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We propose a beamforming scheme for ultrasound imaging leading to the generation of two sets of images, one with oscillations
only in the axial direction and one with oscillations only in the lateral direction. Applied to tissue elasticity imaging, this leads
to the development of a specific displacement estimation technique that is capable of accurate estimation of two components of
the displacement. The mean standard deviation for the axial displacement estimates is 0.0219 times the wavelength of the axial
oscillations λz, and for the lateral estimates, it is equal to 0.0164 times the wavelength of the lateral oscillations λx. The method is
presented and its feasibility is clearly established by a simulation work.
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laterally oscillating point spread function.

1. INTRODUCTION

In medical ultrasound imaging, beamforming can have dif-
ferent aims. In systems generating 3D volumes, sparse syn-
thetic aperture beamforming can be used to maintain a
frame rate comparable with existing 2D scanners [1]. Other
beamforming techniques can be aimed at estimation of new
parameters, like those associated with tissue elasticity imag-
ing [2]. More generally beamforming enables to control
many aspects of the image formation like the depth of field or
the diffraction of the transmitted beam, and so forth [3, 4].
In this paper, beamforming is introduced in the field of tissue
elasticity imaging with ultrasound.

Estimation of elasticity of biological soft tissue with ul-
trasound deals with the mapping of any parameter charac-
terising the elastic properties of the medium. Examples are
Poisson’s ratio [5] or Young’s modulus. The latter has been
shown to be highly affected by various pathological condi-
tions [6] and consequently, elasticity imaging carries poten-
tial for diagnosing these diseases.

The basic principle involved in tissue elasticity imaging
with ultrasound or “elastography” is to acquire ultrasound
images of a medium in two different states. The first im-
age is used as a reference. Then the investigated medium is
compressed, and a second image is acquired. As the medium
typically exhibits variations in stiffness, not all of it will have
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the same deformation due to the external compression. It is
this difference of deformation that the different elastography
methods try to recover in order to highlight the elastic prop-
erties of the medium.

The first published approaches attempted to estimate
the axial displacement or strain field in the medium [7, 8].
Unfortunately, knowledge of this component of the strain
field is not enough to recover Young’s modulus in the
medium. Thus, additional components of the displacement
or the strain field have to be estimated. Classical 2D block
matching or speckle tracking methods [9] have been stud-
ied by others. In order to track more precisely the acous-
tic signature, some approaches have calculated interpolated
RF signals located between adjacent received RF signals
[5]. However these methods all feature low lateral resolu-
tion.

The estimation of the displacement along the axial direc-
tion has been shown to be very accurate due to the oscilla-
tions that are naturally present in the RF signals. This paper
proposes a method that provides—in the lateral direction
of the image—the same oscillating characteristics as in the
axial direction. The method uses a newly introduced beam-
forming scheme [10]. This scheme can provide two different
point spread functions (PSF). A classical PSF, only oscillat-
ing in the axial direction, and a new PSF only oscillating in
the lateral direction. The latter is obtained by heterodyning
demodulation [11] of a PSF oscillating in both directions, a
so-called double oscillating PSF (DOPSF). The beamformer
producing DOPSF has been introduced in blood flow esti-
mation [10, 12]. The use of a PSF oscillating only in the
lateral direction produces “lateral RF signals” showing the
same oscillating characteristics as in the axial RF signals al-
lowing high-resolution 2D parameter estimation. The in-
troduction of two beamformers in the field of tissue elas-
ticity imaging is a new approach. It leads to the develop-
ment of a specific displacement estimation for the axial and
lateral directions of the image. This paper shows the feasi-
bility of accurate estimation of both axial and lateral dis-
placement fields by successive estimation and compensation
steps.

The paper will first focus on the beamforming method
that yields the expected PSF. Next the image formationmodel
is developed followed by a presentation of the axial and lat-
eral estimation. Finally numerical simulation results are pre-
sented followed by a conclusion on the work.

2. BEAMFORMINGMETHOD

In our approach two PSFs are used. In this part the beam-
formers used to create each of them are described. The prob-
lem is considered in the image plane only.

In linear acoustic systems, the point spread function can
be separated [13] such that one term corresponds to the
emission process and the other one to the receive process:

h(x, z) = he(x, z)⊗zhr(x, z), (1)

Ultrasound probe with Na

active elements

xi

X
dxi

ri jz ith element

Z

xj
P(xj , z)

Figure 1: Spatial configuration: the individual crystals of the ultra-
sound probe and the point of interest of coordinates (xj , z).

where he(x, z) can be interpreted as the spatial distribution of
the emitted acoustic energy, and hr(x, z) represents the spa-
tial distribution of the collected energy. ⊗z denotes the con-
volution over the spatial axial variable z. Lateral oscillations
can be introduced in the PSF in different ways. Themost con-
venient is obtained by beamforming the signals received on
the aperture by all active elements during the receive process.
With this approach the emitted beam should have the small-
est possible effect on the shape of the PSF in order to control
the global PSF only during the receive process [10].

It is quite complicated to give an exact analytical solution
for the beamformer that can produce a specified pulse-echo
PSF in a broadband case. An interesting approach to beam-
former design is given in [3, 4]. Nevertheless, it is possible to
design the beamformer using a simpler approach without de-
grading the results too much [10]. Therefore, in the present
paper, the beamformer is designed using continuous wave
(CW) emission and Fraunhoffer approximation. Fraunhof-
fer approximation is obtained by using quadratic focusing
[14].

The elements of the ultrasound probe will be modelled
as point sources. These sources emit a spherical sinusoidal
pressure wave in the medium. The pressure at depth z and
discrete lateral position xj due to the distribution of sources
on the aperture can be expressed as

P
(
xj , z

) = Na∑
i=1

g
(
xi, xj , z

)
w
(
xi
)
, (2)

where g(xi, xj , z) is a Green’s function in infinite space [4]
which corresponds to the propagation function from the ith
pressure source at discrete lateral position xi on the aperture
to the point of interest located at depth z and discrete lateral
position xj , as illustrated in Figure 1. w(xi) is an apodization
applied to the ith source.Na is the number of active elements
on the aperture. The complex expression of the emitted pres-
sure in front of the transducer can be written as

P
(
xj , z

) = Na∑
i=1

exp
(
j2πri j /λ

)
ri j

w
(
xi
)
, (3)
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where ri j =
√
z2 + (xi − xj)2 is the distance between the ith

source and the point of interest where the pressure P(xj , z) is
calculated. λ is the wavelength of the emitted wave.

In order to reach the condition of Fraunhoffer approxi-
mation at the depth z, the difference in path dxi with

dxi =
√
z2 + x2i − z (4)

is introduced in (3), where
√
z2 + x2i is the path from the ith

element to the point of interest and z is the path from the
center of operture to the point of interest. This corresponds
to quadratic focusing and leads to

P
(
xj , z

) = Na∑
i=1

(
exp

(
j(2π/λ)

(
ri j − dxi

))
ri j

)
w
(
xi
)
. (5)

Next, Fresnel approximation [14] is used to replace ri j and
dxi in (5), by their first-order binomial expansion given by

ri j =
√
z2 +

(
xi − xj

)2 = z

√√√
1 +

(
xi − xj

z

)2

� z +
1
2z

(
xi − xj

)2
,

dxi =
√
z2 + x2i − z = z

√√√
1 +

(
xi
z

)2
− z � x2i

2z

(6)

leading to the following approximation of (5):

P
(
xj , z

) = 1
z
exp

(
j2πz
λ

)
exp

(
jπx2j
λz

) Na∑
i=1

exp
(− j2πxixj

λz

)

·w(xi).
(7)

Denoting the phase terms outside the sumwith C(xj , z) gives

P
(
xj , z

) = C
(
xj , z

) Na∑
i=1

exp
(
− j2π

xj
λz

xi

)
w
(
xi
)
. (8)

Aside coefficient C(xj , z), the second term in (8) can be in-
terpreted as a discrete Fourier transform of the apodization
function w(xi). This result is equivalent to Fraunhoffer ap-
proximation [14]. From this observation it can be deduced
that the apodization function leading to the expected pres-
sure profile, is the inverse discrete Fourier transform (IDFT)
of this profile with a division of the frequency variable xj by
λz:

w
(
xi
) = IDFT

{
P
(
xj
λz

)}
. (9)

These expressions were deduced for the emitted beam, but
according to the reciprocity theorem, (9) can also be applied
to obtain the receive apodization function.

Equation (8) shows that the frequency variable involved
in the Fourier transform relation is scaled with respect to λ
and z. This means that the apodization function has to be
adapted dynamically during the receive process. This leads
to a receive apodization function depending on the depth,
w(xi, z), in order to maintain a sensitivity profile which is
constant with depth.

The receive beamforming scheme has to produce two os-
cillating PSFs, a classical one, oscillating only in the axial di-
rection, and another one, oscillating only in the lateral direc-
tion.

The two PSFs are obtained from the same array of re-
ceived signals for each active element during the receive pro-
cess. This array is denoted by bk(xi, z). It is a function of lat-
eral position on the array xi and depth z, the latter corre-
sponding to time. Indice k indicates the kth ultrasound emis-
sion.

The PSF oscillating only in the lateral direction is ob-
tained by axial demodulation of a DOPSF. The apodization
yielding this DOPSF was obtained by inverse Fourier trans-
form of the profile of the expected PSF. The RF image of the
DOPSF is obtained by juxtaposition of the beamformed sig-
nals h(xk, z) expressed by

h
(
xk, z

) = Na∑
i=1

w1
(
xi, z

)
b
(
xi, z − dxi(z)

)
, (10)

where w1(xi, z) is the apodization matrix, dxi is the delay ma-
trix, xk is the kth RF line in the image of the DOPSF corre-
sponding to the kth ultrasound emission, h(x, z), and z varies
from zero to the maximum depth of investigation.

The DOPSF can be described in space as a separable co-
sine multiplication, where fx and fz denote the lateral and
axial spacial frequency of the oscillations, respectively:

h(x, z) = cos
(
2π fxx

)
cos
(
2π fzz

)
. (11)

It is possible to suppress the axial oscillations by combin-
ing this PSF, with Hz{h(x, z)} and Hx{h(x, z)} which are the
Hilbert transforms in the axial and lateral directions, respec-
tively, as explained in [11] and recalled here:

heven(x, z) = h(x, z) + jHz
{
h(x, z)

}
= exp

(
j2π fzz

)
cos
(
2π fxx

)
,

(12)

hodd(x, z) = Hx
{
h(x, z)

}
+ jHz

{
Hx
{
h(x, z)

}}
= exp

(
j2π fzz

)
sin
(
2π fxx

)
,

(13)

hx(x, z) =
[
heven(x, z) + jhodd(x, z)

]
· [heven(x, z)− jhodd(x, z)

]
= exp

(
j2π2 fxx

)
.

(14)
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The “over line” indicates complex conjugation. Equation
(14) shows a complex PSF. Its real part gives the expected PSF
without axial oscillations whereas its imaginary part is its lat-
eral Hilbert transform. It is also important to notice that the
spatial lateral frequency of the PSF oscillating only in the lat-
eral direction is twice that of the DOPSF.

A second point spread function is obtained with a classi-
cal beamformer. The same quadratic dynamic focusing will
be applied. But this time, an apodization window, w2(xi),
constant with depth, will be used:

hz
(
xk, z

) = Na∑
i=1

w2
(
xi
)
b
(
xi, z − dxi(z)

)
. (15)

Here, hz(x, z) is the usual point spread function of an ultra-
sound scanner, with only axial oscillations.

3. IMAGE FORMATIONMODEL

In this part a general model of the image formation is first
presented. Using this model, it is shown that an ultrasound
image of a displaced medium can be considered as a dis-
placed version of the image acquired before the medium was
displaced. Then the specific images for the displacement es-
timation obtained with the two beamformers are presented.

3.1. General model

The ultrasound RF image, composed by the juxtaposition of
received beamformed RF signals is the spatial convolution
between the PSF and the scatterer distribution that composes
the medium to be imaged. Thus the RF image before dis-
placement (reference image) is

r(x, z) = h(x, z)
�
x,z

d(x, z), (16)

where h(x, z) and d(x, z) represent the PSF and the distribu-
tion of scatterer strengths, respectively. Assuming a uniform
scatterer strength this can be written as

r(x, z) =
Ns∑
i=1

h(x, z)δ
(
x − xi, z − zi

)

=
Ns∑
i=1

h
(
x − xi, z − zi

)
,

(17)

where Ns is the total number of scatterers and (xi, zi) are the
coordinates of the ith scatterer.

Let the global displacement vector applied to the scatter-
ers be ∆ = (∆x,∆z). The distribution of scatterers after dis-
placement becomes

d∆(x, z) = δ
(
x − xi − ∆x, z − zi − ∆z

)
. (18)

The image after displacement (strain image) is given by

s(x, z) =
Ns∑
i=1

h
(
x − xi − ∆x, z − zi − ∆z

)
(19)

which means that

s(x, z) = r
(
x − ∆x, z − ∆z

)
. (20)

It is clear in this expression that the strain image is a dis-
placed version of the reference image. As a consequence the
displacement in the tissue can be estimated by estimating the
displacement that occurs between two successive images.

3.2. Specific images

Four images have to be derived. Two reference images which
are obtained by beamforming the same set of raw signals re-
ceived from the medium in relaxed state. And two images
which are obtained by beamforming the second set of raw
signals, received from themedium after it has been displaced.
The two previously defined PSFs are going to be used to
achieve the two images of each state of the medium. Thus

rz(x, z) = hz(x, z)
�
x,z

d(x, z) (21)

is the reference image obtained with the PSF oscillating only
in the axial direction (z),

sz(x, z) = hz(x, z)
�
x,z

d∆(x, z) (22)

is the strain image obtained with the PSF oscillating only in
the axial direction (z),

rx(x, z) = R
{
hx(x, z)

}�
x,z

d(x, z) (23)

is the reference image obtained with the PSF oscillating only
in the lateral direction (x), and

sx(x, z) = R
{
hx(x, z)

}�
x,z

d∆(x, z) (24)

is the strain image obtained with the PSF oscillating only in
the lateral direction (x). R{hx(x, z)} denotes the real part of
hx(x, z).

4. DISPLACEMENT ESTIMATION

A displacement estimation algorithm is developed based on
local time delay estimation between ultrasound RF signals
[8]. Images are simulated using (21)–(24). An estimation of
the local displacement is calculated over the entire image.
This is done through a sliding window. After each estimation,
the reference window is shifted. The corresponding window
on the delayed signal is also shifted by a distance taking into
account the estimated displacement.
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This estimation can be done for the axial and for the lat-
eral directions separately. But there can be some problems
of decorrelation due to a displacement in both directions of
the image. To overcome this problem, an estimation loop has
been setup with estimation and compensation steps. The dis-
placement estimated for one direction is compensated before
estimating in the other direction. The steps of estimation and
compensation can be repeated as an iterative process until a
certain criterion of quality of the estimation has been met.

4.1. Axial estimation and compensation

The axial displacement is obtained with the first set of images
obtained with the PSF oscillating only in the axial direction.
The columns of the images defined in (21) and (22) are the
signals considered. An axial cross-correlation function is de-
fined:

R1
(
x, z, ∆̂i

z(x, z)
)

=
M−1∑
m=0

rz(x, z +m)Hz
{
sz
(
x, z +m− ∆̂i

z(x, z)
)} (25)

between the reference signal and the Hilbert transform of the
strain signal.

The axial autocorrelation of the reference signal is also
defined:

R2(x, z, 0) =
M−1∑
m=0

rz
2(x, z +m), (26)

whereM is the number of samples in one window of an axial
signal.

The local axial displacement is estimated between the
corresponding signals in two consecutive images [8]. A ma-
trix ∆̂z(x, z) is estimated iteratively:

∆̂i
z(x, z) = ∆̂i−1

z (x, z)− 1
ωz

R1
(
x, z, ∆̂i−1

z (x, z)
)

R2(x, z, 0)
, (27)

where ωz is the axial angular frequency and the superscript i
in ∆̂i

z(x, z) indicates the iteration number.
Before estimating the lateral displacement, the axial dis-

placement that has been estimated is compensated in the
strain images. To do this, each pixel in the strain image is
displaced with respect to the displacement estimated for its
position. This leads to an axially compensated image. The
compensation is made for both sets of images, the one ob-
tained with the PSF oscillating only in the axial direction and
the one obtained with the PSF oscillating only in the lateral
direction:

szac(x, z) = sz
(
x, z + ∆̂z

) = rz
(
x − ∆x, z − ∆z + ∆̂z

)
,

sxac(x, z) = sx
(
x, z + ∆̂z

) = rx
(
x − ∆x, z − ∆z + ∆̂z

)
.

(28)

4.2. Lateral estimation and compensation

Now the two images, rx(x, z) and sxac(x, z), obtained with the
PSF oscillating only in the lateral direction are considered.
The lateral signals, composed by the juxtaposition of samples
from the same depth, are considered.

Again, consider the lateral cross-correlation function be-
tween the reference signal and the Hilbert transform of the
strain signal:

R3
(
x, z, ∆̂i

x(x, z)
)

=
N−1∑
n=0

rx(x + n, z)Hx
{
sxac
(
x + n− ∆̂i

x(x, z), z
)}
,

(29)

and an autocorrelation function of the reference signal:

R4(x, z, 0) =
N−1∑
n=0

rx
2(x + n, z), (30)

where N is the number of samples in one window of a lateral
signal.

The lateral displacement matrix ∆̂x(x, z) is defined itera-
tively [8] as

∆̂i
x(x, z) = ∆̂i−1

x (x, z)− 1
ωx

R3
(
x, z, ∆̂i−1

x (x, z)
)

R4(x, z, 0)
, (31)

where ωx is the lateral angular frequency, and the superscript
i, in ∆̂i

x(x, z), indicates the iteration number. The lateral com-
pensation is made by shifting laterally each pixel with respect
to the displacement estimated for its position. This results in
an axially and laterally compensated image

szalc(x, z) = szac
(
x + ∆̂x, z

) = sz
(
x + ∆̂x, z + ∆̂z

)
= rz

(
x − ∆x + ∆̂x, z − ∆z + ∆̂z

)
,

sxalc(x, z) = sxac
(
x + ∆̂x, z

) = sx
(
x + ∆̂x, z + ∆̂z

)
= rx

(
x − ∆x + ∆̂x, z − ∆z + ∆̂z

)
.

(32)

If the estimated displacements are correct, the double-
compensated images are identical to the initial ones. If not,
the loop can be iterated one more time. The images consid-
ered during the second iteration are the reference images and
the axially and laterally compensated images (32).

5. NUMERICAL SIMULATION RESULTS

The method described has been tested with computer simu-
lations. The ultrasound images have been calculated with the
Field II program developed by Jensen [15, 16]. A real ultra-
sound probe, a B-K Medical type 8560 probe for use with a
B&K Medical 3535 ultrasound scanner, has been simulated.
Parameters are given in Table 1.
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Table 1: Parameters of the ultrasound system used for the simula-
tion in this study.

Parameter Value

Assumed sound speed 1540m/s

Central frequency 7MHz

Total number of elements 128

Number of active elements 32

Element height 4mm

Element width 0.36mm

Interelement spacing 0.03mm

Emission No focus, plane wave emitted

Reception Dynamic quadratic focusing

Apodization in transmit Hanning window

Apodization 1 in receive Hanning for hz

Apodization 2 in receive
Dynamic 2 sinc apodization

(see Figure 2) for hx

The desired lateral profile of the DOPSF has to contain
some oscillations and has to be limited in space. As a con-
sequence, it has been decided that the pressure profile for
the DOPSF should correspond to the following analytical ex-
pression:

P
(
xj
) = 1

L
rect

(
xj
L

)
cos
(
2π fxxj

)
, (33)

where rect(xj/L) is a rectangular window defined as

rect
(
xj
L

)
=


1 if − L

2
< xj <

L

2
,

0 elsewhere.
(34)

The apodization matrix is calculated using (9), that is, the
inverse discrete Fourier transform of the desired pressure
profile given in (33). This apodization function is shown in
Figure 2. The inverse Fourier transform of the product of a
sinusoı̈d and a rectangular window is a sinc function con-
volved with two delta functions. This is in accordance with
the profile of our apodization matrix. The position of the
delta functions on the active part of the probe, which cor-
responds to the position of the maximum peak of the sinc
functions, is directly related to the frequency of the lateral
oscillations [10]:

fx = x0
λz

, (35)

where x0 is equal to half of the distance between the two
peaks.

For the example in Figure 2, at a depth of 15mm, the dis-
tance separating the two peaks is equal to 16 elements, which
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Figure 2: (a) Apodization matrix of the 32 active elements with
respect to “receive depth,” and (b) lateral profile along the white
line in (a).

is equal to 6.34mm. This leads to x0 equal to 3.17mm and
1/ fx equal to 1mm for the DOPSF lateral wavelength, with
an axial wavelength of 0.22mm. From the DOPSF, it is pos-
sible to create a PSF oscillating in the lateral direction only
by taking the real part of expression (14). This PSF is seen in
Figure 3. Its lateral frequency should be equal to twice that
of the DOPSF. The simulated PSF is in accordance with the
expected lateral wavelength of 0.5mm.

The typical axially only oscillating point spread function
is obtained as expressed in (15) and can be seen in Figure 4.

To validate our method, a homogeneous numeric phan-
tom with known displacement was simulated. It was com-
posed of a spatial uniform random distribution of scatter-
ers located in a plane 35mm wide by 10mm deep. The
Poisson ratio was 0.49, which is a typical value for biolog-
ical tissues. The problem was considered only in the image
plane. The phantom was located 10 – 20mm from the trans-
ducer. It was compressed axially by 2%. This lead to a lat-
eral strain of 0.98%. The exact displacement distribution and
the estimated one can be seen in Figure 5. Notice how the
displacement is more and more important the deeper the
depth.

With the displacement scheme chosen, the axial displace-
ment component is supposed to be constant for a particular
depth. To characterize the axial estimation, the mean value of
the estimate and its standard deviation have been calculated
for different depths. This is reported in Figure 6.

For the lateral estimation, the same representation can be
done. Indeed for a particular lateral position, the lateral dis-
placement is constant with respect to the depth. The mean
value of the estimation and its standard deviation are calcu-
lated and reported in Figure 7.
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Figure 3: (a) Laterally only oscillating point spread function with (b) axial and (c) lateral profiles corresponding to white and black lines,
respectively.
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Figure 4: (a) Typical axially only oscillating point spread function with (b) axial and (c) lateral profiles corresponding to white and black
lines, respectively.
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Figure 5: (a) True and (b) estimated displacement vectors inside
the simulated numerical phantom.

Figures 6 and 7 show that the estimated profile is ex-
tremely close to the true one. The mean standard deviation
for the axial estimate is equal to 0.0219 λz and for the lat-
eral estimate it is equal to 0.0164 λx. The estimation shows
that the axial precision is in the same order of magnitude as
the lateral one, when expressed in numbers of axial or lateral
wavelengths. Because the axial wavelength is shorter than the
lateral wavelength, the result is still better for the axial esti-
mate than for the lateral estimate in absolute terms. To im-
prove on this, the frequency of the lateral oscillations should
be increased. Theoretically there is no limit for this, except
the width of the active part of the probe. This is explained
by (35). If the probe was larger, a higher frequency could be
reached for the lateral oscillations, and the results of the esti-
mation in mm could be more similar for both directions.

6. CONCLUSION

In this paper, a new approach to displacement estimation by
ultrasound for tissue elasticity imaging has been presented.
This approach is based on a beamformer designed with the
CW theory. The raw signals coming from all active elements
on the aperture are processed to create lateral oscillations in
the RF ultrasound image. This leads to the development of
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Figure 6: True axial displacement in numbers of axial wavelength λz
(dashed line) with respect to the depth, mean estimate and standard
deviation for different depths (continuous line), λz = 0.22mm.
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Figure 7: True lateral displacement in numbers of lateral wave-
length λx (dashed line) with respect to the lateral position, mean
estimate, and standard deviation for different lateral positions (con-
tinuous line), λx = 0.5mm.

a specific estimation loop for axial and lateral displacement
estimation. This loop is based on successive displacement es-
timation/compensation steps on two sets of images. The fea-
sibility of the method has clearly been demonstrated with re-
sults obtained with simulation studies. Indeed low bias and
standard deviation are obtained for both directions of esti-
mation. Moreover the lack of precision in the lateral direc-
tion has been highly improved with next-to-similar perfor-
mances in the lateral and axial directions.
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