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A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing
method, namely, the clipped LMS, and uses a three-level quantization (+1, 0,−1) scheme that involves the threshold clipping of
the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the
optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS) algorithm has better
tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified
one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS
algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.
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1. INTRODUCTION

Adaptive signal processing has been one of the fastest grow-
ing fields of research in recent years. It has attained its pop-
ularity due to a broad range of useful applications in such
diverse areas as communications, radar, sonar, seismology,
navigation and control systems, and biomedical electronics.
The LMS adaptive filter is very popular due to its simplic-
ity, but even simpler approaches are required for many real-
time applications, several different versions of the LMS algo-
rithm have been proposed in the literature [1, 2, 3, 4, 5, 6].
Reduction of the complexity of the LMS algorithm has re-
ceived attention in the area of adaptive filters [5, 7, 8, 9]. The
sign algorithm and clipped data algorithm are in this cate-
gory [2, 5, 8, 9, 10].

The tracking behavior of adaptive filtering algorithms is
a fundamental issue in defining their performance in non-
stationary operating environments. It has been established
that adaptive algorithms that exhibit good convergence prop-
erties in stationary environments do not necessarily provide
good tracking performance in a nonstationary environment
because the convergence behavior of an adaptive filter is a
transient phenomenon, whereas the tracking behavior is a
steady-state property [11, 12]. Thus, much research is done
for the measurement of tracking performance of variants of
the LMS algorithm from different views [10, 13, 14, 15].

For applications in which slow adaptation is acceptable,
the clipped LMS (CLMS) algorithm has an edge over the

others in terms of speed of processing [16]. Also fast CLMS
is proposed for increasing the speed of convergence [2].

Much effort from the viewpoint of reduction of the com-
putations of the LMS algorithm is seen in the aforemen-
tioned references. The present work concerns the presenta-
tion of a modified version of the CLMS algorithm whose
tracking is much better than the CLMS and LMS and has less
computation as well.

The variants of LMS are discussed in Section 2. The pro-
posed new algorithm, which is a modification of the afore-
mentioned algorithm, appears in Section 3. Section 4 deals
with the computation of tracking performance of the pro-
posed algorithm. Section 5 is concerned with computer sim-
ulation issues. Reduction of computational complexity of the
proposed algorithm is investigated in Section 6. The final
section presents conclusions for the present work and sum-
marises the main findings.

2. VARIANTS OF THE LMS ALGORITHM

The purpose of this section is to briefly introduce the main
existing variants of the LMS algorithm. In order to clarify the
background of the new algorithm, it is necessary to show how
they are interrelated and how they have evolved. The LMS
algorithm has been studied in [17, 18] as

Wn+1 =Wn + µenXn, (1)
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Figure 1: Quantization scheme for the clipped LMS algorithm.

where

en = dn − XT
n Wn, (2)

Wn = [wn(1),wn(2), . . . ,wn(N)]T is the weight vector of the
estimator, Xn is the vector of the input data sequence, which
is assumed to be a stationary random process, N is the num-
ber of filter taps, en is the estimation error, dn is the desired
response, and µ is the step size.

A simple change can be made to the LMS algorithm to
obtain the CLMS algorithm [2, 16, 19]:

Wn+1 =Wn + µenX̃n, (3)

where X̃ is the clipped input signal vector, whose ith com-
ponent is x̃(i) = sgn[x(i)]. Other variations of the LMS algo-
rithm that have been studied are the “sign” algorithm [20, 21]

Wn+1 =Wn + µẽnXn, (4)

where

ẽn = sgn
{
en
}
, (5)

and “the zero-forcing” algorithm [22, 23]

Wn+1 =Wn + µẽnX̃n. (6)

The CLMS algorithm involves clipping the input signal
vector in the weight update formula (3). This quantization
scheme can best be illustrated by Figure 1.

3. THE PROPOSEDMODIFIED CLIPPED
LMS ALGORITHM

Here we propose a new modification to the clipped LMS al-
gorithm to further simplify the implementation of the LMS
algorithm. Rather than representing the input signal Xn by
a two-level signal as shown earlier by (3), we quantize it
into a three-level signal according to the quantization scheme
shown in Figure 2. Thus, the adaptation equation can be
written as

Wn+1 =Wn + µenX̂n, (7)

msgn(x, δ)
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Figure 2: Quantization scheme for the modified clipped LMS algo-
rithm.

where X̂n is the modified clipped input signal vector whose
ith component is x̂n(i) = msgn[xn(i), δ], where msgn{·} is
the modified sign function defined as

msgn
[
xn(i), δ

] =

+1, δ ≤ xn(i),

0, −δ < xn(i) < δ,

−1, xn(i) ≤ −δ.
(8)

It should be noted that the implementation of such an
adaptive filter has potentially greater throughput because for
those times when the tap input signal xn(i) is less than the
specified threshold, δ, then x̂n(i) will be equal to zero and no
coefficient adaptation for the corresponding weight needs to
be performed.

This means that some of the time-consuming operations
in the weight update formula (7) can be omitted, thereby
leading to a reduction of the computational load on the pro-
cessor. Whether this potential can be realised depends on the
architecture used in the processor and also the application.
Convergence of the mean of the weight vector for MCLMS
is proved in the next subsection. It is shown that the mean
of the weight vector of the modified clipped LMS algorithm
converges to the optimum weight vector of the Wiener filter.

3.1. Derivation of the convergence
of theMCLMS algorithm

Now, we want to prove that the statistical average of the
weight vector converges in the limit to the optimum Wiener
weight vector. Taking expectations on both sides of (7) yields

E
{
Wn+1

} = E
{
Wn
}
+ µE

{
enX̂n

}
. (9)

Substituting (2) in (10) gives

E
{
Wn+1

} = E
{
Wn
}
+ µE

{
dnX̂n − X̂nX

T
n Wn

}
. (10)

Assuming lack of correlation between the weights and X̂nXT
n

as in [17], (10) gives

E
{
Wn+1

} = E
{
Wn
}
+ µ
(
E
{
dnX̂n

}− E
{
X̂nX

T
n

}
E
{
Wn
})
.
(11)

Now, with regard to (A.1) in the appendix, we have

E
{
Wn+1

} = E
{
Wn
}
+ µ
(
α′

σx
P − α′

σx
RE
{
Wn
})

=
(
I − µ

α′

σx
R
)
E
{
Wn
}
+ µ

α′

σx
P,

(12)
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where

α′ =
√

2
π
exp

(
− δ2

2σ2x

)
, (13)

and σx is the standard deviation of the input signal. We know
that the optimumWiener weight vector isW∗ = R−1P. Sub-
stituting in (13) yields

E
{
Wn+1

} = (I − µ
α′

σx
R
)
E
{
Wn
}
+ µ

α′

σx
RW∗. (14)

If Vn =Wn −W∗, then

E
{
Vn+1

} = (I − µ
α′

σx
R
)
E
{
Vn
}
. (15)

Now, the principal axes are rotated according to V = QV ′,
where the rows of Q are eigenvectors of R = QΛQ−1 and Λ is
a diagonal matrix whose elements are eigenvalues of R. Thus
we have the following relation:

E
{
QV ′

n+1

} = (I − µ
α′

σx
R
)
E
{
QV ′

n

}
, (16)

where Q and V ′
k are uncorrelated because R and W are un-

correlated. Thus,

E
{
V ′
n+1

} = Q−1
(
I − µ

α′

σx
R
)
QE
{
V ′
n

}
=
(
Q−1IQ − µ

α′

σx
Q−1RQ

)
E
{
V ′
n

}
=
(
I − µ

α′

σx
Λ
)
E
{
V ′
n

}
.

(17)

If (I − µ(α′/σx)Λ)n in the limit converges to zero, then
limn→∞ E{V ′

n+1}=0. In this case, limn→∞ E{Vn+1}=0 and con-
sequently limn→∞ E{Wn+1} =W∗, that is, the MCLMS algo-
rithm will converge. In order that limn→∞(I − µ(α′/σx)Λ)n =
0, it is necessary to find a condition for µ in terms of the
eigenvalues. We have

lim
n→∞

(
I − µ

α′

σx
Λ
)n

=


lim
n→∞

(
1− µ

α′

σx
λ0

)n
· · · 0

...
. . .

...

0 lim
n→∞

(
1− µ

α′

σx
λN

)n

 = 0.

(18)

Therefore, the convergence condition is that for each eigen-
value of matrix R, µ satisfies the following relation:

0 < µ <
α′

σx

1
λi
, 1 ≤ i ≤ N. (19)

If µ satisfies this relation for the largest eigenvalue λmax, then
(19) is also satisfied for all other eigenvalues. Thus, the con-
vergence condition for MCLMS is as follows:

0 < µ <
α′

σx

1
λmax

. (20)

Also, the time constant for the exponential relaxation of the
weight vector to its optimal value is

τMCLMS = 1
(α′/σx)µλmax

. (21)

4. EVALUATING THE TRACKING PERFORMANCE
OF THEMCLMS ALGORITHM

Tracking is a steady-state phenomenon that is different from
the convergence, which is a transient phenomenon. In gen-
eral, convergence and tracking are two different properties.
That is, if an algorithm has good convergence, its tracking
ability is not necessarily fast and vice versa. In the tracking
phase, a reasonable assumption is that the optimum weights
vary according to a first-order Markov process [12], and the
filter must track these weights. The following relation shows
the variation of the filter’s optimum weights:

W∗
n+1 = aW∗

n + ωn, dn =W∗T
n Xn + νn, (22)

where a is a constant and ωn is the process noise vector in
the nth step, which has zero mean with correlation matrix
Φ, and νn is the measurement noise, which is assumed to be
white Gaussian with zero mean and variance σ2ν .

4.1. Themisadjustment criterion inMCLMS

According to [12], the algorithm misadjustment is usable as
a criterion in tracking:

MMCLMS = E
{∣∣ωT

n X̂n

∣∣2}
E
{∣∣νn

∣∣2} . (23)

The above relation shows that the weight misadjustment is
related to the process noise power and X̂n. Now, we calcu-
late the misadjustment (23) in which the numerator can be
written as

E
{∣∣ωT

n X̂n

∣∣2} = E
{
ωT
n X̂nX̂

T
k ωn

}
. (24)

With the assumption of independence of X̂n and ωn and us-
ing relation (A.1) in the appendix,

E
{
ωT
n X̂nX̂

T
n ωn

} = tr
[
E
{
ωT
n X̂n

}
E
{
X̂T
n ωn

}]
= tr

[
α′

σx
E
{
ωT
n Xn

}α′
σx
E
{
XT
n ωn

}]

=
(
α′

σx

)2
tr{RΦ}.

(25)
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Figure 3: Weight estimation error, norm of the difference weight
vector.

Also, the denominator of the fraction (23) is

E
{∣∣νn

∣∣2} = σ2n . (26)

Hence, the MCLMS algorithmmisadjustment can be written
as

MMCLMS = 1
σ2ν

(
α′

σx

)2
tr
{
RΦ
}
. (27)

Comparing this misadjustment value with that of the LMS
algorithm,MLMS = (1/σ2ν ) tr{RΦ}, the following relation can
be obtained:

MMCLMS =
(
α′

σx

)2
MLMS. (28)

The above relation shows that increasing the threshold δ such
that α′ in less than σx gives rise to a decrease in the misad-
justment error relative to LMS in tracking, but with regard
to (21), it causes the MCLMS to be slower in convergence. In
the next section, this issue will be shown for identification of
a filter and its tracking.

5. APPLICATION OFMCLMS IN THE
IDENTIFICATION PROBLEM

In order to demonstrate the convergence behavior of the
LMS, CLMS, and the new MCLMS algorithm, 100 runs of
simulation experiments have been performed (with µ = 0.17
and δ = 0.7 for MCLMS, µ = 0.105 for LMS, and µ = 0.13
for CLMS, which were the best parameters for maximum
speed of convergence). In all experiments carried out for the
system identification, a stationary white noise sequence was
used and the system is a 7-tap FIR transversal filter having
parameters that are arbitrarily chosen.

The input data were normalized to have unit variance.
The norm of the difference between the plant FIR weights
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Figure 4: Relative reduction in error of MCLMS compared with
CLMS and LMS with step size of 0.1 for MCLMS and different
thresholds with best step size for least tracking error for LMS and
CLMS.

and adaptive filter weights generated by each algorithm was
averaged over 100 independent simulation runs and plotted
as a function of time, as depicted in Figure 3. The norm is
calculated by

norm(h,W) =
(∑

i

(
hi −Wi

)2)1/2
. (29)

It can be seen that MCLMS has much better convergence
than CLMS and it is also almost as good as LMS in terms
of convergence speed.

Of course, the MCLMS speed of convergence is reduced
by increasing the threshold δ. In the above case with a
threshold of 0.7, the difference weight norm of CLMS is im-
proved by 12%, whereas the CLMS in comparison to the LMS
has both lower convergence speed and higher weight error.
Figure 4 shows the ratio of tracking error norm for weights
of the proposed MCLMS algorithm to optimum weights of
LMS and CLMS. The existence of the second parameter in
the MCLMS algorithm, that is, δ, in comparison with LMS
and CLMS, has caused an increase in its performance.

6. REDUCTIONOF COMPUTATIONAL COMPLEXITY OF
THEMCLMS RELATIVE TO THE CLMS ALGORITHM

The proposed algorithm has less computational complexity
relative to the CLMS algorithm. If we assume that the input
signal has a Gaussian distribution with zero mean and stan-
dard deviation σx, then the probability that the signal falls in
the interval between [−δσx, δσx] is

P
(− δσx < x < δσx

) = ∫ −δσx
−δσx

N
(
µx, σx

)
dx, (30)
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Table 1: Rate of reduction of computational complexity in weight
update for MCLMS in comparison to CLMS.

Threshold δ 0.1 0.4 0.7 1.0

Percentage of
computational
reduction

7.97 31.09 51.61 68.27

whereN(µx, σx) is the input probability density function and
P(−δσx < x < δσx) which, in addition to being the proba-
bility of the occurrence of the signal in interval [−δσx, δσx],
is also the computational reduction of MCLMS relative to
CLMS. The reason is that the signal is falling between the
two thresholds with a probability of P(−δσx < x < δσx), and
within this interval, the proposed algorithm has no weight
update, since according to (8) msgn[xn(i), δσx] is equal to
zero. The computational reduction of MCLMS compared to
the CLMS is shown in Table 1 for several different thresholds.

It is interesting to note that regarding (30) and Figure 4
for δ = 0.7, the computational complexity of the weight up-
date formula can be reduced about 52% without any notice-
able change in the convergence behavior.

7. CONCLUSIONS AND SUGGESTIONS
FOR FURTHERWORK

A proposed modified clipped LMS algorithm for discrete-
time adaptive FIR filtering has been studied. This new algo-
rithm was analytically treated from a theoretical viewpoint
and the convergence rate and tracking performance from a
misadjustment viewpoint were derived. The advantages in-
clude a simple weight update formula, better convergence
capability, and better tracking performance. Further work
could apply the three-level clipping idea to the error signal
instead of the input signal.

APPENDIX

Theorem 1. If two random variables u and v both have a
Gaussian distribution N(0, σu) and N(0, σv), respectively, and
E{uv} = ρσuσv, v̂ = msgn(v, δ), then

E
{
uv̂
} = α′

σv
E{uv}, (A.1)

where α′ = √2/π exp(−δ2/2σ2v ).

Proof. We define the random variable

z = u

σu
− ρ

σv
v. (A.2)

Now we have

E{zv} = E
{(

u

σu
− ρ

σv
v
)
v
}
= E

{
u

σu
v
}
− E

{
ρ

σv
v2
}
. (A.3)

With regard to the assumption of the theorem,

E{zv} = ρσuσv
σu

− ρ

σv
σ2v = 0. (A.4)

Therefore z and v are uncorrelated. Also, therefore, since z
and v̂ are uncorrelated, we have E

{
zv̂
} = E{z}E{v̂} = E{z}×

0 = 0.

E
{
zv̂
} = E

{(
u

σu
− ρ

σv
v
)
v̂
}
= 0 =⇒ (A.5)

1
σu

E
{
uv̂
} = ρ

σv
E
{
vv̂
} =⇒ E

{
uv̂
} = ρσu

σv
E
{
vv̂
}
. (A.6)

On the other hand,

vv̂ = v ×msgn(v, δ) =
|v|, |v| > δ,

0, |v| ≤ δ.
(A.7)

The density function of vv̂ is also Gaussian with distribution
N(0, σv) hence,

E
{
vv̂
} = ∫ +∞

−∞
|v| 1√

2π
exp

(
− v2

2σv

)
dv

= 2
∫ +∞

+δ
|v| 1√

2π
exp

(
− v2

2σv

)
dv

(A.8)

=
√

2
π
σv exp

(
− δ2

2σ2v

)
. (A.9)

Now regarding (A.6) and (A.9) we have

E
{
uv̂
} = ρσu

σv

√
2
π
σv exp

(
− δ2

2σ2v

)

= 1
σv

√
2
π
exp

(
− δ2

2σ2v

)
ρσuσv.

(A.10)

Finally, with regard to E{uv} = ρσuσv in (A.10), we have
proved the theorem.
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