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Error-feedback, normalized, and array-based recursions represent equivalent RLS lattice adaptive filters which are known to offer
better numerical properties under finite-precision implementations. This is the case when the underlying data structure arises
from a tapped-delay-line model for the input signal. On the other hand, in the context of a more general orthonormality-based
input model, these variants have not yet been derived and their behavior under finite precision is unknown. This paper develops
several lattice structures for the exponentially weighted RLS problem under orthonormality-based data structures, including error-
feedback, normalized, and array-based forms. As a result, besides nonminimality of the new recursions, they present unstable
modes as well as hyperbolic rotations, so that the well-known good numerical properties observed in the case of FIR models no
longer exist. We verify via simulations that, compared to the standard extended lattice equations, these variants do not improve
the robustness to quantization, unlike what is normally expected for FIR models.
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1. INTRODUCTION

In a recent paper [1], a new framework for exploiting data
structure in recursive-least-squares (RLS) problems has been
introduced. As a result, we have shown how to derive RLS
lattice recursions for more general orthonormal networks
other than tapped-delay-line implementations [2]. As is well
known, the original fast RLS algorithms are obtained by ex-
ploiting the shift structure property of the successive rows
of the corresponding input data matrix to the adaptive algo-
rithm. That is, consider two successive regression (row) vec-
tors {uM,N ,uM,N+1}, of orderM, say,

uM,N =
[
u0(N) u1(N) · · · uM−1(N)

]
= [

uM−1,N uM−1(N)
]
,

uM,N+1 =
[
u0(N + 1) u1(N + 1) · · · uM−1(N + 1)

]
= [

u0(N + 1) ūM−1,N+1
]
.

(1)

By recognizing that, in tapped-delay-line models we have

ūM−1,N+1 = uM−1,N . (2)

One can exploit this relation to obtain the LS solution in
a fast manner. The key for extending this concept to more

general structures in [1, 3] was to show that, although the
above equality no longer holds for general orthonormal
models, it is still possible to relate the entries of {uM,N ,
uM,N+1} as

ūM−1,N+1 = uM,NΦM , (3)

where ΦM is an M × (M − 1) structured matrix induced by
the underlying orthonormal model. Figure 1 illustrates such
structure for which the RLS lattice algorithm of [1] was de-
rived. They constitute what we will refer to in this paper as
the a-posteriori-based lattice algorithm, since all these recur-
sions are based on a posteriori estimation errors. Now, it is
a well-understood fact that several other equivalent lattice
structures exist for RLS filters that result from tapped-delay-
line models. These alternative implementations are known
in the literature as error-feedback, array-based (also referred
to as QRD lattice), and normalized lattice algorithms (see,
e.g., [4, 5, 6, 7, 8]). In [9], all such variants were further ex-
tended to the special case of Laguerre-based filters, as we have
explained in [1]. Although all these forms are theoretically
equivalent, they tend to exhibit different performances when
considered under finite-precision effects.

In this paper, we will derive all such equivalent lattice im-
plementations for input data models based on the structure
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Figure 1: Transversal orthonormal structure for adaptive filtering.

of Figure 1. The use of orthonormal bases can provide several
advantages. For example, in some situations, long FIR mod-
els can be replaced by shorter compact all-pass-like mod-
els as Laguerre filters (see, e.g., [10, 11]). From the adap-
tive filtering point of view, this can represent large savings
in computational complexity. The conventional IIR adap-
tive methods [12, 13] present serious problems of stability,
local minima, and slow convergence, and in this sense the
use of orthogonal bases offers a stable and global solution,
due to their fixed poles location. Moreover, orthonormality
guarantees good numerical conditioning for the underlying
estimation problem, in contrast to other equivalent system
descriptions (such as the fixed-denominator model and the
partial-fraction representation—see further [2]). The most
important application of such structured RLS problems is
in the field of line echo cancelation corresponding to long
channels, whereby FIR models can be replaced by short or-
thonormal IIR models. Other applications include channel-
estimate-based equalization schemes, where the feedforward
linear equalizer can be similarly replaced by an orthonormal
IIR structure.

After obtaining the new algorithms we will verify the
their performance through computer simulations under
finite-precision arithmetic. As a result, the new forms turn
out to exhibit an unstable behavior. Besides nonminimality
of their corresponding algorithm states, they present unsta-
ble modes or hyperbolic rotations in their recursions, un-
like the corresponding fast variants for FIR models (the lat-
ter, in contrast, is free from hyperbolic rotations and un-
stable modes, and present better numerical properties, de-
spite nonminimality). As a consequence, the new variants
do not show improvement in robustness to the quantiza-
tion effect, compared to the standard RLS lattice recursions
of [1], which remains the only reliable extended lattice struc-
ture. This discussion on the numerical effects is provided in
Section 9.

However, before starting our presentation we call the at-
tention of the reader for an important point. Our main goal
in this paper is the development of the equivalent RLS re-
cursions that are normal extensions of the FIR case, and to
present some preliminary comparisons based on computer
simulations. A complete analytical error analysis for each of

these algorithms is not a simple task and is beyond the scope
of this paper. Nevertheless, the algorithms derivation is by
itself a starting point for further development and improve-
ments on such variants, which is a subject for future research.
Moreover, we will provide a brief review and discussion on
the minimality and backward consistency properties in order
to explain (up to a certain extent) the stability of these vari-
ants from the point of view of error propagation. This will
be pursued in Section 9, while commenting on the sources of
numerical errors in each case.

Notation. In this paper, A⊕ B is the same as diag{A,B}. We
also denote ∗ as the conjugate and transpose of a vector.
Since we will be dealing with order-recursive variables, we
will write, for example,HM,N , the order-M data matrix up to
time N . The same goes for uM,N , eM(N), and so on.

2. AMODIFIED RLS ALGORITHM

Wefirst provide a brief review of the regularized least-squares
problem, but with a slight modification in the definitions of
the desired vector, denoted by yN , and the weighting ma-
trix WN . Thus given a column vector yN ∈ CN+1, and a
data matrix HN ∈ C(N+1)×M , the exponentially weighted
least-squares problem seeks the column vector w ∈ CM that
solves

min
wM

[
λN+1w∗MΠ

−1
M wM +

∥∥dN −HM,NwM

∥∥2
WN

]
, (4)

where ΠM is a positive regularization matrix, WN = (λN ⊕
λN−1 ⊕ · · · λ ⊕ t) is a weighting matrix defined in terms of
a forgetting factor λ satisfying 0 � λ < 1, and t is an arbi-
trary scaling factor. The symbol ∗ denotes complex conjugate
transposition. Moreover, we define dN as a growing length
vector whose entries are assumed to change according to the
following rule:

dN =
θdN−1
d(N)

 (5)
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for some scalar θ.1 The individual rows of HN are denoted
by {ui}:

HM,N =


uM,0

uM,1
...

uM,N

 . (6)

Note that the regularized problem in (4) can be conveniently
written as

min
wM

∥∥∥∥∥
[
0L
dN

]
−

[
AM,L

HM,N

]
wM

∥∥∥∥∥
2

WN

, (7)

whereWN = (λN+L ⊕ λN+L−1 ⊕ · · · ⊕ t), and where we have
factored Π−1M as

Π−1M =A∗
M,LWLAM,L (8)

for some matrix AM,L. This assumes that the incoming data
has started at some point in the past, depending on the num-
ber of rows L ofAM,L (see [1]). Hence, defining the extended
quantities

HM,N �
[
AM,L

HM,N

]
=

[
x0,−1 x1,−1 · · · xM−1,−1
h0,N h1,N · · · hM−1,N

]
�

[
x0,N x1,N · · · xM−1,N

]
,

(9)

where xi,−1 represents a column of AM,L and hi,N denotes a
column ofHM,N , as well as

yN =
[
0L
dN

]
, (10)

we can express (4) as a pure least-squares problem:

min
wM

∥∥yN −HM,NwM

∥∥2
WN

. (11)

Therefore, the optimal solution of (11), denoted by wM,N , is
given by

wM,N � PM,NH
∗
M,NWN yN , (12)

where

PM,N =
(
H∗

M,NWNHM,N
)−1

. (13)

We denote the projection of yN onto the range space of
HN by yM,N = HM,NwM,N . The corresponding a posteriori
estimation error vector is given by eN = yN −HM,NwM,N .

1The reason for the introduction of the scalars {θ, t} will be understood
very soon. The classical recursive least-squares (RLS) problem corresponds
to the special choice θ = t = 1.

Now let wM,N−1 be the solution to a similar LS problem
with the variables {yN ,HM,N ,WN , λN+1} in (4) replaced by
{yN−1,HM,N−1,WN−1, λN}. That is,

wM,N−1 =
(
H∗

M,N−1WN−1HM,N−1
)−1

H∗
M,N−1WN−1yN−1.

(14)

Using (5) and the fact that

HM,N =
[
HM,N−1
uM,N

]
(15)

in addition to the matrix inversion formula, it is straightfor-
ward to verify that the following (modified) RLS recursions
hold:

γ−1M (N) = 1 + tλ−1uM,NPM,N−1u∗M,N ,

gM,N = λ−1PM,N−1u∗M,NγM(N),

wM,N = θwM,N−1 + tgM,NεM(N),

εM(N) = d(N)− θuM,NwM,N−1,

PM,N = λ−1PM,N−1 − gM,Nγ
−1
M (N)g∗M,N ,

(16)

with wM,−1 = 0M and PM,−1 = ΠM . These recursions tell us
how to update the weight estimate wM,N in time. The well-
known exponentially weighted RLS algorithm corresponds
to the special choice θ = t = 1. The introduction of the
scalars {θ, t} allows for a level of generality that is convenient
for our purposes in the coming sections.

3. STANDARD LATTICE RECURSIONS

Algorithm 1 shows the standard extended lattice recursions
that solves the RLS problem when the underlying input
regression vectors arise from the orthonormal network of
Figure 1. The matrix ΠM as well as all the initialization vari-
ables are obtained according to an offline procedure as de-
scribed in [1]. The main step in this initialization proce-
dure is the computation of ΠM , which remains unchanged
for the new recursions we will present in the next sections.
The reader should refer to [1] for the details of its compu-
tation. Figure 2 illustrates the structure of themth section of
this extended lattice algorithm.

4. ERROR-FEEDBACK LATTICE FILTERS

Observe that all the reflection coefficients defined for the a-
posteriori-based lattice algorithm are computed as a ratio
in which the numerator and denominator are updated via
separate recursions. An error-feedback form is one that re-
places the individual recursions for the numerator and de-
nominator quantities by equivalent recursions for the reflec-
tion coefficients themselves. In principle, one could derive
the recursions algebraically as follows. Consider for instance

κM(N) = ρM(N)

ζbM(N)
. (17)
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Initialization
Form = 0 toM, set

ζ
f
m(−1) = µ (small positive number)

δm(−1) = ρm(−1) = vm(−1) = bm(−1) = 0

ζbm(−1) = πm − c∗mΠmcm

ζb̆m(−1) = π̆m+1 − c̆∗mΠ̄mc̆m

σm = λζb̆m(−1)/ζ f
m(−1)

χm(−1) = amφ∗mΠmcm +Am

ζb̄m(−1) = ζbm+1(−1)
For N ≥ 0, repeat

γ0(N) = γ̄0(N) = 1, f0(N) = b0(N) = s(N)

v0(N) = 0, e0(N) = d(N)
Form = 0 toM − 1, repeat

ζ b̆m(N) = σmγ̄m(N)ζ
f
m(N − 1)

κb̄m(N) = ζ b̆m(N)χm+1(N − 1)

b̄m(N) = am+1bm+1(N − 1) + κb̄m(N)vm+1(N − 1)

ζ
f
m(N) = λζ

f
m(N − 1) + | fm(N)|2/γ̄m(N)

ζbm(N) = λζbm(N − 1) + |bm(N)|2/γm(N)

ζ b̄m(N) = λζb̄m(N − 1) + |b̄m(N)|2/γ̄m(N)

χm(N) = χm(N − 1) + amv∗m(N)βm(N)

δm(N) = λδm(N − 1) + f ∗m (N)b̄m(N)/γ̄m(N)

ρm(N) = λρm(N − 1) + e∗m(N)bm(N)/γm(N)

γm+1(N) = γm(N)− |bm(N)|2/ζbm(N)

γ̄m+1(N) = γ̄m(N)− |b̄m(N)|2/ζ b̄m(N)

κvm(N) = χ∗m(N)/ζbm(N), κm(N) = ρm(N)/ζbm(N)

κbm(N) = δm(N)/ζ
f
m(N), κ

f
m(N) = δ∗m(N)/ζ b̄m(N)

vm+1(N) = −a∗mvm(N) + κvm(N)bm(N)

em+1(N) = em(N)− κm(N)bm(N)

bm+1(N) = b̄m(N)− κbm(N) fm(N)

fm+1(N) = fm(N)− κ
f
m(N)b̄m(N)

Alternative recursions

ζ
f
m+1(N) = ζ

f
m(N)− |δm(N)|2/ζ b̄m(N)

ζbm+1(N) = ζ b̄m(N)− |δm(N)|2/ζ f
m(N)

ζvm(N) = λ−1ζvm(N − 1)− |vm(N)|2/γm(N)

ζ b̄m(N) = |am+1|2ζbm+1(N − 1) + ζ b̆m(N)|χm+1(N − 1)|2
γ̄m(N) = γm+1(N − 1) + ζ b̆m(N)|vm+1(N − 1)|2

Algorithm 1: Standard extended RLS lattice recursions.

From the listing of the a-posteriori-based lattice filter of
Algorithm 1, substituting the recursions for ρM(N) and
ζbM(N) into the expression for κM(N) leads to

κM(N) = ρM(N − 1) + e∗M(N)bM(N)/γM(N)

ζbM(N − 1) +
∣∣bM(N)

∣∣2
/γM(N)

(18)

and some algebra will result in a relation between κM(N) and
κM(N − 1).

fm(N)

bm(N)

vm(N)

em(N)

−a∗m

κvm(N)

b̄m(N)

κ
f
m(N)

κbm(N)

fm+1(N)

bm+1(N)

vm+1(N)

em+1(N)

z−1

z−1

am+1

κb̄m(N)

κm(N)

Figure 2: A lattice section.

We will not pursue this algebraic procedure here. Instead,
we will follow the arguments used in [9] which highlights the
interpretation of the reflection coefficients in terms of a least-
squares problem. This will allow us to invoke the recursions
we have already established for the modified RLS problem
of Section 2 and to arrive at the recursions for the reflection
coefficients almost by inspection.

4.1. A priori estimation errors

One form of error-feedback algorithm is the one based on a
priori, as opposed to a posteriori, estimation errors. They are
defined as

βM+1,N = xM+1,N −HM+1,Nw
b
M+1,N−1,

β̄M,N = xM+1,N − H̄M,Nw
b
M,N−1,

αM+1,N = x0,N − H̄M,Nw
f
M,N−1,

εM,N = yN −HM,NwM,N−1,

(19)

where now the a posteriori weight vector w
f
M,N , for example,

is replaced by w
f
M,N−1. That is, these recursions are similar to

the ones used for the a posteriori errors {eM,N , b̄M,N , bM+1,N ,
fM+1,N}, with the only difference lying in the use of prior
weight vector estimates.

Following the same arguments as in Section III of [1], it
can be verified that the last entries of these errors satisfy the
following order-update relations in terms of the same reflec-

tion coefficients {κM(N), κ
f
M(N), κbM(N)}:

εM+1(N) = εM(N)− κM(N − 1)βM(N),

βM+1(N) = β̄M(N)− κbM(N − 1)αM(N),

αM+1(N) = αM(N)− κ
f
M(N − 1)β̄M(N),

(20)
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where {κ f
M(N), κbM(N), κM(N)} can be updated as

κ
f
M(N) = κ

f
M(N − 1) +

β̄∗M(N)γ̄M(N)

ζ b̄M(N)
αM+1(N),

κbM(N) = κbM(N − 1) +
α∗M(N)γ̄M(N)

ζ
f
M(N)

βM+1(N),

κM(N) = κM(N − 1) +
β∗M(N)γM(N)

ζbM(N)
εM+1(N).

(21)

The above recursions are well known and they are obtained
regardless of data structure.

Now, recall that the a-posteriori-based algorithm still re-
quires the recursions for {b̄M(N), vM(N)}, where vM(N) is
referred to as the a posteriori rescue variable. As we will see
in the upcoming sections, similar arguments will also lead to
the quantities {β̄M(N), νM(N)}, where νM(N) will be simi-
larly defined as the a priori rescue variable corresponding to
vM(N). These in turn will allow us to obtain recursions for
their corresponding reflection coefficients {kb̄M(N), kvM(N)}.
Moreover, we will verify that νM(N) is the actual rescue quan-
tity used in the fixed-order fast transversal algorithm, and
which is based on a priori estimation errors.

4.2. Exploiting data structure

The procedure to find a recursion for βM,N follows similarly
to the one for the a posteriori error bM,N . Thus, beginning
from its definition

β̄M,N = xM+1,N − H̄M,NP̄M,N−1H̄∗
M,N−1WN−1xM+1,N−1

= xM+1,N −
[

0
HM+1,N−1

]
ΦM+1P̄M,N−1

×Φ∗
M+1

[
0 H∗

M+1,N−2
]
WN−1xM+1,N−1,

(22)

whereΦ is the matrix that relates {HM+1,N−1, H̄M,N}, and us-
ing the following relations into (22) (see [1]):

ΦM+1P̄M,N−1Φ∗
M+1

= PM+1,N−2 − ζ b̆M(N − 1)PM+1,N−2φM+1φ
∗
M+1PM+1,N−2,

xM+1,N−1 = aM+1

[
0

xM+1,N−2

]

+
AM+1

AM

([
0

xM,N−2

]
− a∗MxM,N−1

)
,

(23)

we obtain, after some algebra,

β̄M(N) = aM+1β̄M+1(N − 1)

+ ζ b̆M(N − 1)χM+1(N − 2)λk∗M+1,N−1φM+1,
(24)

where

kM,N = gM,Nγ
−1
M (N) (25)

is the normalized gain vector, defined by the corresponding
fast fixed-order recursions. Thus, defining the a priori rescue
variable

νM(N) � k∗M+1,N−1φM+1, (26)

we have

β̄M(N) = aM+1β̄M+1(N − 1)

+ λκb̄M(N − 1)νM+1(N − 1).
(27)

In order to obtain a recursion for νM(N), consider the
order-update recursion for kM,N , that is,

kM+1,N =
[
kM,N

0

]
+

β∗M(N)

λζbM(N − 1)

[
−wb

M,N−1
1

]
. (28)

Taking the complex transposition of (28) and multiplying it
from the left by φM+1 we get

νM+1(N) = −a∗MνM(N) + λ−1κvM(N − 1)βM(N). (29)

Of course, an equivalent recursion for χM(N) can be ob-
tained, considering the time update for wb

M,N , which can be
written as[

−wb
M,N
1

]
=

[
−wb

M,N−1
1

]
−

[
kM,N

0

]
bM(N). (30)

Hence, multiplying (30) from the left by φ∗M+1 we get

χM(N) = χM(N − 1) + aMν∗M(N)bM(N). (31)

Now, it only remains to find recursions for the reflection co-

efficients {kb̄M(N), kvM(N)}.

4.3. Time updates for {kb̄M(N), kvM(N)}
We now obtain time relations for the reflection coefficients
by exploiting the fact that these coefficients can be regarded
as least-squares solutions of order one [9, 14].

We begin with the reflection coefficient

kb̄M(N) = ζ b̆M(N)χM+1(N − 1) = χM+1(N − 1)
ζvM+1(N − 1)

, (32)

where, from (31) and Section 5.1 of [1], the numerator and
denominator quantities satisfy

χM(N) = χM(N − 1) + aMν∗M(N)bM(N),

ζvM(N) = λ−1ζvM(N − 1)−
∣∣vM(N)

∣∣2

γM(N)
.

(33)
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Now define the angle normalized errors

b′M(N) � bM(N)

γ1/2M (N)
= βM(N)γ1/2M (N),

v′M(N) � vM(N)

γ1/2M (N)
= νM(N)γ1/2M (N)

(34)

in terms of the square root of the conversion factor γM(N).
It then follows from the above time updates for χM(N) and
ζvM(N) that {χM(N), ζvM(N)} can be recognized as the inner
products

χM(N) = aMv
′∗
M,Nb

′
M,N ,

ζvM(N) = v′∗M,NW
−1
N v′M,N ,

(35)

which are written in terms of the following vectors of angle
normalized prediction errors:

b′M,N �


b′M(−L)

b′M(−L + 1)
...

b′M+1(N)

 , v′M,N �


v′M(−L)

v′M(−L + 1)
...

v′M(N)

 . (36)

In this way, the defining relation (32) for κb̄M(N) can be writ-
ten as

κb̄M(N) =
(
v′∗M+1,N−1W

−1
N v′M+1,N−1

)−1
× v′∗M+1,N−1W

−1
N

(
aM+1WNb

′
M,N−1

) (37)

which shows that κb̄M(N) can be interpreted as the solu-
tion of a first-order weighted least-squares problem, namely
that of projecting the vector (aM+1WNb

′
M,N ) onto the vector

v′M+1,N−1. This simple observation shows that κb̄M(N) can be
readily time updated by invoking the modified RLS recursion
introduced in Section 2. That is, by making the identification
θ → λ, and t → −1, we have

κb̄M(N) = λκb̄M(N − 1)

− v′∗M+1(N − 1)
ζvM(N)

[
− aM+1b

′
M+1(N − 1)

− λv′M+1(N − 1)κb̄M(N − 1)
]

= λκb̄M(N − 1)

+
v∗M+1(N − 1)

ζvM(N)

[
aM+1βM+1(N − 1)

+ λνM+1(N − 1)κb̄M(N − 1)
]

= λκb̄M(N − 1) + ζ b̆M(N)v∗M+1(N − 1)β̄M(N).
(38)

This last equation is obtained from the update for β̄M(N)

in (27). Similarly, the weight κvM(N) can be expressed as

κvM(N) =
(
b′∗M,NWNb

′
M,N

)−1
b′∗M,NWN

(
a∗MW

−1
N v′M,N

)
(39)

and therefore, making the identification θ = λ−1, and t → 1,
we can justify the following time update:

κvM(N) = λ−1κvM(N − 1)

+
b′∗M(N)

ζbM(N)

[
a∗Mv

′
M(N)− λ−1b′M(N)κvM(N − 1)

]
= λ−1κvM(N − 1)− b∗M(N)

ζbM(N)
νM+1(N).

(40)

A similar approach will also lead to the time updates of

{κ f
M(N), κbM(N), κM(N)} defined previously. Algorithm 2

shows the a-priori-based lattice recursions with error feed-
back.2

5. A-POSTERIORI-BASED REFLECTION
COEFFICIENT RECURSIONS

Alternative recursions for the reflection coefficients {κvM(N),

κ
f
M(N), κbM(N), κM(N)} that are based on a posteriori errors
can also be obtained. The resulting reflection coefficients up-
dates possess the advantage of avoiding the multiplicative
factor λ−1 in the corresponding error-feedback recursions,
which represent a potential source of instability of the algo-
rithm.

Thus consider for example the first equality of (38). It
can be written as

κb̄M(N) =
1 + ∣∣v′M+1(N − 1)

∣∣2

ζvM(N)

λκb̄M(N − 1)

+
aM+1v

∗
M+1(N − 1)bM+1(N − 1)
γM+1(N − 1)ζvM(N)

.

(41)

Recalling that γ̄M(N) has the update

γ̄M(N) = γM+1(N − 1) +

∣∣vM+1(N − 1)
∣∣2

ζvM(N)
, (42)

we have that

γ̄M(N)
γM+1(N − 1)

= ζvM+1(N − 2)
λζvM+1(N − 1)

= ζ b̆M(N)

λζb̆M(N − 1)

=
1 + ∣∣v′M+1(N − 1)

∣∣2

ζvM(N)

 (43)

2Observe that the standard lattice filter obtained in [1] performs feed-
back of several estimation error quantities from a higher-order problem, for
example, bM+1(N − 1), into the computation of bM(N). The definition of
error feedback in fast adaptive filters, however, has been referred to as the
feedback of such estimation errors into the computation of the reflection
coefficients themselves instead.
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Initialization
Form = 0 toM, set

µ is a small positive number

κm(−1) = κbm(−1) = κ
f
m(−1)

νm(−1) = βm(−1) = 0

ζ
f
m(−1) = µ

ζbm(−1) = πm − c∗mΠmcm

ζb̆m(−1) = π̆m+1 − c̆∗mΠ̄mc̆m

σm = λζb̆m(−1)/ζ f
m(−1)

χm(−1) = amφ∗mΠmcm + Am

κb̄m(−1) = ζ b̆m(−1)χm(−1)
κvm(−1) = χ∗m(−1)/ζbm(−1)
ζ b̄m(−1) = ζbm+1(−1)
For N ≥ 0, repeat

γ0(N) = γ̄0(N) = 1, α0(N) = β0(N) = s(N)

ν0(N) = 0, ε0(N) = d(N)

Form = 0 toM − 1, repeat

ζ b̆m(N) = σmγ̄m(N)ζ
f
m(N − 1)

β̄M(N) = aM+1β̄M+1(N − 1) + λκb̄M(N − 1)νM+1(N − 1)

κb̄M(N) = λκb̄M(N − 1) + ζ b̆M(N)v∗M+1(N − 1)β̄M(N)

ζ
f
m(N) = λζ

f
m(N − 1) + |αm(N)|2γ̄m(N)

ζbm(N) = λζbm(N − 1) + |βm(N)|2γm(N)

ζ b̄m(N) = λζb̄m(N − 1) + |β̄m(N)|2γ̄m(N)

νm+1(N) = −a∗mνm(N) + λ−1κvm(N − 1)βm(N)

εm+1(N) = εm(N)− κm(N − 1)βm(N)

βm+1(N) = β̄m(N)− κbm(N − 1)αm(N)

αm+1(N) = αm(N)− κ
f
m(N − 1)β̄m(N)

κvM(N) = λ−1κvM(N − 1)− β∗M (N)γM (N)

ζbM (N)
νM+1(N)

κ
f
M(N) = κ

f
M(N − 1) +

β̄∗M (N)γ̄M (N)

ζb̄M (N)
αM+1(N)

κbM(N) = κbM(N − 1) +
α∗M (N)γ̄M (N)

ζ
f
M (N)

βM+1(N)

κM(N) = κM(N − 1) +
β∗M (N)γM (N)

ζbM (N)
εM+1(N)

γm+1(N) = γm(N)− |bm(N)|2
ζbm(N)

γ̄m+1(N) = γ̄m(N)− |b̄m(N)|2
ζb̄m(N)

Algorithm 2: The a-priori-based extended RLS lattice filter with
error feedback.

so that we can write (41) as

κb̄M(N) = λγ̄M(N)
γM+1(N − 1)

×
(
κb̄M(N − 1)

+
aM+1ζ

b̆
M(N − 1)v∗M+1(N − 1)bM+1(N − 1)

γM+1(N − 1)

)
.

(44)

In a similar fashion, we can obtain the following recur-
sion for κvM(N) from (40):

κvM(N) = γM+1(N)
λγM(N)

(
κvM(N − 1)+

a∗Mb
∗
M(N)vM(N)

γM(N)ζbM(N − 1)

)
, (45)

where we have used the fact that

γM+1(N)
γM(N)

= λζbM(N − 1)

ζbM(N)
=

1− ∣∣b′M(N)
∣∣2

ζbM(N)

. (46)

We can thus derive similar updates for the other reflec-
tion coefficients. Algorithm 3 is the resulting a-posteriori-
based algorithm.

6. NORMALIZED EXTENDED RLS
LATTICE ALGORITHM

A normalized lattice algorithm is an equivalent variant that
replaces each pair of cross-reflection coefficient updates,

that is, {κ f
M(N), κbM(N)} and {κvM(N), κb̄M(N)} by alterna-

tive updates based on single coefficients, which we denote by
{ηM(N)} and {ϕM(N)}. This is obtained by noting that these
reflection coefficients are related to single parameters, that is,

{κ f
M(N), κbM(N)} related to δM(N) and {κvM(N), κb̄M(N)} re-

lated to χM(N). The reflection coefficient κM(N) is also re-
placed by ωM(N).

6.1. Recursion for ηM(N)

We start by defining the coefficient

ηM(N) � δ∗M(N)

ζ b̄/2M (N)ζ
f /2
M (N)

(47)

along with the normalized prediction errors

b′′M(N) � bM(N)

γ1/2M (N)ζb/2M (N)
,

f ′′M (N) � fM(N)

γ̄1/2M (N)ζ
f /2
M (N)

,

b̄′′M(N) � b̄M(N)

γ̄1/2M (N)ζb̄/2M (N)
,

v′′M(N) � vM(N)

γ1/2M (N)ζv/2M (N)
.

(48)

Now, referring to Algorithm 1, we substitute the updat-

ing equation for {αM+1(N)} into the recursion for {κ f
M(N)}.

This yields

κ
f
M(N) = κ

f
M(N − 1)

(
1− ∣∣b̄′′M(N)

∣∣2
)

+
fM(N)b̄∗M(N)

ζb̄M(N)γ̄M(N)
.

(49)
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Initialization
Form = 0 toM, set

µ is a small positive number

κm(−1) = κbm(−1) = κ
f
m(−1)

νm(−1) = βm(−1) = 0

ζ
f
m(−1) = µ

ζbm(−1) = πm − c∗mΠmcm

ζb̆m(−1) = π̆m+1 − c̆∗mΠ̄mc̆m

σm = λζb̆m(−1)/ζ f
m(−1)

χm(−1) = amφ∗mΠmcm + Am

κb̄m(−1) = ζ b̆m(−1)χm(−1)
κvm(−1) = χ∗m(−1)/ζbm(−1)
ζ b̄m(−1) = ζbm+1(−1)
For N ≥ 0, repeat

γ0(N) = γ̄0(N) = 1, f0(N) = b0(N) = s(N)

v0(N) = 0, e0(N) = d(N)

Form = 0 toM − 1, repeat

ζ b̆m(N) = σmγ̄m(N)ζ
f
m(N − 1)

κb̄M(N) = λγ̄M (N)
γM+1(N−1)

(
κb̄M(N − 1)

+
aM+1ζb̆m(N−1)v∗M+1(N−1)bM+1(N−1)

γM+1(N−1)
)

b̄m(N) = am+1bm+1(N − 1) + κb̄m(N)vm+1(N − 1)

ζ
f
m(N) = λζ

f
m(N − 1) + | fm(N)|2/γ̄m(N)

ζbm(N) = λζbm(N − 1) + |bm(N)|2/γm(N)

ζ b̄m(N) = λζb̄m(N − 1) + |b̄m(N)|2/γ̄m(N)

γm+1(N) = γm(N)− |bm(N)|2
ζbm(N)

γ̄m+1(N) = γ̄m(N)− |b̄m(N)|2
ζb̄m(N)

κvM(N) = γM+1(N)
λγM (N)

(
κvM(N − 1) +

a∗Mb∗M (N)vM (N)

γM (N)ζbM (N−1)

)
κbm(N) = γm+1(N)

γ̄m(N)

(
κm(N − 1) + f ∗m (N)b̄m(N)

γ̄m(N)ζ
f
m(N−1)

)
κ
f
m(N) = γ̄m+1(N)

γ̄m(N)

(
κ
f
m(N − 1) + b̄∗m(N) fm(N)

γ̄m(N)ζb̄m(N−1)

)
κm(N) = γm+1(N)

γm(N)

(
κm(N − 1) + b∗m(N)em(N)

γm(N)ζbm(N−1)

)
vm+1(N) = −a∗mvm(N) + κvm(N)bm(N)

em+1(N) = em(N)− κm(N)bm(N)

bm+1(N) = b̄m(N)− κbm(N) fm(N)

fm+1(N) = fm(N)− κ
f
m(N)b̄m(N)

Algorithm 3: The a-posteriori-based extended RLS lattice filter
with direct reflection coefficients updates.

Multiplying both sides by the ratio ζ b̄/2M (N)/ζ
f /2
M (N), we

obtain

ηM(N) = ζ b̄/2M (N)

ζ
f /2
M (N)

κ
f
M(N − 1)

(
1− ∣∣b̄′′M(N)

∣∣2
)

+ f ′′M (N)b̄
′′∗
M (N).

(50)

However, from the time-update recursion for ζ b̄M(N) and

ζ
f
M(N), the following relations hold:

ζb̄/2M (N) = λ1/2ζ b̄/2M (N − 1)√
1− ∣∣b̄′′M(N)

∣∣2
,

ζ
f /2
M (N) = λ1/2ζ

f /2
M (N − 1)√

1− ∣∣ f ′′M (N)
∣∣2

.

(51)

Substituting these equations into (50), we obtain the de-
sired time-update recursion for the first reflection coefficient:

ηM(N) = ηM(N − 1)
√(

1− ∣∣b̄′′M(N)
∣∣2)(

1− ∣∣ f ′′M (N)
∣∣2

)
+ f ′′M (N)b̄

′′∗
M (N).

(52)

This recursion is in terms of the errors {b′′M(N), f ′′M (N)}.
We thus need to determine order updates for these errors.
Thus dividing the order-update equation for bM+1(N) by
ζb/2M+1(N)γ1/2M+1(N), we obtain

b′′M+1(N) = b̄M(N)− κbM(N) fM(N)

ζb/2M+1(N)γ1/2M+1(N)
. (53)

Using the order-update relation for ζbM(N) we also have

ζbM+1(N) = ζ b̄M(N)
(
1− ∣∣ηM(N)

∣∣2
)
. (54)

In addition, the relation, for γM(N),

γM+1(N) = γ̄M(N)−
∣∣ fM(N)

∣∣2

ζ
f
M(N)

(55)

can be written as

γM+1(N) = γ̄M(N)
(
1− ∣∣ f ′′M (N)

∣∣2
)
. (56)

Therefore substituting (54) and (56) into (53), we obtain

b′′M+1(N) = b̄′′M(N)− η∗M(N) f ′′M (N)√(
1− ∣∣ f ′′M (N)

∣∣2
)(

1− ∣∣ηM(N)
∣∣2

) . (57)

Similarly, using the order updates for fM+1(N), ζ
f
M(N),

and γ̄M(N) we obtain

f ′′M+1(N) = f ′′M (N)− ηM(N)b̄′′M(N)√(
1− ∣∣b̄′′M(N)

∣∣2
)(

1− ∣∣ηM(N)
∣∣2

) . (58)
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6.2. Recursion forωM(N)

In a similar vein, we introduce the normalized error

e′′M(N) � eM(N)

γ1/2M (N)ζ1/2M (N)
(59)

and the coefficient

ωM(N) � ρM(N)

ζb/2M (N)ζ1/2M (N)
. (60)

Using the order update for ζ1/2M (N) and γM(N), we can
establish the following recursion:

e′′M+1(N) = e′′M(N)− ωM(N)b′′M(N)√(
1− ∣∣b′′M(N)

∣∣2
)(

1− ∣∣ωM(N)
∣∣2

) . (61)

To obtain a time update for ωM(N), we first substi-
tute the recursion for eM+1(N) into the time update for
κM(N). Then multiplying the resulting equation by the
ratio ζb/2M (N)/ζe/2M (N), and using the time updates for ζbM(N)
and ζM(N), we obtain

ωM(N) =
√(

1− ∣∣b′′M(N)
∣∣2

)(
1− ∣∣e′′M(N)

∣∣2
)
ωM(N − 1)

+ b
′′∗
M (N)e′′M(N).

(62)

Note that when b̄′′M(N) = b′′M(N − 1), the recursions derived
so far collapse to the well-known FIR normalized RLS lattice
algorithm. For general structures, however, we need to derive
a recursion for the normalized variable b̄′′M(N) as well. This
can be achieved by normalizing the order update for b̄M(N):

b̄M(N) = aM+1bM+1(N − 1) + κb̄M(N)vM+1(N − 1)

ζ b̄/2M (N)γ̄1/2M (N)
. (63)

In order to simplify this equation, we need to relate

ζ b̄M(N) to ζbM+1(N − 1) and γ̄M(N) to γM+1(N − 1). Recall-

ing the alternative update for ζ b̄M(N):

ζ b̄M(N) = ∣∣aM+1
∣∣2
ζbM+1(N − 1)

+

∣∣χM+1(N − 1)
∣∣2

ζvM+1(N − 1)
,

(64)

we get

ζ b̄M(N) = ζbM+1(N − 1)
(∣∣aM+1

∣∣2
+

∣∣ϕM+1(N − 1)
∣∣2

)
, (65)

where we have defined the reflection coefficient

ϕM(N) � χM(N)

ζb/2M (N)ζv/2M (N)
. (66)

In order to relate {γ̄M(N), γM+1(N − 1)}, we resort to the
alternative relation of Algorithm 1:

γ̄M(N) = γM+1(N − 1) + ζb̆M(N)
∣∣vM+1(N − 1)

∣∣2
(67)

which can be written as

γ̄M(N) = γM+1(N − 1)
(
1 +

∣∣v′′M+1(N − 1)
∣∣2

)
. (68)

Substituting (65) and (68) into (63), we obtain

b̄′′M(N)

= aM+1b
′′
M+1(N − 1) + ϕM+1(N − 1)v′′M+1(N − 1)√(

1 +
∣∣v′′M+1(N − 1)

∣∣2
)(∣∣aM+1

∣∣2
+

∣∣ϕM+1(N − 1)
∣∣2

) .
(69)

This equation requires an order update for the normalized
quantity v′′M(N). From the order update for vM(N), we can
write

v′′M+1(N) = −a∗MvM(N) + κvM(N)bM(N)

ζv/2M+1(N)γ1/2M+1(N)
. (70)

Similarly to (63), we need to relate {ζvM+1(N), γM+1(N)} with
{ζvM(N), γM(N)}. Thus recall that these quantities satisfy the
following order updates:

ζvM+1(N) = ∣∣aM∣∣2
ζvM(N) +

∣∣χM(N)
∣∣2

ζbM(N)
,

γM+1(N) = γM(N)−
∣∣bM(N)

∣∣2

ζbM(N)
,

(71)

which lead to the following relations:

ζvM+1(N) = ζvM(N)
(∣∣aM∣∣2

+
∣∣ϕM(N)

∣∣2
)
,

γM+1(N) = γM(N)
(
1− ∣∣b′′M(N)

∣∣2
)
.

(72)

Taking the square root on both sides of (72) and substituting
into (70), we get

v′′M+1(N) = −a∗Mv′′M(N) + ϕ∗M(N)b′′M(N)√(
1− ∣∣b′′M(N)

∣∣2
)(∣∣aM∣∣2

+
∣∣ϕM(N)

∣∣2
) .
(73)
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6.3. Recursion for ϕM(N)

This is the only remaining recursion, which is defined via
(66). To derive an update for it, we proceed similarly to the
recursions for {ηM(N),ωM(N)}. First we substitute the up-
date for νM+1(N) into the update for κvM(N) in Algorithm 1.
This gives

kvM(N) = λ−1
(
1− ∣∣b′′M(N)

∣∣2
)
kvM(N − 1)

+ a∗M
b′∗M (N)v′M(N)

ζbM(N)
.

(74)

Then, multiplying the above equation by ζb/2M (N)/ζv/2M (N)
and using the fact that

ζb/2M (N) = λ1/2ζb/2M (N − 1)√
1− ∣∣b′′M(N)

∣∣2
,

ζv/2M (N) = λ−1/2ζv/2M (N − 1)√
1 +

∣∣v′′M(N)
∣∣2

(75)

(see the equalities in (43) and (46)), we get

ϕM(N) =
√(

1 +
∣∣v′′M(N)

∣∣2
)(

1− ∣∣b′′M(N)
∣∣2

)
ϕM(N − 1)

+ a∗Mb
′′∗
M (N)v′′M(N).

(76)

Algorithm 4 is the resulting normalized extended RLS lattice
algorithm. For compactness of notation and in order to save
in computations, we introduced the variables

{
rbM(N), r

f
M(N), reM(N), rvM(N),

r
ϕ
M(N), rb̄M(N), r

η
M(N), rωM(N)

}
.

(77)

Note that the normalized algorithm returns the nor-
malized least-squares residual e′′M+1(N). The original error
eM+1(N) can be easily recovered, since the normalization fac-
tor can be computed recursively by

ζ1/2M+1(N)γ1/2M+1(N) = rbM(N)rωM(N)ζ1/2M (N)γ1/2M (N). (78)

7. ARRAY-BASED LATTICE ALGORITHM

We now derive another equivalent lattice form, albeit one
that is described in terms of compact arrays.

To arrive at the array form, we first define the following
quantities:

qbM(N) � δM(N)

ζ b̄/2M (N)
, q

f
M(N) � δ∗M(N)

ζ
f /2
M (N)

,

qb̄M(N) � χM(N)

ζv/2M (N)
, qvM(N) � χ∗M(N)

ζ b̄/2M (N)
.

(79)

Initialization
Form = 0 toM, set

µ is a small positive number

ηm(−1) = ωm(−1) = b′′m(−1) = v′′m(−1) = 0

ζbm(−1) = πm − c∗mΠmcm

ϕm+1(−1) =
√

π̆m+1−c̆∗mΠ̄mc̆m+1

ζbm+1(−1)
(amφ∗mΠmcm + Am)

For N ≥ 0, repeat

ζb0 (N) = λζb0 (N − 1) + |u(N)|2
ζ0(N) = λζ0(N − 1) + |d(N)|2
b′′0 (N) = f ′′0 (N) = u(N)/ζb/20 (N)

e′′0 (N) = d(N)/ζ1/20 (N)

v′′0 (N) = 0
Form = 0 toM − 1, repeat

rbm(N) =
√
1− |b′′m(N)|2, r

f
m(N) =

√
1− | f ′′m (N)|2

rem(N) =
√
1− |e′′m(N)|2, rvm(N) =

√
1 + |v′′m(N)|2

ϕm(N) = rvm(N)rbm(N)ϕm(N − 1) + a∗mb
′′∗
m (N)v′′m(N)

r
ϕ
m(N) =

√
|am|2 + |ϕm(N)|2

b̄′′m(N) = aM+1b
′′
m+1(N−1)+ϕm+1(N−1)v′′m+1(N−1)

rvm+1(N−1)r
ϕ
m+1(N−1)

rb̄m(N) =
√
1− |b̄′′m(N)|2

ηm(N) = rb̄m(N)r
f
m(N)ηm(N − 1) + f ′′m (N)b̄

′′∗
m (N)

r
η
m(N) =

√
1− |ηm(N)|2

ωm(N) = rbm(N)rem(N)ωm(N − 1) + b
′′∗
m (N)e′′m(N)

rωm(N) = √
1− |ωm(N)|2

v′′m+1(N) = 1
rbm(N)r

ϕ
m(N)

[−a∗Mv′′m(N) + ϕ∗m(N)b′′m(N)]

e′′m+1(N) = 1
rbm(N)rem(N)

[e′′m(N)− ωm(N)b′′m(N)]

b′′m+1(N) = 1

r
f
m(N)r

η
m(N)

[b̄′′m(N)− η∗m(N) f ′′m (N)]

f ′′m+1(N) = 1

rb̄m(N)r
η
m(N)

[ f ′′m (N)− ηm(N)b̄′′m(N)]

Algorithm 4: Normalized extended RLS lattice filter.

The second step is to rewrite all the recursions in
Algorithm 1 in terms of these quantities, and in terms
of the angle normalized prediction errors {b′M(N),
e′M(N), v′M(N), b̄′M(N)} defined before, for example,

χM(N) = χM(N − 1) + aMv
′∗
M(N)bM(N),

ζvM(N) = λ−1ζvM(N − 1)− ∣∣v′M(N)
∣∣2
,

ζbM(N) = λζbM(N − 1) +
∣∣b′M(N)

∣∣2
.

(80)

The third step is to implement a unitary (Givens) trans-
formation ΘM that lower triangularizes the following pre-
array of numbers:

[
λ1/2ζb/2M (N − 1) b

′∗
M (N)

λ−1/2qv∗M (N − 1) aMv′∗M(N)

]
︸ ︷︷ ︸

A

ΘM =
[
m 0
n p

]
︸ ︷︷ ︸

B

(81)
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for some {m,n, p}. The values of the resulting {m,n, p} can
be determined from the equality AΘMΘ

∗
MA

∗ = AA∗ = BB∗,
which gives

m = ζb/2M (N), n = qv∗M (N), p = v
′∗
M+1(N). (82)

Similarly, we can implement a J-unitary (hyperbolic)

transformation Θb̄
M that lower triangularizes the following

prearray of numbers:

[
λ−1/2ζv/2M (N − 2) v

′∗
M+1(N − 1)

λ1/2qb̄∗M (N − 1) −aM+1b′
∗
M+1(N − 1)

]
︸ ︷︷ ︸

C

Θb̄
M =

[
m′ 0
n′ p′

]
︸ ︷︷ ︸

D

(83)

for some {m′,n′, p′}, which can be determined from the

equality CΘb̄
MΘ

¯b∗
M C∗ = CJC∗ = DD∗. This gives

m′ = ζv/2M (N − 1), n′ = qb̄∗M (N), p′ = b̄
′∗
M (N).

(84)

Proceeding similarly we can derive two additional array
transformations, all of which are listed in Algorithm 5. The

matrices {Θ f
M(N),Θb

M(N)} are 2× 2 unitary (Givens) trans-
formations that introduce the zero entries in the postarrays
at the desired locations. We illustrate the mth array lattice
section that corresponds to this algorithm in Figure 3.

8. SIMULATION RESULTS

We have performed several simulations in Matlab in order
to verify the behavior of the proposed lattice variants under
finite-precision arithmetic. Under infinite precision, all lat-
tice filters are equivalent. However, unlike what is normally
expected from the corresponding standard FIR lattice filter
variants, which tend to be more reliable in finite precision,
we observed that the new algorithms exhibit some unstable
patterns when compared with the standard lattice recursions
of Algorithm 1, in the sense that at some point the algorithms
diverge or possibly achieve a much higher MSE.

In the sequel, we will present some simulation results for
the algorithms obtained in this paper. We have tested the al-
gorithms over 500 runs, for an exact system identification
of a 5-tap orthonormal basis. The noise floor was fixed at
-50 dB.

We have observed different behaviors throughout the
several scenarios set for testing. In order to characterize their
performance up to a certain extent, we have selected some of
these settings, which we believe to be the most relevant ones
for this purpose.

Experiment 1 (comparison among all algorithms under
Matlab precision). Here we have set the forgetting factor
λ = 0.99, a typical value, for all the recursions. As a re-
sult, we have observed (Figure 4) the best performance for
the a posteriori error-feedback version, followed by the a pri-
ori error-feedback recursion exhibiting a slightly higher MSE.

Initialization
Form = 0 toM − 1, set

µ is a small positive number

ζ
f
m(−1) = µ

ζbm(−1) = πm − c∗mΠmcm

ζb̆m(−1) = π̆m+1 − c̆∗mΠ̄mc̆m

ζb̄m(−1) = ζbm+1(−1) χm(−1) = amφ∗mΠmcm + Am

qm(−1) = qbm(−1) = q
f
m(−1) = v′m(−1) = b′m(−1) = 0

qb̄m(−1) = χm(−1)/ζv/2m (−1)
qvm(−1) = χ∗m(−1)/ζ b̄/2m (−1)
For N ≥ 0, repeat

γ1/20 (N) = 1

e′0(N) = d(N)

f ′0 (N) = b′0(N) = u(N)

v′0(N) = 0
Form = 0 toM − 1, repeat[
λ−1/2ζv/2m (N − 2) v

′∗
m+1(N − 1)

λ1/2qb̄∗m (N − 1) −am+1b′
∗
m+1(N − 1)

]
Θb̄

m(N)

=
[
ζv/2m (N − 1) 0
qb̄∗m (N) b̄

′∗
m (N)

]

λ1/2ζb/2m (N − 1) b

′∗
m (N)

λ−1/2qv∗m (N − 1) amv′
∗
m(N)

λ1/2qd∗m (N − 1) e′∗m(N)
0 γ1/2m (N)

Θm(N)

=


ζb/2m (N) 0
qv∗m (N) v′∗m+1(N)
qd∗m (N) e′∗m+1(N)
× γ1/2m+1(N)

λ1/2ζ f /2
m (N − 1) f ′∗m(N)

λ1/2q
f∗
m (N − 1) b̄′∗m(N)

Θ
f
m(N)

=
ζ f /2

m (N) 0

q
f∗
m (N) b′∗m+1(N)


[
λ1/2ζ b̄/2m (N − 1) b̄′∗m(N)
λ1/2qb∗m (N − 1) f ′∗m(N)

]
Θb

m(N)

=
[
ζ b̄/2m (N) 0
qb∗m (N) f ′∗m+1(N)

]

Algorithm 5: The array-based extended RLS lattice filter.

Although the normalized recursion appears to have an even
higher MSE and the QR lattice algorithm does not converge,
we observed that their behavior changes when λ = 1. In order
to observe their behavior more closely, we tested each algo-
rithm separately in fixed-point arithmetic, as shown next.

Experiment 2 (a priori error-feedback algorithm for differ-
ent values of λ). This is shown in Figure 5. In these simula-
tions, we have arbitrarily limited the number of fixed-point
quantization steps to 16 bits. Unlike what is observed in ex-
periment 1, this algorithm diverges at some point depending
on the value of λ used.
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f ′∗m (N)

b′∗m (N)

v′∗m (N)

e′∗m (N)

am

Θm(N)

Θb̄
m(N)

Θ
f
m(N)

Θb
m(N)

f ′∗m+1(N)

b′∗m+1(N)

v′∗m+1(N)

e′∗m+1(N)

z−1

z−1

−am+1

b̄′∗m (N)

Figure 3: A lattice section in array form.
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Figure 4: Comparison among all algorithms under Matlab preci-
sion.

Experiment 3 (a posteriori error-feedback algorithm for dif-
ferent values of λ). This is shown in Figure 6. Similarly to ex-
periment 2, we have kept the quantization steps to 16 bits.
Although the scenario of λ = 0.98 seems to be more steady,
we still observed divergence when running the experiment
over 10 000 data samples.

Experiment 4 (performance for 24-bit quantization and for
λ = 1). In experiment 1, these algorithms appeared to have
a higher MSE compared to the error-feedback versions, and
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Figure 5: A priori error-feedback algorithm for different values of
λ = 1, 0.99, and 0.98.
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Figure 6: A posteriori error-feedback algorithm for λ = 1, 0.99,
0.98, and 0.95.

does not seem to converge to the noise floor. However, we
have noticed that in the case where λ = 1, they present some
convergence up to a certain instant (depending on how big
the number of quantization steps is), and then diverge in
two different ways. This is illustrated in Figure 7, for a 24-
bit fixed-point quantization. For a less number of bits, the
performance becomes worse.

In summary, all lattice variants become unstable, ex-
cept for the standard equations of Algorithm 1, of which the



On Extended RLS Lattice Variants 1247

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−60

−50

−40

−30

−20

−10

0

Iteration

M
SE

(d
B
)

QR lattice
A priori error-feedback lattice
A posteriori error-feedback lattice
Normalized lattice

Figure 7: Performance of the algorithms for λ = 1, and 24-bit
quantization.

corresponding MSE curve presents unstable behavior only
for λ = 1. Figure 8 illustrates this fact for λ = 1, 0.9, and
0.85, considering a 5-tap orthonormal model.

9. BACKWARD CONSISTENCY
ANDMINIMALITY ISSUES

The key structural problem for the unstable behavior
observed in all the above algorithms relies on the
nonminimality of the state vector in the backward predic-
tion portion of each algorithm. In order to elaborate on this
point with some depth, we will briefly review the concepts
of minimality and backward consistency for FIR structures
([15, 16, 17, 18]) and extend these arguments to the algo-
rithms of this paper.

Error analysis in fast RLS algorithms is performed in the
prediction portion of the recursions, since the flow of the
information required for the optimal least-squares solution
is one way to the joint process estimation section. The
prediction part of the algorithm is a nonlinear mapping of
the form

si = T
[
si−i,u(i)

]
, (85)

where si denotes the state vector that contains the variables
propagated by the underlying algorithm. In finite-precision
implementations, however, the actual mapping propagates
the perturbed state ŝi, that is,

ŝi = T
[
si−i,u(i)

]
+ δi, (86)

where δi is result of quantization. In this case, one’s primary
goal is to show exponential stability of this system, that is, to
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Figure 8: Learning curve for the standard extended lattice recur-
sions quantized in 16 bits for different values of λ and for an order-5
filter.

show (or not) that the influence of such perturbation should
decay sufficiently fast to zero as i→∞. Thus let Si denote the
set of all state values {si} for which the mapping (86) is expo-
nentially stable. This set includes all state values that can be
reached in exact arithmetic, as the input {u(i),u(i − 1), . . .}
varies over all realizations that are persistently exciting (we
will return to the persistency of excitation issue shortly, con-
sidering the general orthonormal basis studied here). Clearly,
the state error s̃i = si − ŝi will remain bounded provided that
the system (86) is exponentially stable for all states si and the
perturbation δi does not push ŝi outside Si. Now, in order to
fully understand round-off error effect in a given algorithm,
one must consider three aspects in its analysis:

(1) error generation, that is, the properties of the round-off
error δi;

(2) error accumulation, that is, how the overall state error s̃i
is affected by the intermediate errors generated at dif-
ferent time instants;

(3) error propagation, in the sense that it is assumed that
from a certain time instant, no more round-off errors
are made, and the propagation of the accumulated er-
rors from that point onward is observed.

Since it is not our intention to embark on a detailed error
analysis of these algorithms, we will consider only error prop-
agation stability, which is equivalent to exponential stability
of the time recursions. (A conventional stability analysis of
an algorithm is usually difficult to pursue, due to the nonlin-
ear nature of system T . This can be accomplished, however,
via local linearization and Lyapunov methods, although this
requires considerable effort).

A richer approach to the stability problem relies on
checking the so-called backward consistency property, that
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is, if a computed solution (with round-off errors) is the ex-
act solution to a perturbed problem in exact arithmetic. In
other words, denote by Ŝi the set of all state vectors that are
reachable in finite-precision arithmetic, which vary accord-
ing to the implementations of the algorithm recursions (that
is, the effect of word length plus rounding/truncation). Then,
if Ŝi ⊂ Si, the algorithm is said to be backward consistent in
this context.

Now, an algorithm is said to be nonminimal, if the ele-
ments of the state vector si can be expressed in a reduced di-
mension with no loss of information, that is, loosely speak-
ing, when the recursions that constitute the algorithm prop-
agate redundancy. In this case, these redundant components
can be expressed in terms of constraints of the form

f
(
si
) = 0, ∀i and {

u(i)
}

(87)

which defines a manifold. In this case, there always exist local
perturbations that push si outside this manifold and there-
fore out of the stability region Si.

It is proved in [15, 16, 17, 18], for fast FIR RLS recursions,
that the minimal dimension of si is 2M + 1, for all i ≥ 2M.
In this case, none of the FIR counterparts of the algorithms
presented in this paper is minimal, which propagate around
5M variables (this does not mean that stable propagation of
the variables cannot be proved without resorting to back-
ward consistency issues, as for example in the case of the a
priori error-feedback FIR lattice filter [19]).

Now, these minimal components for the FIR case can be
established, once the connection with the minimal compo-
nents of fast transversal filters of all least-squares orders is
recognized, thus resulting in a 2M + 1 minimal dimension
(see [17]). We have shown in [3], for the general orthonor-
mal basis of this paper, that the same defining components of
the minimum state vector in a fast transversal FIR algorithm
also define the minimum components of an orthonormality-
based FTF,3 therefore, using the arguments of [17], one can
conclude that this holds similarly for the order-recursive al-
gorithms of this paper, resulting in 2M + 1 minimal param-
eters. The nonminimal character of the above recursions can
be intuitively seen, by following their derivation. It is like
solving fast transversal least-squares of all orders, except that
the necessity of calculating the augmented Kalman gain vec-
tor ǧM+1,N (in order to propagate gM,N ) on which the FTF is
based, is replaced by the use of the augmented scalar b̄M+1,N

(in order to propagate bM(N)), on which the lattice recur-
sions are based.

Clearly, the extended lattice algorithms of this paper are
nonminimal; they propagate an additional redundancy that
eventually leads to divergence. Consider for instance, the
array-based lattice filter obtained. Besides the 5M variables
propagated in the forward and backward prediction section,

3In the FTF-FIR case, the set Si is represented by the variables that sat-
isfy a certain spectral factorization with respect to the FIR basis functions.
This also holds true for the extended basis of this paper, except that spectral
factorization is performed with respect to the orthonormal basis.

namely, {ξ f
m(N), ξbm(N), q

f
m(N), qbm(N), b̄′m(N)}, it also needs

{ξvm(N), qb̄m(N), v′M+1}, which are updated by Θb̄. Now, note
that in the FIR case, even though minimality of these recur-
sions is violated, error propagation in all variables is expo-
nentially stable, since the prearray is scaled by

√
λ. The anal-

ysis in this case is sufficient for an individual section, since
any given lattice section is constituted only by lower-order
ones. For the extended array lattice of this paper, however,
two facts contribute for divergence. First, variables are fur-
ther propagated via an unstable mode, that is, λ−1/2. Second,
it makes use of hyperbolic rotations, which are well known to
be naturally unstable (unless some care is taken). We recall
that in the case of FIR models, only circular, and therefore
stable rotations are needed.

In the case of error-feedback algorithms, besides non-
minimality, the presence of λ−1 in the recursion for the reflec-
tion coefficient κvM(N) contributes similarly to divergence.
This behavior can also be observed in the standard lattice
algorithm if one attempts to propagate the minimum cost

ζ b̆M(N) via its inverse ζvM(N), which also depends on λ−1. The
existence of such recursion is also a source of instability in
fast fixed-order RLS counterparts. For the normalized lat-
tice algorithm, because all prediction errors are normalized,
these recursions become independent of the forgetting factor
(except for {ζ0(N), ζb0 (N)} in the initial step). This, however,

eliminates the need for recursion ζ b̆m(N) = σmγ̄m(N)ζ
f
m(N −

1), an enforcing relation that represents a source of good nu-
merical conditioning for the algorithm. This relation helps in
reducing the redundant variables in fast RLS recursions and
is one of the relations forming the manifold of Si in such re-
cursions (as observed for the FTF algorithm in [15, 16] in the
case of FIRmodels).4 This relation has been further extended
to the general orthonormal model of [3] and has been used
in the standard and it turns out that this is also the case for
the lattice recursions, since we have shown that this relation
holds for every order-M LS problem.

It is important to add that the fast array algorithm con-
sidered in this paper (also called a rotation-based algorithm)
is one among a few other fast QR-based recursions. It com-
putes the forward and backward prediction errors in ascend-
ing order, leading to the conventional lattice networks stud-
ied in this paper. Still, other QR variants are also possible,
one of them in fact resulting in a minimal realization for FIR
structures [17]; it computes the forward prediction errors in
ascending order, but the backward prediction errors in de-
scending order. This is an important case of study, whose ex-
tension to the orthonormal basis case will be pursued else-
where.

9.1. Persistency of excitation

One must distinguish between stability due to the algorithm
structure and ill-conditioning of the underlying input data

4Note that even though we are reducing the number of reflection coef-
ficients in half, we end up not using this recursion, since variables are nor-
malized by their energies.
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matrix. Ill-conditioned data may push the states xi outside
the interior of Si, undermining the exponential stability of
the recursions. The question then is whether the change of
basis would affect the numerical error properties in the above
lattice extensions.

Now, one of the main purposes of using orthonormal
bases lies in the well-studied good numerical conditioning
offered by such structures (where input conditioning re-
mains unaltered). Note that this is not the case for an ar-
bitrary model realization as a fixed denominator, of partial-
fraction representation as pointed out in [2]. Consider the
vector of basis functions associated with the orthonormal
model:

B(z) = [
B0(z) B1(z) · · · BM−1(z)

]T
. (88)

Under the assumption of stationarity of the input se-
quence u(n), the input correlation matrix associated with
these basis functions is given by

RB = 1
2π

∫ π

−π
B

(
e jω

)
B∗(

e jω
)
Su

(
e jω

)
dω, (89)

where Su(e jω) is the power spectral density of u(n). Now the
conditioning of the (linear) estimation problem associated
with the orthonormal model is related to the condition num-
ber of RB , namely, k(RB), which shows that orthonormality
of the basis functions basically leaves the condition number
unaltered when passing through such model. Therefore we
can say that for the same condition number, the extended
lattice recursions behave worse than their tapped-delay-line
lattice counterparts.

10. CONCLUSION

In this work, we developed several lattice forms for RLS adap-
tive filters based on general orthonormal realizations. One
technique is based on propagating the reflection coefficients
in time. A second form is based on propagating a fewer
number of normalized reflection coefficients. A third form
is based on propagating angle-normalized quantities via uni-
tary and J-unitary rotations. Even though the algorithms are
all theoretically equivalent, they differ in computational cost
and in robustness to finite-precision effects. The new algo-
rithms, besides nonminimality, present unstable modes as
well as hyperbolic rotations, so that the well-known good
numerical properties observed in the class of FIR models no
longer exist for the extended fast recursions derived. In this
context, the standard lattice recursions of Algorithm 1 repre-
sent up to now the most numerically reliable algorithm for
this class of input data structures.

We remark that the development of the above recursions
represent an initial step towards further refinement of these
algorithms and it is not our purpose to provide all answers on
these extended lattice filter variants in this presentation. Al-
though our presentation lacks a more precise analysis of the
numerical behavior of these algorithms, we believe that the

arguments in Section 9 suffice as a preliminary explanation
for the unstable behavior observed in all lattice variants. As
future works, we will look into the numerical issues of these
algorithms in detail as well as pursue a minimal fast QR real-
ization similarly to [17] for FIR models.
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