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This paper presents a method based on fitting a sum-of-exponentials model to the nonuniformly sampled data, for clustering the
time series of gene expression data. The structure of the model is estimated by using the minimum description length (MDL)
principle for nonlinear regression, in a new form, incorporating a normalized maximum-likelihood (NML) model for a subset of
the parameters. The performance of the structure estimation method is studied using simulated data, and the superiority of the
new selection criterion over earlier criteria is demonstrated. The accuracy of the nonlinear estimates of the model parameters is
analyzed with respect to the Cramér-Rao lower bounds. Clustering examples of gene expression data sets from a developmental
biology application are presented, revealing gene grouping into clusters according to functional classes.
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1. INTRODUCTION

The gene expression time profiles are a rich source of infor-
mation about the dynamics of the underlying genomic net-
work. The experiments are often taken at nonuniform time
points, suggested by the biologist’s intuition about the time
scale of the important changes in the analyzed biological pro-
cess, for example, a developmental process or administration
of a drug. Clustering the time profiles of the thousands of
genes recorded by the microarrays is a very important ex-
ploratory problem, for which several methods have been pro-
posed in the past [1, 2, 3].

Most of the existing methods, no matter whatever heuris-
tically motivated, or model-based methods [4] do not make
use of the time values at which the measurements have been
taken, loosing potentially useful information regarding the
analyzed waveforms. Some approaches that take into account
the temporal structure in gene expression data are based on
hidden Markov model [5], spline approximation [6], or on
analysis of temporal variation [7]. In [8], an autoregressive
model is used for the gene expression time series, and the

clustering is performed with a Bayesian criterion which mea-
sures the similarity between two time series. A comprehen-
sive study on various clustering methods applied to gene ex-
pression data that are time series can be found in [9].

A general methodology for modelling the time series col-
lected at nonuniform time points has been presented in [10],
where the sum-of-exponentials model was used for getting
estimates of the gains and time constants, and then a gen-
eralized correlation coefficient was introduced based on the
cost of describing all relevant parameters of the waveforms
interpolated at an equidistant grid. The generalized corre-
lation coefficient was intended for various applications, in-
cluding gene prediction in genetic networks and disease clas-
sification. The sum-of-exponentials model is appealing since
it can be interpreted as the transient output of a linear dy-
namical system evolving from a first stationary regime to an-
other one.

The work in [10] was first extended in a preliminary ver-
sion of this paper [11], by elaborating on the first critical
stage, that of fitting the sum-of-exponentials model. We in-
troduce a new minimum description length (MDL) criterion
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for selecting the number of exponentials in the model, and
provide a statistical analysis of the fitting accuracy. A fitting
procedure combining several known methods is also pro-
posed and is found experimentally to have an accuracy close
to Cramér-Rao lower bound.

We apply the proposed methods for finding the dynami-
cal parameters in the models of the time series from two ex-
perimental data sets containing gene expressions measured
during the development of mouse cerebellum and dentate
gyrus. The estimated parameters are subsequently used in a
clustering algorithm.

The remainder of the paper is organized as follows. In the
next section, we outline the algorithm for fitting a sum of ex-
ponentials to nonuniformly sampled data. The expression of
Cramér-Rao lower bound is obtained, and the new MDL cri-
terion is introduced for estimating the structure parameter.
Based on sum-of-exponentials model, a new clustering pro-
cedure is proposed in Section 3, then is tested with simulated
data. An experiment with data from developmental biology
is conducted in Section 4, and the enrichment of functional
categories in clusters found by the proposed method is inves-
tigated with statistical tests.

2. FITTING A SUM OF EXPONENTIALS TO
NONUNIFORMLY SAMPLED DATA

2.1. Motivation

A linear differential equations model for the concentrations
of mRNA and proteins was introduced in [12]. In [13], since
usually only the concentrations of mRNA are measured, the
differential equations model was modified to the form

9y =My, m

where y(#) contains only mRNA concentrations as a func-
tion of time, and the constant matrix M describes interac-
tions between various genes. Biological considerations lead
to constraining the eigenvalues and the eigenvectors of ma-
trix M to be real-valued. Supplementary, the eigenvalues of
M are assumed to be negative to ensure that exp(M¢t) — 0
as t — oo. It is well known that the solution for (1) is given
by y(t) = exp(Mt)y(0), where y(0) is the vector of measure-
ments at time moment zero. The solution can be expressed as
a sum-of-exponential terms multiplied by polynomial func-
tions of t, which is the basic reason for our choosing of the
sum of exponentials as a dynamic model for gene expres-
sions. In [12] it was argued that only the case when all these
polynomials are constant (have degree zero) has biological
relevance. More on linear differential equations models for
gene expression data can be found in [14, 15].

2.2. Problem formulation

We consider an estimation procedure for the following
nonlinear regression model:

y(t16)) Z ajexp ( (2)

where the model parameters are 0, = {«;,; | j=1,2,..., p},
and the structure parameter is y = 2p. The a;’s are real-
valued and f3;’s are taken, without loss of generality, to verify
Bi > p2 > -+ > B, >0. The noisy signal

z(t) = y(t16,) +e(t) (3)

is observed at the nonnegative time points t; < f, <« -+ < t,
which are not equally spaced. The vector of measurements is
z = [z(t;) - - - z(t,)]". The noise &(t) is assumed to be sta-
tionary and to have finite variance. For a fixed structure y,
we define the LS estimates of the parameters

9 = argmlnz y(l‘,»l@l,)]2 (4)

yll

and introduce the residual sum of squares as the sum in (4)
evaluated at the LS parameters

n

RSS() = X[

y(t:16,)]%. (5)

If time moments are equally spaced, the estimation prob-
lem can be rephrased as a simple linear least-squares prob-
lem, but even then important difficulties arise when fit-
ting a sum of exponentials: choosing initial values and ill-
conditioning when two or more ;s are close [16]. Since the
problem is complex, many algorithms have been proposed
to solve it, beginning with the Prony’s method introduced
as early as 1795. The method was originally used for fit-
ting an exponential model to uniformly sampled experimen-
tal data, and consists in solving a set of linear equations for
the recurrence equation that the signals satisfy. It was shown
in [17] that Prony’s method is close to Pisarenko’s method,
which was analyzed and further improved in signal process-
ing community. Many modified Prony algorithms have been
also proposed, see, for example, [16, 18]. A survey on vari-
ous algorithms for fitting a sum of exponentials can be found

n [19], where a special section is dedicated to minimizing
the LS criterion by using standard optimization techniques.
One such technique is the Al-Baali-Fletcher algorithm [20],
which is a hybrid method in the sense that during the iter-
ations the algorithm switches between GN (Gauss-Newton)
and BFGS (Broyden-Fletcher-Goldfarb-Shanno) for the esti-
mation of the Hessian matrix.

When fitting a sum of exponentials by minimizing an LS
criterion, a critical part is the choice of initial values for the
«; and f3; parameters. An algorithm for finding initial values
in the particular case when all &; coefficients are strictly pos-
itive is given in [21]. In the general case when «;’s are not
constrained, the grid search is generally applied [22].

2.3. Anestimation procedure for the nonlinear
regression model

Fitting an exponential model to gene expressions is hard
since the number of available measurements is small and they
are nonuniformly sampled. We resort to a grid search for ini-
tializing the parameters. For simplicity of notation, we define
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two vectors of parameters, namely, a = [a; & - - - ;] " and
b = [ f2---B,]". At each point b in the grid, the linear
parameters a(b) are fitted as shown in Appendix A by mini-
mizing the sum of residual squares. The starting point is cho-
sen to be the pair (a(b),b) that minimizes the sum of resid-
ual squares over all points of the grid defined in the space
of b parameters. The selected pair (4(b),b) is used to ini-
tialize the Al-Baali-Fletcher optimization algorithm [20]. We
employ the Matlab implementation of this algorithm as pro-
vided by the Tomlab software, which is publicly available at
http://www.mdh.se/ima/personal/khm01/tom/.

Cramér-Rao lower bound (CRLB)

For investigating some statistical aspects of the estimation
problem, we resort to the computation of the Cramér-Rao
lower bound (CRLB). We denote by F~!(6,) the inverse of
the Fisher information matrix for the signal model when the
parameters are 0. Let 6 ; be an unbiased estimator for the j’th
component of 0). A classical result from statistics [23] states

that the CRLB for the variance Var(éj) is given by [F~1(0))];,
where the index jj designates the entry of the matrix for
which both the row and the column are equal to j.

The independence assumption is rather strong for gene
expression, and further studies will be needed in order to
estimate a correlated model for the noise, especially when
the number of data points available will increase. Under the
hypothesis of white Gaussian noise, we find in Appendix B
closed-form expressions for the entries of the Fisher infor-
mation matrix. First we obtain these expressions for the set
of parameters

0;}={0(1,062,...,OCP,51,82,...,8P}, (6)
where §; = exp(—f;), 1 < j < p, denote the decay rates.
Since time constants are more important for the interpreta-
tion of results obtained with gene expression data, we further
develop the calculus for the Fisher information matrix when
the set of parameters is given by

0, = {a, 00,0000, T1, 125, T ) (7)
In the definition above, we use 7; for the time constants,
namely, 7; = To/fj, 1 < j < p, where T} is the greatest com-
mon divisor of {t, — t1,13 —t2,..., ty — th_1}, and t1, ta, ..., Iy
are assumed to be integer-valued. It is obvious how to ob-
tain the conversion between the time constants and the decay
terms: 7; = —To/In §; and §; = exp(—To/T;).

Under the hypothesis of white Gaussian noise with zero
mean and variance o2, the expression of the log-likelihood
function is given by

A(z16,) = -2 1n (2n0” ,ZLZ (616, (8)

It is immediate to observe that the ML estimator for the non-
linear regression model is the one given by (4). In general,

the ML estimator is optimal since asymptotically it is unbi-
ased and achieves the CRLB [23], which is a highly desired
property. We are interested to assess the estimation results for
finite samples, and especially when the number of measure-
ments is small. Even in these cases, it is customary to compare
the variance of estimates with CRLB, but two important facts
have to be considered when interpreting the results [24]: (a)
there exist biased estimators for which the variance is even
smaller than CRLB, as shown in the examples discussed in
(25, 26]; (b) the ML estimator achieves asymptotically the
CRLB, but an estimator which achieves the lower bound may
not exist for small samples.

Structure parameter estimation
In the discussion above, we have assumed that the struc-
ture parameter y = 2p is known, or equivalently the num-
ber of exponential terms in (2) is given. This is not the case
in practical applications, thus we need to estimate the value
of y, which amounts to select this value from a finite set
of positive even integers. The selection is usually performed
based on well-known criteria as MDL or AIC [19]. When
applying the form of MDL principle called two-stage de-
scription length [27], the structure parameter is given by
y* = argmins <<y, MDL(y), where
n )4

MDL(y) = > log RSS(y) + 3 log n. 9)
We use the notation log(-) to denote the logarithm base two.
The MDL criterion represents the ideal code length for trans-
mitting the values of measurements z(t),z(t2),...,z(t,)
from a hypothesized encoder to a decoder. For a fixed struc-
ture p, the parameters 0, are estimated as described above,
and each parameter is encoded by using (1/2)logn bits,
which leads to a total cost that equals the second term in
(9). The first term represents the number of bits necessary
for encoding z(t1),z(t2),...,z(t,) given the estimated values
éy; RSS(y) is calculated as in (5).

We propose to apply a different coding scenario that
allows the use of recent advances in universal modeling,
namely, the normalized maximum-likelihood (NML) esti-
mator. The key observation is that once the estimated values
for B’s are known both at the encoder and at the decoder sites,
the modeling problem reduces to a linear regression model
as shown in Appendix A. Therefore, it is straightforward to
use for the ideal code length the NML criterion introduced
in [28]. It remains only to find a method for transmitting the
estimated values of B;’s from the encoder to the decoder. A
natural solution is to encode every 3; parameter by using the
asymptotically optimal number of bits, namely, (1/2)logn
bits. We obtain now the nMDL(y) criterion as a sum of two
terms: the first one is given by NML formula from [29], and
the second one is (y/4)logn, the cost for transmitting the
B;’s. Therefore, we obtain

—v/2 ATRTRA
nMDL(y) = n-yl log RSS(y) + glog aBBa

2 n n
(10)
_ LV/Z)_ (z) y
logl"( 5 logT 4 +4logn,
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where & = [&) &, - - - &,2] ", the entries of the matrix B are
bij = exp(—tiﬁj), l<i=<mn 1=<j<y/2,and T(-) denotes
the usual Gamma function.

The performances of MDL and nMDL criteria are com-
pared in Section 3.2 for simulated data.

3. GENE CLUSTERING

3.1. New clustering algorithm

Assume that, applying the procedure described above, we
have fitted a sum of exponentials to the time profile mea-
sured for a certain gene. Finding similarities between the ex-
pressions of this gene and another gene expressions reduces
to a comparison between the two sets of the estimated pa-
rameters. At this point, a large family of comparison criteria
can be considered. For example, we can first compare the es-
timated structure parameters, and if both model orders are
the same we can further compare the gains and the time con-
stants, respectively. Since generally a microarray data set con-
tains measurements for thousands of genes, it is prohibitive
to consider all possible pairs of genes for finding similarities.

We decide that two different genes share common regula-
tion if the set of time constants is the same for both of them,
and we cluster the genes together. Observe that the proposed
similarity measure for genes ignores the gains. We do not
know the true values of the time constants, and the esti-
mated values are all different with probability one. We model
the time constants estimated for all genes from a microar-
ray data set as outcomes of a Gaussian mixture model, and
cluster them in Nrc clusters with classification-expectation-
maximization (CEM) algorithm [30]. The centroids found
by CEM are denoted by T; where index i takes values between
1 and Ntc. The centroids are increasingly ordered, namely,
T; < Tjwhen 1 < i< j < Nrc. For clustering the time con-
stants, we have pooled them together no matter the model
order inferred for every gene.

We consider that, for a particular gene, the model or-
der given by an information theoretic criterion like MDL
or nMDL is p*, and the estimated time constants are
1, 12,..., Tp+. We associate to this gene the sequence T(y) <
Ty < - -+ < T(z) determined by the centroids of the clus-
ters to which the CEM algorithm assigns the time constants
1, 12,..., Tp+. If two or more time constants of the consid-
ered gene are assigned to the same cluster, then the corre-
sponding centroid occurs only once in the sequence of cen-
troids, and consequently 1 < 7 < p*. We cluster together
two genes if the same sequence of centroids T(;) < Ty <
-+ + < T(y) is associated to both genes.

Therefore, we first cluster the time constants, and then
we use the result to further cluster the genes. It is interest-
ing to investigate the relationship between Nrc, the num-
ber of clusters for time constants, and Ngc, the number
of gene clusters. Under the hypothesis that the information
theoretic criterion selects the number of exponentials from
the set {1,2,..., pmax}, it is easy to prove that 1 < Ngc <

Zf:"‘fx (NTC), where (N}C> = 0 for i > Ntc. For the case

1
Pmax = Nrc, the inequality becomes 1 < Ngc < 2MNe,

To illustrate the situation when pmax < Nrc, we choose
Pmax = 3 and Nrc = 5. For this selection, the number of
gene clusters can potentially be as large as 25.

For completeness, we list in Algorithm 1 the newly intro-
duced gene clustering algorithm.

3.2. Experimental results with simulated data

For validating the proposed method, we test it with care-
fully crafted data. Note that fitting sum of exponentials to
the measured data is the crucial step of the procedure, in the
sense that unreliable estimates for time constants can lead
to false conclusions on the similarity of the genes. This is
the reason for which we generate data according to a pro-
totype that was introduced in [31] and used since then as
a benchmark to evaluate the performances of various esti-
mation algorithms. The model used in [31] to generate data
is the same as the one in (2) with the following parameters:
p=30a =06,a =03, a3 =0.1,and §; = 0.1, 5, = 0.01,
B3 = 0.001. Their proposed task was to estimate the param-
eters from 20 measurements nonuniformly sampled at time
points between 0 and 6000, where no noise was added, but
every measurement rounded to four significant digits. It is
obvious that their goal is the same as in the estimation prob-
lem treated in Section 2, but the solution proposed by [31]
applies only when all «;’s are strictly positive.

We extend this example by considering more linear com-
binations of the same exponential terms. To fix the ideas,
in this section, we denote by G;, 1 < i < 10, a gene pro-
totype, and not simply a gene. In Table 1 ten different gene
prototypes are shown by indicating for each of them the
values of p and «;’s. Note that for all prototypes the §;’s
are the same as in the example from [31]. Beginning from
a particular prototype G;, we generate measurements for a
gene by adding i.i.d. noise to the waveform given by G; at
the time points 0, 1, 2, 3,4, 5, 10, 30, 60, 150, 300, 400. We em-
ploy Gaussian noise with zero mean and variance 2. For Gy,
we consider only the first 9 time points from the set of 12
time points listed above. The reason is that G; takes values
very close to zero when time t > 150. Therefore, for genes
generated according to prototype G, only 9 nonequidis-
tant measurements are used in estimation, and for proto-
types Ga,...,Gio the estimation of parameters is based on
12 nonequidistant measurements.

To test the capabilities of the method discussed in
Section 2, we estimate the parameters of the model (3) from
gene measurements simulated according to the previous sce-
nario. For every prototype in Table 1, we generate measure-
ments for 50 different genes, or equivalently, we consider 50
different noise realizations. The “true” time constants span
a very large domain from 1 to 1000. This makes difficult the
task of defining the domain in the grid-search algorithm. The
reported estimation results are obtained when, for every time
constant, the search domain is limited to [1,1200], and the
search step is 20. The computational burden is decreased by
assuming a priori that the set of estimated time constants for
every gene is ordered. For improving the numerical condi-
tioning of the algorithm, we force the difference between ev-
ery two time constants to be larger than 20. It is clear that
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can vary from one gene to another.
1. For every gene,

For p =1 pmax>

End
End

the CEM algorithm (Section 3.1).

the same set of centroids.

are not included in any cluster.

Input: a data set containing gene expressions that are time series. It is not necessary
that the time sampling points are the same for all genes, and the number of samples

the available measurements are denoted by y(t,),..., y(t,), where the time points
t1,...t, are generally nonequidistant.

fit a sum of p exponentials to the data y(t,),...
evaluate the nMDL criterion (10).

End
Choose p* to be the value of p that minimizes the nMDL criterion. The estimated
parameters are the gains &, ..., &+, and the time constants are fi,..., Ty+.
If the goodness-of-fit criterion (11) is satisfied,
include the time constants 7,,..., 7p+ in the set 7.
Else

Label the current gene with zero.

2. After eliminating the outliers, group the objects from 7~ into Nyc clusters by applying

3. For each gene that is not labeled with zero, replace every time constant #;, 1 < i < p*,
with the centroid of the cluster to which 7; was assigned.
4. Group together into the same cluster all genes whose time constants are assigned to

Output: each gene is labeled according to which cluster it belongs. For the genes
with label zero, the sum-of-exponentials model does not fit well, therefore they

, y(ty) (Section 2.3);

ArLGcoriTHM 1: Gene clustering algorithm.

TaBLE 1: The parameters for the ten gene prototypes used in exper-
iments with simulated data. For all gene prototypes, the model is
given in (2), and f; = 0.1, 3, = 0.01, 35 = 0.001.

G p a a a3
G 1 1.0 0.0 0.0
G, 1 0.0 1.0 0.0
G; 1 0.0 0.0 1.0
Gy 2 -0.5 1.5 0.0
Gs 2 0.0 0.6 0.4
Ge 2 0.6 0.0 0.4
Gy 2 -0.5 0.0 1.5
Gs 2 0.6 0.4 0.0
Gy 3 0.6 0.3 0.1
Gro 3 0.8 -0.6 0.8

the smaller the search step, the better the accuracy of initial-
ization points for the optimization algorithm, but a small
value for the step search means also a significant computa-
tional burden. In the analyzed case, a value of 20 is a good
tradeoff between accuracy and complexity.

We run the grid-search algorithm and then the optimiza-
tion algorithm, and report in Table 2 the results obtained
when considering 50 trials for every gene prototype. The
noise standard deviation is 107>. To have a better image on
signal-to-noise ratio, remark that the values of each gene
prototype varies between one for time moment zero, and

asymptotic value zero. For the results in Table 2, the bias is
small and the variance is close to CRLB. These estimations
for coefficients «; and time constants 7; = 1/f; are obtained
by assuming that the true value of p is known. Using the same
simulated data sets, we compare in Table 3 the estimations of
the structural parameter obtained by MDL and nMDL cri-
teria. Observe for ¢ = 1073 that nMDL estimates are 100%
correct for seven out of ten prototypes, and the proportion
of correct estimates is never smaller than 82%. At this level
of noise, nMDL does not perform worse than MDL criterion
in any of the cases. When the level of noise is increasing, the
proportion of correct estimations declines for both MDL and
nMDL, but overall we can conclude that nMDL is superior.

To complete the experiments, we have to cluster the es-
timated time constants, and for this task we use the Mat-
lab programs which are available at http://www.cs.ucl.ac.uk/
staff/D.Corney/ClusteringMatlab.html and http://www.ncrg.
aston.ac.uk/netlab/. We try to mimic the real situations when
more copies are available for the same microarray. We as-
sume that the microarray contains measurements for 20
genes and 25 copies of it are available. More precisely, we
randomly distribute the genes from the data sets already em-
ployed in the previous experiments such that to have 25 dif-
ferent copies of the same microarray, and every copy to con-
tain exactly two genes from each prototype.

In the experiments, we apply two different procedures:
(a) cluster the time constants estimated for the genes that be-
long to a microarray copy, and ignore the estimations ob-
tained for the other microarray copies (“one clustering for
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TABLE 2: Parameters, Cramér-Rao lower bounds, and estimation results for 50 trials when ten different gene prototypes are considered. Noise
standard deviation is 0 = 1073,

G Parameter o o s T T T3
Actual 1.0 — — 10 — —

G Average 1.01 — — 9.81 — —
Std. dev. 0.0389 — — 0.76 — —
+/CRLB 0.0007 — — 0.02 — —
Actual — 1.0 — — 100 —

G, Average — 1.00 — — 100.52 —
Std. dev. — 0.0010 — — 0.55 —
/CRLB — 0.0004 — — 0.20 —
Actual — — 1.0 — — 1000

Gs Average — — 1.00 — — 1000.18
Std. dev. — — 0.0003 — — 2.93
VCRLB — — 0.0003 — — 2.99
Actual -0.5 1.5 — 10 100 —

G Average —-0.50 1.50 — 10.01 100.00 —
Std. dev. 0.0147 0.0160 — 0.45 0.91 —
+/CRLB 0.0026 0.0027 — 0.08 0.25 —
Actual — 0.6 0.4 — 100 1000

Gs Average — 0.60 0.40 — 100.64 1025.11
Std. dev. — 0.0119 0.0120 — 1.86 71.71
/CRLB — 0.0122 0.0124 — 1.89 72.85
Actual 0.6 — 0.4 10 — 1000

Ge Average 0.60 — 0.40 10.00 — 1001.49
Std. dev. 0.0011 — 0.0010 0.05 — 11.42
VCRLB 0.0011 — 0.0010 0.05 — 11.04
Actual -0.5 — 1.5 10 — 1000

G, Average —0.50 — 1.50 9.99 — 1000.50
Std. dev. 0.0011 — 0.0010 0.06 — 3.24
+/CRLB 0.0011 — 0.0010 0.06 — 2.95
Actual 0.6 0.4 — 10 100 —

G Average 0.60 0.40 — 9.92 99.56 —
Std. dev. 0.0122 0.0169 — 0.59 3.66 —
/CRLB 0.0026 0.0027 — 0.07 0.95 —
Actual 0.6 0.3 0.1 10 100 1000

Go Average 0.60 0.30 0.11 9.97 97.78 960.23
Std. dev. 0.0051 0.0106 0.0143 0.12 6.36 220.76
VCRLB 0.0052 0.0174 0.0215 0.10 8.76 476.81
Actual 0.8 -0.6 0.8 10 100 1000

Guo Average 0.80 —0.60 0.80 10.01 100.01 1003.13
Std. dev. 0.0052 0.0172 0.0218 0.07 4.54 58.79
+/CRLB 0.0052 0.0174 0.0215 0.07 4.38 59.60

each copy”); (b) cluster all time constants, estimated for all ~ our implementation, all estimated time constants that have
microarray copies (“one clustering for all copies”). For both  values smaller than 1, or larger than 1200 are considered out-
procedures, we assume that the number of clusters is 3, and liers. For clustering a set of time constants, we first eliminate
report the results in Tables 4, 5, 6, and 7. We mention thatin  the outliers, and then run the CEM algorithm starting from
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TaBLE 3: The percentage of estimations for model order when applying MDL and nMDL criteria. The value ¢ of noise standard deviation is
given for every experiment. The symbol  is used to indicate the “true” model order.

G o=10" o=10"2 o=10"
MDL nMDL MDL nMDL MDL nMDL
1* 50 82 20 58 54 84
Gy 2 12 10 46 34 42 16
3 38 8 34 8 4 0
1* 84 100 90 100 82 100
G, 2 10 0 0 10 0
3 6 0 0 8 0
1* 94 100 76 100 88 100
G; 2 2 0 18 0 10 0
2 0
1 32 68
Gy 2% 86 100 56 920 42 30
3 14 0 44 10 26 2
1 0 0 0 0 58 94
Gs 2% 94 100 84 100 28
3 0 16 0 14 2
1 0 0 0 0
Gg 2% 92 100 96 100 82 94
3 0 0 18
1 0 0 2
Gy 2% 920 98 86 98 86 92
3 10 2 14 2 12 2
1 0 0 0 38 84
Gg 2% 64 92 54 68 52 16
3 36 8 46 32 10 0
0 0 0 0 26 74
Gy 2 0 0 12 36 54 24
3% 100 100 88 64 20 2
1 0 0 0 0 0 12
Gio 2 0 0 20 20 28 46
3% 100 100 80 80 72 42

40 randomly chosen initialization points. Among the 40 re-
sulting solutions, we select the partition that minimizes the
sum of squared errors.

The results in Tables 4 and 5 show how well the esti-
mated time constants have been allocated to clusters. Con-
vention is that numbers represented with shades are counts
of how many times the time constants are properly assigned
to clusters. In our settings, for an ideal method, all counts
represented with shades in Tables 4 and 5 are equal to 50,
and all other counts in these tables take value zero. Now
we can easily observe in Table 4 that the results yielded by
the proposed method when clustering separately every copy,
for 0 = 1073, are very close to the best possible results.
One single misclassification occurs for a gene generated ac-
cording to prototype Gg. We investigate closely the estima-
tions for Gg when o = 107%: percentages in Table 3 indi-
cate that nMDL estimates correctly the number of clusters

for 92% of genes, and overestimates the order for the rest of
8% genes. As we have generated 50 different realizations for
Gs, it means that the model order was estimated to be three
for four genes. Based on this observation, we could expect
that the row corresponding to Gs in Table 4 contains value
50 (represented with shades) for the first two counters, and
value 4 for the third counter. The value of the last counter
is 1, which can be explained as follows: in the case of three
Gs genes for which the order was overestimated, the largest
time constant was grouped by CEM together with the second
largest time constant. The discussion on this particular ex-
ample gives hints for the interpretation of the data in Tables
4 and 5, and emphasizes the importance of using an accurate
estimator for the structure parameter. When comparing the
content of the two tables, we note again the superiority of the
nMDL criterion. We observe also that performing “one clus-
tering for all copies” does not improve the grouping of genes.
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TaBLE 4: Results obtained when clustering the time constants esti-
mated for 25 microarray copies when each copy contains the mea-
surements of exactly 2 genes from every prototype G, — Gyo. The
values represented with shades are counts for the time constants
that are properly assigned to clusters, and the numbers represented
without shades count for misclassified time constants. The structure
parameter is estimated by applying the nMDL criterion.

o=10"°
One clustering One clustering
G for each copy for all copies
#T #T, #T3 #Ty #T, #T5
Gy 50 0 0 49 7 0
G, 0 50 0 0 50 0
G3 0 0 50 0 0 50
Gy 50 50 0 50 50 0
Gs 0 50 50 0 50 50
Ge 50 0 50 50 0 50
Gy 50 0 50 50 1 50
Gg 50 50 1 50 50 1
Gy 50 50 50 50 50 50
Gio 50 50 50 50 50 50
0=1072
One clustering One clustering
G for each copy for all copies
#T #T) #T5 #T #T, #T5
Gy 50 8 7 50 11 8
G, 2 48 0 0 50 0
G; 0 0 50 0 0 50
Gy 42 48 2 38 50 2
Gs 2 50 45 0 50 50
Gg 50 0 50 50 0 50
G 50 0 50 50 1 50
Gg 46 48 4 44 50 5
Gy 47 49 18 49 33 50
Gio 47 43 48 50 40 50
o=10"
One clustering One clustering
G for each copy for all copies
#T #1, #15 #T #T, #T5
Gy 50 2 0 50 1 0
G, 8 42 0 0 50 0
G3 0 10 40 0 33 17
Gy 18 42 0 16 49 0
Gs 4 46 3 3 48
Ge 49 14 36 49 24 26
Gy 47 10 40 45 31 19
Gg 45 10 2 48 6 1
Go 4 12 8 47 9 7
Gy 43 15 42 44 23 35

TasLE 5: Counting the well-classified and misclassified time con-
stants when the data sets are the same as for the results reported in
Table 4, and the structure parameter is estimated with MDL crite-
rion. The convention for using shades is the same as in Table 4.

o=10"°
One clustering One clustering
G for each copy for all copies
#T, #T, T, #T) #T, #T,
G 50 3 0 40 25 0
G, 6 50 0 0 50 0
G; 2 2 50 0 3 50
Gy 50 50 0 48 50 0
Gs 2 50 50 0 50 50
Gs 50 1 50 50 4 50
G; 50 2 50 50 5 50
Gg 50 50 2 47 50 2
Gy 50 50 50 50 50 50
Gio 50 50 50 50 50 50
0=1072
One clustering One clustering
G for each copy for all copies
#T) #T, T, #T, #T, #T,
G, 49 14 12 49 28 13
G, 4 438 2 0 50 2
G; 8 4 50 4 10 50
Gy 43 48 5 36 50 5
Gs 7 50 45 0 50 50
Gs 50 2 50 50 2 50
Gy 50 2 50 48 7 50
Gg 47 47 6 41 50 7
Go 49 49 24 50 45 49
Gio 48 40 50 42 48 50
o=10"
One clustering One clustering
G for each copy for all copies
#T #T, #T5 #T #T, #T5
G 49 6 5 50 5 5
G, 17 41 0 8 50 0
G; 6 17 33 6 33 17
Gy 33 39 4 34 47 4
Gs 17 45 9 17 48 5
Ge 50 21 29 50 26 24
Gy 49 18 34 47 32 19
Gg 49 18 10 49 19 9
Gy 49 16 16 49 19 16
Guo 49 25 38 50 31 33
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TaBLE 6: The centroids for clusters of estimated time constants. For
the scenario “one clustering for each copy,” the mean and standard
deviation are reported for every centroid. The structure parameter
is estimated with the nMDL criterion.

TaBLE 7: The centroids for clusters of estimated time constants. For
the scenario “one clustering for each copy”, the mean and standard
deviation are reported for every centroid. The structure parameter
is estimated with the MDL criterion.

o=10"3 o =103
One clustering One clustering One clustering One clustering
T for each copy for all copies T for each copy for all copies
Average Std. dev. Average Std. dev.
T1 10.20 0.45 10.00 T1 11.71 1.42 10.01
T2 99.33 1.47 96.14 T2 96.77 4.72 80.40
T3 999.09 27.99 999.13 T3 998.62 30.02 998.78
0=1072 0=10"2
One clustering One clustering One clustering One clustering
T for each copy for all copies T for each copy for all copies
Average Std. dev. Average Std. dev.
T1 11.49 6.76 9.78 T1 11.93 6.79 9.74
T2 122.95 94.04 81.01 T2 109.82 62.52 69.30
T3 1001.73 72.74 912.52 T3 998.60 93.71 929.22
o=10" o=10"
One clustering One clustering One clustering One clustering
T for each copy for all copies T for each copy for all copies
Average Std. dev. Average Std. dev.
T1 21.07 12.37 18.03 T1 20.17 8.78 17.63
T2 259.17 175.06 389.54 T2 302.08 140.30 374.81
T3 1094.89 94.35 1192.57 T3 1140.30 75.26 1191.00

The data have been generated such that the “true” time
constants for every gene, in all microarray copies, belong
to the set {10,100,1000}. We compare next the values
10, 100, 1000, with the centroids found by clustering the esti-
mated time constants. In Tables 6 and 7 are shown the cen-
troids obtained when applying the scenario “one clustering
for all copies”. Since “one clustering for each copy” leads to
25 different estimations for every centroid, we report in Ta-
bles 6 and 7 the computed mean and standard deviation. Re-
mark in the case when the structure parameter is estimated
with nMDL, and noise standard deviation is ¢ = 1073, that
the centroids are close to the “true” values. When o = 1071,
the centroids corresponding to 10 and 100 take values larger
than expected.

The clustering results in Tables 4, 5, 6, and 7 are a good
measure of the accuracy for the proposed method. Encour-
aged by these results, we apply next the clustering algorithm
for data sets from developmental biology.

4. CLUSTERING THE GENE EXPRESSION DATA
SAMPLED DURING POSTNATAL DEVELOPMENT OF
MOUSE DENTATE GYRUS AND CEREBELLUM

4.1. Data sets from developmental biology

We apply the newly introduced clustering method for mea-
surements obtained in experimental studies from develop-

mental biology. The data are available at http://physiolge-
nomics.physiology.org/cgi/content/full/8/2/131/DC1/2, and
represent expressions of 1412 genes measured at the same
time points in two different experiments. The first experi-
ment [1] is focused on studying the postnatal development of
mouse cerebellar cortex, and the second one [3] analyzes the
postnatal development of the dentate gyrus of mouse hip-
pocampus. Since the cerebellar cortex and the dentate gyrus
have common features, in [1], comparisons are performed
between the time profiles obtained in both experiments.

The measurements are sampled at six time points,
namely, 2, 4, 8, 12, 21, and 42 days after birth. In [3],
the comparison of gene expressions relies in Euclidean dis-
tance. A statistical analysis is also conducted: first the genes
are grouped by using Ward’s hierarchical clustering method
[32], and then the enrichment of functional categories in
each cluster is investigated. As functional class labels have
been associated with most of the genes, there is a significant
interest on finding a correspondence between time profile
of gene expressions, and the functional role played by each
gene. Once the clustering is performed, it remains to decide
if a particular functional category ¥ appears unusually often
within a particular cluster C.

4.2. Fitting the sum-of-exponentials model

First we apply the algorithm described in Section 2 for fit-
ting sum of exponentials to the 1412 gene profiles measured
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during postnatal development of mouse cerebellum [1, 3].
The optimal number of exponentials in each sum is selected
from the set p € {1,2,3} by applying the nMDL criterion.
For every time constant, the grid-search domain is taken as
[1,35], and the search step is 0.3.

4.2.1.

Our first aim is to test whether the developmental biology
data fit well the sum-of-exponentials model. Among the rich
family of testing methods, we choose a criterion that is intu-
itive and very simple to implement. For each gene, we decide
that the estimation is reliable only when the “signal-to-noise
ratio” is high enough, or equivalently, when

Goodness-of-fit testing

7_)2 < Thgss, (11)

where the notations are like in (5). The threshold Thgss is
chosen in the interval (0, 0.5) based on a procedure described
in the sequel. To investigate the robustness of this criterion,
we compare it with another one that exploits in a different
way the information in the errors observed when fitting the
sum-of-exponentials model to gene expression data. To il-
lustrate this second criterion we use the data set measured
during postnatal development of mouse cerebellum. For an
arbitrary gene in the analyzed data set, we define for the jth
sample the relative error s§ = |z(t;) — y(t; Iéy)l/[z?zl(z(ti) -

y(tl éy))z] 172 where we use the same notations as in equation
(5). Remark from the definition that positive and negative
errors are mapped together. We collect all errors computed
with the expression above for this data set, and further group
them based on their magnitudes. The errors are assumed
to be outcomes from a Gaussian mixture with two compo-
nents: the first group is denoted R, and contains the residu-
als with small magnitudes that correspond to the case of good
fit between the measured data and the sum-of-exponentials
model. The rest of the residuals are assigned to the group
conventionally denoted by R}, Since we label each error with
Rg or Ry, it follows that the larger the number of R, labels
for a gene record, the higher the quality of fit for the gene.
To fix the ideas we note that the data set we study contains
records for 1412 genes and six measurements are available
for each gene. For simplicity we ignore one gene for which
all six measurements take the same value. Therefore the total
number of errors is 8466. After applying the CEM algorithm
initialized from 20 different points and selecting the best so-
lution, the errors are split in the groups R, and R;. We note
that R, contains 6164 errors for which the mean is 0.054 and
the variance is 0.003. The rest of 2302 errors are grouped in
Ry, their mean is 0.390 and the variance is 0.045.

For m € {1,...,6}, we assign a gene to the set denoted
R? if at least m of its error labels are R,. For each m, the
genes not assigned to Ry are included in R}’ This leads
to a goodness-of-fit criterion: for a given value of m, accept
that the sum-of-exponentials model fits well a gene if the
gene belongs to Ry'. For example, when choosing m = 6,
the criterion is very selective in the sense that requires all

TasLE 8: The goodness-of-fit of sum-of-exponentials model is eval-
uated with two different criteria for postnatal development of
mouse cerebellum gene expression data. The first criterion com-
pares with a threshold Thgss the ratio between the sum of squared
errors and the sum of squared measurements, for each gene. For the
second criterion, the small magnitude errors are collected in Ry,
and the rest of errors are included in R;. Then Ry, 1 <m <6,
is the set of all genes for which at least m errors belong to R,. For
each m, the complementary set of R}" is R;". The contingency ta-
bles of the gene partitions determined by the two criteria are shown
for different values of Thgss and for m € {4,5,6}.

R, R OR R R
<Thgss 132 0 132 0 132 0

ThgssCriterion J%;

001 >Thrss 246 1033 522 757 904 375
005 = Thes 320 17 337 0 337 0
> Thrss 58 1016 317 757 699 375
oo =Thess 378 111 478 11 489 0
> Thrss 0 922 176 746 547 375
o5 =Thes 378 246 543 81 62 2
> Thrss 0 787 111 676 414 373
o0 =Thess 378 318 557 139 685 11
> Thyss 0 715 97 618 351 364

errors corresponding to the analyzed gene to be small in
magnitude. Since we are interested only in those genes for
which the number of small magnitude errors exceeds the
number of large magnitude errors, we restrict the analysis to
m € {4,5,6}, and note that the cardinalities of the selected
sets are IJREI = 378, \R;I = 654, |ﬂ§| = 1036.

We can admit with high degree of confidence that a par-
ticular gene is properly selected with the criterion (11) if the
gene is also included in the set R. In general, choosing a par-
ticular value for Thgss leads to a partition of the genes into
two different groups. Similarly, selecting the value of m leads
to another two-groups partition of the gene set. The contin-
gency tables, shown in Table 8, are very convenient for com-
paring the partitions obtained with various values of Thgss
and m. Recall that RS set contains all genes for which the
magnitudes of all errors are small. According to the results in
Table 8, choosing Thgss to be 0.01 or 0.05 implies that some
genes from R are considered to have poor fit with sum-of-
exponentials model. For Thgrss = 0.05, 58 genes from JR; are
deemed as poor fit for sum-of-exponentials model, while 17
genes from R} are assumed to fit well the model. When the
decision is based on a threshold value Thrss > 0.1, all 378
genes in the set RS are qualified as well fitted by the model.
Remark from the last column in Table 8 that for Thrss < 0.1
none of the genes with less than four errors in R, are selected
by the criterion (11). These properties recommend to choose
Thgss = 0.1. To illustrate the accuracy of modelling gene ex-
pressions with sum of exponentials, we plot in Figure 1 the
original measurements and the optimal model for two genes.

Based on criterion (11) with Thrss = 0.1, we select 489
out of 1412 genes of cerebellum data set, and further cluster
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FIGURE 1: Two genes and their associated models. (a) Time series
for a gene measured during postnatal development of mouse cere-
bellar cortex. The gene has index 297 in http://physiolgenomics.
physiology.org/cgi/content/full/8/2/131/DC1/2. The optimal num-
ber of exponentials is p* = 2, the gains are [& &] =
[2.55 1.63], the time constants are [f; 7,] = [15.20 2.80], and
RSS(p*)/ % z(t)* = 0.010. (b) Time series of the gene having
index 1303 in the URL stated above, measured during the postna-
tal development of dentate gyrus of mouse hypocampus: the esti-
mated parameters are p* = 2, [&; &;] = [-5.55 16.30], [; 1,] =
[7.10 1.00], and RSS(p*)/ 35, z(t;)* = 0.002.

them. We apply the same procedure for the gene expressions
measured during postnatal development of mouse dentate
gyrus, and the number of genes for which the model with
sum of exponentials fits well is 561 out of 1412.

4.3. Clustering the selected genes

We use CEM to group into Ntc = 3 clusters the time con-
stants associated with the 489 genes selected from cerebel-
lum data set. After running the algorithm from 40 different
initialization points, the resulting centroids are T; = 1.88,
T, = 6.16, T3 = 15.41. We note that the time constants are
clustered after eliminating the outliers which are the values
smaller than 1, or larger than 35. Based on the method de-
scribed in Section 3, we use the clusters already found for
time constants to group the genes, and the resulting num-
ber of gene clusters is Ngc = 6. Recall that two genes are
pooled together in the same cluster when both sets of time
constants are associated to the same sequence of centroids.
We assign to the gene clusters labels from C; to Cg, and list
for every cluster the corresponding sequence of centroids:
C:{Ti}, G i {Ta}, G5 {T5}, Gy 2 {Th, Ta}, Cs 2 {Th, T54,
Cs : {T>, T5}. Observe that there is no gene for which the set
of time constants contains representatives from all clusters
whose centroids are T4, T, Ts.

TasLE 9: Enrichment of functions in clusters of gene expressions
measured during mouse cerebellar development. For each cluster C
and for each functional category ¥, the number of genes v(C, )
that belong both to € and ¥ is given. The enrichment is marked
with shades. Statistical tests are based on hypergeometric distri-
bution. The following acronyms are used for the functional cate-
gories: GF: growth factors and their receptors, IST: intracellular sig-
nal transduction (except kinases), DEV: development, PSOM: pro-
teosome, T: transcription factors, C: carbohydrate metabolism, CY:
cytoskeleton, STK: serine/threonine kinase, SY: synaptic compo-
nent, GR: cell growth-related, B: brain and neuron, PS: ribosomal
proteins, GANN: oncogenes and their relates.

Func. categ. C; C, Cs Cy Cs Cs # genes
GF 4 0 1 0 0 0 11
IST 8 1 2 2 2 1 47
DEV 1 5 2 1 0 0 22
PSOM 1 4 0 1 0 0 17
T 3 7 3 0 0 0 37
C 0 3 0 2 0 0 14
CY 7 8 0 0 0 0 48
STK 0 1 3 2 0 0 19
SY 1 0 2 0 1 1 15
GR 2 2 2 0 0 0 15
B 5 15 9 8 3 1 116
PS 8 2 2 16 1 0 50
GANN 2 0 1 2 0 0 11
Total 141 143 67 105 28 5 1412

Then we focus on the time constants corresponding to
the 561 genes selected from mouse dentate gyrus data set.
After dropping the outliers, the time constants are grouped
by CEM in three clusters whose centroids are T; = 1.95,
T, = 5.58, and T5 = 19.38. Remark that the centroids are
close to those determined for the cerebellum data. Moreover,
the number of gene clusters is also six, and the sequence of
centroids corresponding to every gene cluster is the same as
for the cerebellum data.

4.4. Enrichment of functional categories

We briefly revisit some statistical aspects regarding the en-
richment of functional categories in experiments with mi-
croarray data [33]. To fix the ideas, we assume that the total
number of genes on the microarray is M, and only a propor-
tion q of them belongs to functional category ¥ . Therefore,
qM genes are in category ¥, and (1 — q)M genes are not in
this category, where 0 < g < 1. Suppose that the number
of genes in cluster C is m. We randomly choose m out of M
genes, and denote by V the random variable which counts
how many genes from ¥ are among the m selected genes.
The probability function of V' is modelled by the hypergeo-
metric distribution H(M, m;q) [34]. If v(C, ) denotes the
number of genes that belong both to cluster C and to cate-
gory ¥, then ¥ is enriched in € when v(C, ¥) is such that
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TasLE 10: Enrichment of functions in clusters of gene expressions
measured during mouse cerebellar development. Statistical tests for
enrichment are based on binomial distribution. The acronyms for
the functional categories are the same as in Table 9.

TasLE 12: Enrichment of functions in clusters of gene expressions
measured during mouse dentate gyrus development. Statistical tests
for enrichment are based on binomial distribution. The acronyms
for the functional categories are the same as in Table 11.

Func. categ. G C, Cs Cy Cs Cs  #genes Func. categ. C, 03 Cs Cy Cs  C¢  #genes
GF 4 0 1 0 0 0 11 STK 7 1 2 1 2 0 19
IST 8 1 2 2 2 1 47 TES 5 1 0 4 0 0 16
DEV 1 51 2 1 0o 0 2 5Y - 1 1 2 15
PSOM 1 4 0 1 0 0 17 CR e ! 0 ! 0 0 16
E 1 6 1 3 0 0 26
T 3 7 3 0 0 0 37
STK 0 ) 3 5 0 0 19 B 16 15 13 9 2 1 116
SEC 2 1 2 0 0 0 10
SY 1 0 2 0 1 1 15 L 1 3 3 1 0 0 19
GR 2 2 2 0 0 0 15 GANN 0 2 0 3 0 0 11
B 5 15 9 8 3 1 116 PS 7 5 2 7 0 0 50
PS 8 2 2 16 1 0 50 A 2 0 1 1 3 0 17
GANN 2 0 1 2 0 0 11 CHAP 1 1 2 0 2 0 17
Total 141 143 67 105 28 5 1412 Total 165 152 100 100 36 8 1412

TasLE 11: Enrichment of functions in clusters of gene expressions
measured during mouse dentate gyrus development. For each clus-
ter C and for each functional category ¥, the number of genes
v(C, ¥) that belong both to € and ¥ is given. The enrichment is
marked with shades. Statistical tests are based on hypergeometric
distribution. The following acronyms are used for the functional
categories: STK: serine/threonine kinase, TES: testis, SY: synap-
tic component, CR: chromosome component, E: electron transfer,
SEC: secretory pathway, B: brain and neuron, L: lipid metabolism,
GANN: oncogenes and their relates, PS: ribosomal proteins, A:
amino acid metabolism, CHAP: chaperonines.

Func. categ. C, C, Cs Cy Cs Cs # genes
STK 7 1 2 1 2 0 19
TES 5 1 0 4 0 0 16
SY 4 1 1 2 1 1 15
CR 4 1 0 1 0 0 16
E 1 6 1 3 0 0 26
SEC 2 1 2 0 0 0 10
B 16 15 13 9 2 1 116
L 1 3 3 1 0 0 19
GANN 0 2 0 3 0 0 11
PS 7 5 2 7 0 0 50
A 2 0 1 1 3 0 17
CHAP 1 1 2 0 2 0 17
Total 165 152 100 100 36 8 1412

Prob{V > v(C, F)} < 0.05, where

(qM) ((1 - q)M)
SR m—i

Prob {V C,F)=1-
rob{V>v(C,F)} =1 i:ZO (M)
m

Since M takes large values for microarray data, numeri-
cal difficulties occur when computing the expression above.

. (12)

Relying on the theoretical result [34], which claims that the
limit of the hypergeometric distribution H(M, m; q) as M —
oo is the binomial distribution Bi(m, ), the probability func-
tion of V is modelled by Bi(m, q), and (12) will be replaced
by

v(e,F)
Prob {V >v(C,F)} =1 - Z (T) g1 —q)™m " (13)
i=0

We use next both (12) and (13) to investigate the enrich-
ment of functional categories in the examples from the devel-
opmental biology. We report in Tables 9, 10, 11, and 12 the
results obtained when testing the enrichment of functional
categories in clusters found as described above. The fol-
lowing supplementary conditions are added to the tests in
(12) and (13): to decide that the functional category ¥ is
enriched in cluster C, it is necessary that at least 10 genes
on the microarray belong to ¥, and at least 2 genes from C
belong to F . To refer to various functions, we use in Tables
9, 10, 11, and 12 the acronyms defined at http://physiol-
genomics.physiology.org/cgi/content/full/4/2/155/DC1/2.

Comparing the results in Tables 9 and 10, we remark that
almost the same functions are found to be enriched by statis-
tical tests (12) and (13). Applying the binomial distribution
model seems to be more restrictive in the sense that the func-
tions C and CY are reported as enriched in Table 9, but not
in Table 10.

According to the results shown in Tables 11 and 12, some
functions are enriched in the clusters of gene expressions for
dentate gyrus data. Observe for this data set that exactly the
same functions are found to be enriched when the test is per-
formed with (12), and with (13). Moreover, there exist some
functional categories enriched both in clusters of cerebellum
data and in clusters of dentate gyrus data: STK, SY, B, PS, and
GANN.
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The very last observation has a special importance in
comparison with the results reported in [1, 3] where en-
riched functions have been found only for the clusters in
cerebellum data. Our clustering procedure allows to find en-
riched functions for both cerebellum data and dentate gyrus
data, and some of these functions are the same for the two
data sets. It is widely accepted in biology that cerebellar cor-
tex and the dentate gyrus have common features [3], there-
fore the findings of the newly introduced algorithm can be
explained based on biological knowledge. The biological sig-
nificance of our results still remains to be further investigated
in the future.

5. CONCLUSION

In this paper, we propose a new approach for clustering the
gene expression data that are time series. The key step of
the algorithm consists in fitting a sum of exponentials to the
nonuniformly sampled points of every time series. The op-
timal number of exponentials is inferred relying on a new
information theoretic criterion which is defined based on
NML estimator [28, 29]. The estimation method is tested
with carefully crafted data, and the results are compared with
Cramér-Rao lower bound. The conclusions drawn for simu-
lated data allow to define a criterion that determines when
the sum of exponentials model fits well the measured data.
The clustering procedure is applied for data sets from devel-
opmental biology [1, 3], and the enrichment of functional
categories is investigated.

APPENDICES
A. THE SEPARABILITY OF PARAMETERS
FOR THE LS PROBLEM

Nonlinear LS problems are in general difficult to solve, and it
is of interest to reduce the problem to one of a smaller dimen-
sionality if the optimization can be analytically performed
over a subset of variables, for fixed values of the remaining
variables. This can be readily achieved for model (2) by re-
stating the LS problem as follows.

Minimize ||&]|2, where € is the error vector e= z — B(b)a
and where b is the vector [fBi,...,8,]", a is the vec-
tor [a1,...,a,]7, and B is the matrix with entries b;; =
exp(~t;fj),for1 <i<mnand1 < j < p. Recall that the vec-
tor of measurements is z = [z(t;) - - - z(t,)] . Assume that
n = p, which is the case of interest where the number of ex-
ponentials does not exceed the number of measurements.

For a given b, we denote by 4(b) the vector that min-
imizes | €||2, which results to be the linear LS solution
a(b) = (BTB) !Bz, if the matrix BTB is nonsingular. The
matrix B has all columns independent, since every p X p mi-
nor is a generalized Vandermonde matrix with nonzero de-
terminant. Thus, the matrix B" B is positive definite and non-
singular, and 4(b) = (BTB)~!B7z is the unique minimizer of
|lel|? for a given b vector. Evaluating ||€||? at the value a(b),
we find ||€||?= z" (I — B(B"B)~'B7)z, which is now a nonlin-
ear criterion in the reduced set of parameters b, much easier
to solve when compared to the original problem having as
parameters the entries of the vectors a and b.

B. COMPUTATION OF CRAMER-RAO
LOWER BOUND (CRLB)

Since the samples are statistically independent, we obtain the
following expression of the log-likelihood function, under
the hypothesis of white Gaussian noise with zero mean and
variance 02:

’ 1 -
A(zley): Zl (2ma?) TZ z(t;) — ytZIB)]Z, (B.1)

where z is the vector of measurements, and the set of param-
eters 9; is given in (6). In this section, we drop the index y,
and write ¢ instead of 0. The expression of the Fisher infor-
mation matrix i1s

J 0
[0 L} (B.2)
204
We focus on the entries of the block J:
. aZA(z|9')] B [aA(ZIG’) BA(ZIG’)]
Jeom = —E [ 000, | “El ae;, 9, I (BY

where the derivatives are evaluated at the true value of ¢,
and the expectation is taken with respect to the probability
density function of z conditional to the model parameters
[23]. 6, and 0, are the £’th and the m’th entries of €', where
1 < ¢,m < 2p. A well-known result on CRLB for general
Gaussian case [23] implies

_ Zay 1167) 9y (4:16')
Jen= 3 2" 56 o,

(B.4)

From y(t10") = z 19 ]", or equivalently, y(t;10") =
25:1 0(07.,)", we readily obtain

y(tl0) _ [(6y)", 1<t=p, 55
06, Gé_pti(eé)t"fl, p+1=<¢<2p,
which leads to
(1 « J
g ; 9€+p m+p >
1<é,m<p,
py thge - (6,)""'6, (65 J
+1<¢,m=<2p,
Jom = P 4 (B.6)

1 < fi—1
*Z 9€+p mp(al)l >
l<l=<p,p+l1=<=m=<2p,

(80" (6,,)"

ptl=e€=<2p,l<m<p.
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When the set of parameters for the signal model is 6; (7),
let G be the block of the Fisher information matrix similar to
J . For simplicity, we use the notation 6 instead of 6, . Based
on the result from [23] on vector parameter transformations,
the relationship between the entries of the matrices G and J
is given by

G(Zm —](.’m(aeg ae;;l > (B7)

where 1 < €,m < 2p. For 1 < € < p, we have 90,/90, = 1,
while for p+1 <€ < 2p,

00, 96, ( To) Ty Ty 6
— = — = - — | = = — = — B.
00, ot¢ X Ty Tg ¢ ng 0 (62,’)2 (B.8)

Based on the equations (B.6) and (B.8), we can easily calcu-
late the entries of the matrices J and G, and further compute
the CRLB.
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