect the fourth-order-
cumulant-slice-matrix-LRTA-(K1,K2,K3)-based method to
give better (or at least the same) results than the classical
LRTA-(K1,K2,K3)-based multiway and multidimensional
filtering.

5.2. Simulations involving correlated Gaussian noise

A multidimensional and multiway white Gaussian noise N
can be modelled by

N = α · G, (22)

in which every element of G ∈ RI1×I2×I3 is an independent
realization of a normalized centered Gaussian law, and where
α is a coefficient that enables to set the SNR in noisy data
tensorR.

(a) (b)

(c) (d)

Figure 3: (a) “Baboon” standard (256 × 256 × 3) image. (b) Im-
age with additive correlated Gaussian noise (SNR = −2.1dB).
(c) Classical LRTA-(30, 30, 2)-based multiway filtering of noisy im-
age (b). (d) Fourth-order-cumulant-slice-matrix-LRTA-(30, 30, 2)-
based multiway filtering of noisy image (b).

A correlated Gaussian noise, named N c, can be built
from previous Gaussian noiseN ∈ RI1×I2×I3 given in relation
(22) by applying on every n-mode of tensor N a weighting
matrixW (n), for all n = 1, 2, 3:

N c = N ×1 W
(1) ×2 W

(2) ×3 W
(3). (23)

Each element of tensorN c, given by

nci1i2i3 =
I1∑

k1=1

I3∑
k3=1

I3∑
k3=1

ni1i2i3w
(1)
i1k1

w(2)
i2k2

w(3)
i3k3

, (24)

is a linear mapping of every element of tensor N , which by
definition creates the correlation between every n-mode of
noiseN c.

In the following subsections, classical LRTA-(K1,K2,K3)
filtering and fourth-order-cumulant-slice-matrix-LRTA-
(K1,K2,K3)-based filtering are applied to a color image and
a multicomponent seismic wave.

5.2.1. Color images

We consider Baboon standard color image represented
on Figure 3a, and modelled by third-order tensor X ∈
R256×256×3. Some signal-independent correlated Gaussian
noise N c defined by relation (23) is added to tensor X and
results in noisy imageR =X+N c represented on Figure 3b.
In this simulation, coefficient α in relation (22) and the el-
ements of weighting matrix W (n) in relation (23), for all
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n = 1, 2, 3, are chosen such that the SNR in noisy image rep-
resented on Figure 3b is 9 dB, and such that in every n-mode,
noise tensorN c n-mode vectors are totally correlated.

In these simulations, parameters (K1,K2,K3) of lower-
rank-(K1,K2,K3) tensor approximation are supposed known
and fixed at (

K1,K2,K3
) = (30, 30, 2). (25)

Experimentally, these parameters can be chosen from
parameters (Q1,Q2,Q3) that enable lower-rank-(Q1,Q2,Q3)
tensor approximation of initial non noisy color image X to
reconstruct a visually non deformed image. This latter image
approximation can be considered as a compression with loss
of color image X, thus some compression quality criterion
can be used to determine some suitable (Q1,Q2,Q3) param-
eters, but will not be discussed in this paper.

The LRTA-(30, 30, 2) filtering of noisy image R yields to
the image of Figure 3c and the fourth-order-cumulant-slice-
matrix-LRTA-(30, 30, 2)-based multiway filtering of noisy
imageR yields to the image of Figure 3d.

The RQE, defined in relation (21), enables a qualita-
tive comparison between the lower-rank-(30, 30, 2)-tensor-
approximation-based multiway filtering and the proposed
method. Figure 1, that represents the evolution of the
RQE with respect to the SNR varying from −3dB to
23dB, shows that the proposed fourth-order-cumulant-
slice-matrix-LRTA-(30, 30, 2)-based (square) and the fourth-
order-cumulant-tensor-LRTA-(30, 30, 2)-based (stars) mul-
tiway filtering method give sensibly the same results.

However, the principal outcome of this figure is that
the proposed fourth-order-cumulant-slice-matrix-LRTA-
(30, 30, 2)-based multiway filtering gives better results
than the classical LRTA-(30, 30, 2)-based multiway filtering
method since, all over the SNR range, the RQE given by the
proposed method is lower than the one given by the classical
method. This result is confirmed by the good quality of the
restored image in Figure 3d compared to the restored image
in Figure 3c.

In conclusion, for this simulation, the fourth-order-
cumulant-slice-matrix-LRTA-(30, 30, 2)-based multiway fil-
tering gives better results than the classical LRTA-(30, 30, 2)-
based multiway filtering with regard to tensor estimation
quality and considering the RQE criterion, in the case of ad-
ditive and signal-independent correlated Gaussian noise.

5.2.2. Multicomponent seismic signals

In this simulation, a multicomponent seismic wave is re-
ceived on a linear antenna composed of 10 sensors. The wave
direction of propagation is supposed to be orthogonal to the
antenna plane. The three components of the signal wave are
called channel 1, channel 2, and channel 3 and are repre-
sented on Figures 4a, 4b, 4c, and on Figures 5a, 5b, 5c. In
each seismic slice, the x-axis corresponds to the time sam-
pling (200 time samples) and the y-axis to the spatial sensors
(10 sensors). Each component is represented by a triangular
impulse with the same temporal length but different ampli-
tude.

Example 1. The multidimensional and multicomponent
seismic record is modelled by noisy data tensor R ∈
R10×200×3 which is the sum betweenmulticomponent seismic
signal X that we want to estimate and correlated Gaussian
noise N c defined by relation (23). The three components of
noisy signal R are represented, respectively, on Figures 4d,
4e, and 4f, in which coefficient α in relation (22) and the
elements of weighting matrix W (n) in relation (23), for all
n = 1, 2, 3, are chosen such that SNR = −2dB.

Moreover, in this simulation, each weighting matrix
W (n), n ∈ {1, 2, 3}, from relation (23), is chosen as being a
random matrix whose elements are the realizations of a nor-
malized centered Gaussian density probability law.

Parameters (K1,K2,K3) of lower-rank-(K1,K2,K3) ten-
sor approximation are supposed to be known and fixed at
(1, 1, 1). The classical LRTA-(1, 1, 1)-based multiway filtering
ofR results in estimated signal X̂1 whose three components
are represented, respectively, on Figures 4g, 4h, and 4i.

The fourth-order-cumulant-slice-matrix-LRTA-(1, 1, 1)-
based multiway filtering of data tensorR results in estimated
signal X̂2 whose three components are represented, respec-
tively, on Figures 4j, 4k, and 4l.

Finally, the evolution of the RQEwith respect to the SNR,
represented on Figure 6, shows that for the range of SNR
going from −2dB to 5dB, fourth-order-cumulant-slice-
matrix-LRTA-(1, 1, 1)-based multiway filtering gives better
results than the classical LRTA-(1, 1, 1)-basedmultiway filter-
ing since, all over the SNR range, the RQE given by the first
method is lower than the one given by the second method.

One can also note that in Figure 4, for an SNR =
−2dB, the signals corresponding to the first two chan-
nels of the multicomponent seismic wave, estimated by
the classical LRTA-(1, 1, 1)-based multiway filtering, are dis-
torted compared to the ones estimated by the fourth-order-
cumulant-slice-LRTA-(1, 1, 1)-based multiway filtering. In
addition, the signal amplitude of each channel is well esti-
mated with the fourth-order-cumulant-slice-matrix-LRTA-
(1, 1, 1)-based multiway filtering, whereas it is not with the
classical LRTA-(1, 1, 1)-based multiway filtering.

Example 2. In this simulation, we consider that the noise ten-
sor N c 2-mode vectors are totally correlated. We recall that
the 2-mode index of tensor R ∈ R10×200×3 is associated to
the time quantity; thus, a given 2-mode vector represents the
temporal signal received at a given spatial sensor in a given
component.

The three components of noisy signalR are represented,
respectively, in Figures 5d, 5e, and 5f, in which coefficient α
in relation (22) and the elements of weighting matrixW (n) in
relation (23), for all n = 1, 2, 3, are chosen such that SNR =
−10dB.

Like in Example 1, parameters (K1,K2,K3) of lower-
rank-(K1,K2,K3) tensor approximation are supposed known
and fixed at (1, 1, 1). The LRTA-(1, 1, 1) filtering ofR results
in estimated signal X̂1 whose three components are repre-
sented, respectively, on Figures 5g, 5h, and 5i. According to
these figures, the classical method is incapable of determin-
ing the n-mode signal subspace with this type of noise.
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Figure 4: Comparison of (g), (h), (i) classical LRTA-(1, 1, 1)-based and (j), (k), (l) fourth-order-cumulant-slice-matrix-LRTA-(1, 1, 1)-based
multiway filterings applied to a multicomponent seismic signal: (a) channel 1, (b) channel 2, and (c) channel 3, with (d), (e), (f) correlated
Gaussian noise (SNR = −2dB).
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Figure 5: Comparison of classical LRTA-(1, 1, 1)-based and fourth-order-cumulant-slice-LRTA-(1, 1, 1)-based multiway filterings applied to
a multicomponent seismic signal with totally correlated Gaussian noise (SNR = −10dB).
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Figure 6: RQE evolution with respect to SNR (dB) for fourth-
order-cumulant-slice-matrix-LRTA-(1, 1, 1)-based (circle) and clas-
sical LRTA-(1, 1, 1)-based (square) multiway filterings applied to
a multicomponent seismic wave with correlated Gaussian noise
(Figure 4).

On the contrary, the fourth-order-cumulant-slice-
matrix-LRTA-(1, 1, 1)-based multiway filtering of data
tensorR is able to retrieve the initial signal tensor. The three
components of the corresponding estimated signal X̂2 are
represented, respectively, on Figures 5j, 5k, and 5l.

Finally, the evolution of the RQEwith respect to the SNR,
represented on Figure 2, shows that for the range of SNR go-
ing from −10dB to 10dB, the fourth-order-cumulant-slice-
matrix-LRTA-(1, 1, 1)-based multiway filtering gives better
results than the classical LRTA-(1, 1, 1)-based multiway fil-
tering since, all over the SNR range, the RQE given by the
proposed method is lower than the one given by the classical
method.

We also note that, like in Section 5.2.1 (Figure 1), Fig-
ure 2 also presents a comparison between the RQE ob-
tained with the fourth-order-cumulant-slice-matrix-LRTA-
(1, 1, 1)-based (circle) and with the fourth-order-cumulant-
tensor LRTA-(1, 1, 1)-based (stars) multiway filtering. From
these two curves, it appears, like in the color image process-
ing case, that the multiway filtering of a multicomponent
seismic signal based on the cumulant slice matrix and the
one based on the corresponding fourth-order cumulant ten-
sor give sensibly the same results.

5.3. Further works

Before concluding, we note that the optimal parameters
(K1,K2,K3) determination is not the purpose of this paper
and needs further investigations which would extend, for ex-
ample, to the well-known array processing Akaike informa-
tion criterion (AIC) or minimum description length (MDL)
criteria [39, 40].

6. CONCLUSION

In this paper, an improvement of the multiway and multidi-
mensional filtering of data tensor has been proposed.

The classical method is based on lower-rank-(K1, . . . ,KN)
tensor approximation which is commonly performed by the
alternative least square process called TUCKALS3 algorithm.
This algorithm determines simultaneously each n-mode pro-
jector on the n-mode signal subspace that is applied by
means of the n-mode product operator on the n-mode of the
data tensor. The n-mode projectors perform the projection
on the eigenvectors associated with the largest eigenvalues of
a matrix which can be assimilated as the covariance matrix of
the data tensor n-mode vectors defined as the column vectors
of the data tensor n-mode unfolding matrix.

The main idea of the proposed method is to replace the
covariance matrix involved in TUCKALS3 algorithm with
the fourth-order-cumulant-slice matrix of the data tensor n-
mode vectors in order to remove the Gaussian components
of an additive correlated Gaussian noise.

The good qualitative results of this new multiway filter-
ing method are shown for noise reduction in a color image
and multicomponent seismic wave in the case of an additive
correlated Gaussian noise.
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[2] N. Le Bihan, Traitement algébrique des signaux vectoriels: Ap-
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