
EURASIP Journal on Applied Signal Processing 2005:9, 1323–1333
c© 2005 Hindawi Publishing Corporation

Analysis of the IHC Adaptation for the
Anthropomorphic Speech Processing Systems

Alexei V. Ivanov
Computer Engineering Department, the Belarusian State University of Informatics and Radioelectronics,
220013 Minsk, Belarus
Email: alexei v ivanov@ieee.org

Alexander A. Petrovsky
Real-Time Systems Department, the Bialystok Technical University, 15351 Bialystok, Poland
Email: palex@it.org.by

Received 1 November 2003; Revised 5 September 2004

We analyse the properties of the physiological model of the adaptive behaviour of the chemical synapse between inner hair cells
(IHC) and auditory neurons. On the basis of the performed analysis, we propose equivalent structures of the model for implemen-
tation in the digital domain. The main conclusion of the analysis is that the synapse reservoir model is equivalent in its properties
to the signal-dependent automatic gain-control mechanism. We plot guidelines for creation of artificial anthropomorphic algo-
rithms, which exploit properties of the original synapse model. This paper also presents a concise description of the experiments,
which prove the presence of the positive effect from the introduction of the depicted anthropomorphic algorithm into feature
extraction of the automated speech recognition engine.
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1. INTRODUCTION

1.1. Anthropomorphism, psychoacoustics,
and auditory physiology

Many contemporary speech processing techniques tend to
reflect properties of the human auditory apparatus. As a rule,
most of the information about the way human beings process
acoustic data comes into artificial applications from the field
of psychoacoustics (for classical psychoacoustics work, refer
to [1]).

Apart from the experiments with subjects that have re-
liably diagnosed and anatomically localised auditory pathol-
ogy, psychoacoustics treats the whole human auditory system
as a “black box” and tries to infer its properties without par-
ticular interest to its internal structure. Most of the psychoa-
coustical experiments include analysis of the responses to
“simple” sounds, like pure tones, wideband noise, coloured
noises, clicks, and so forth. But a lot of evidence (simulta-
neous and nonsimultaneous masking, pitch perception, etc.)
points to the fact that the auditory system is essentially a non-
linear system.

From the system identification theory, it is known that
the response of the linear system to an arbitrary excitation
can be derived from the study of responses of such sys-
tem to simple sounds, for example, tones, noises, and clicks.

There is no need to study the internal structure of the lin-
ear black box as far as responses to the simple input signals
are known. Strictly speaking, for the case of nonlinear sys-
tems, this black box approach is not applicable. There are
mainly two possibilities to model a nonlinear system: either
to construct a semiparametric statistical learning machine,
a “neural-network-like” structure, and let it adapt through
a kind of learning algorithm, or follow the parametric ap-
proach and somehow infer the internal structure of the non-
linear system to be modelled, parse it into smaller and, hope-
fully, simpler building blocks, then tune parameters of those
blocks, so that model response matches that of the original
system.

The first alternative suffers from the problems in creating
the representative training set, as well as from the absence
of a priori information regarding the required model com-
plexity. The mentioned difficulties virtually prohibit applica-
tion of this approach to the auditory modelling. The second
of the mentioned approaches corresponds to the physiologi-
cally grounded studies of the auditory apparatus.

Among the solutions, which could benefit most from
the employment of the physiological models, one can name
the development of cochlear implants, the objective and
quantitative quality assessment of the coded audio recon-
struction, anthropomorphic audio coding, and automated

mailto: alexei_v_ivanov@ieee.org
mailto:palex@it.org.by


1324 EURASIP Journal on Applied Signal Processing

speech recognition applications. While the first two men-
tioned branches are concentrated on the closest possible lit-
eral reproduction of the auditory apparatus properties in the
artificial device, the latter imply a computationally efficient
way to implement the “biological” audio processing algo-
rithm with a certain predefined precision.

In spite of being precise and objective, the physiological
hearing models neither provide a clear signal processing in-
terpretation of those phenomena, nor give a ready answer
regarding the relevance of the modelled phenomena to the
hearing process in general. Thus, straightforward applica-
tion of the physiological models to the fields of audio coding
and speech recognition may not easily gain advantage over
the conventional algorithms [2]. Before the employment of a
certain physiological model into the mentioned applications,
one should answer the questions of why it is important (i.e.,
what result is expected from it) and what is the most efficient
way of its implementation. This reasoning leads to a conclu-
sion that the further analysis of the available physiological
models with the aim of finding their algorithmical interpre-
tation is needed. This paper is further devoted to such kind
of analysis.

Particularly, we are aiming at analysing the adaptation
of the chemical “inner-hair-cell auditory nerve” (IHC-AN)
synapse, and trying to infer its importance to the artificial an-
thropomorphic audio signal (and particularly speech) pro-
cessing systems in adverse environments. Indeed, strong on-
set responses of the auditory nerve (AN) fibers to the pre-
sented stimulus are followed by the “adaptation”, that is,
gradual decrease of the response amplitude over time while
the stimulus amplitude remains constant. This “adaptive
strategy” at first glance seems to be advantageous since it al-
lows an emphasis of nonstationarities within the incoming
signal.

2. RESERVOIRMODEL OF IHC-AN
CHEMICAL SYNAPSE

Physiological research into the way the inner ear converts an
acoustical stimulation into a response of the auditory nerve
fibers (for a brief summary and review, refer to [3]) among
many other findings led to the conclusions that

(i) inner hair cells are mechanical vibrations sensory cells;
(ii) each IHC makes chemical synapses with approxi-

mately 10–30 peripheral axons of primary bipolar neu-
rons which cell bodies contained in the spiral gan-
glion and modiolar axons forming the auditory (VI-
IIth) nerve;

(iii) one can distinguish three groups of afferent neu-
rons based on the level of their spontaneous activity:
low-spontaneous rate, medium-spontaneous rate, and
high-spontaneous rate fibers. The level of spontaneous
activity of the fiber is closely related to the form and
the size of the synapse it formed with IHC;

(iv) chemical nature determines the following properties of
IHC-AN synapses: adaptive responses, synaptic delays,
quantised response amplitudes.
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Figure 1: Schematic representation of the Meddis reservoir model.

Properties of the chemical IHC-AN synapse are success-
fully captured by the so-called “reservoir models,” in which
neurotransmitter is produced and stored in the IHC to be re-
leased in accordance with IHC transmitter release probabil-
ity that changes with mechanical vibrations in the inner ear.
First reservoir models for IHC-AN synapses were proposed
as early as [4, 5].

Meddis has put forward [6] and further developed [7, 8,
9, 10, 11] a model of IHC, which includes a version of reser-
voir model of chemical synapse. The latest model [10, 11]
allows for a nice fit between experimental and model data
for all thee groups of IHC-AN synapses (low-, medium-,
and high-spontaneous rate fibers) with only calcium conduc-
tance parameters being changed.

It must be noted here that in reality neurotransmitter re-
lease into synaptic cleft is a probabilistic and quantal process.
However, to a certain degree, the dynamical properties of the
synapse may be reflected by the model that assumes that neu-
rotransmitter flow is deterministic and continuous. From the
practical point of view, this assumption corresponds to the
averaging of the synapse response over many identical stimu-
lations. Latest Meddis models [9, 10, 11] depart from this as-
sumption offering better correspondence to the data record-
ings of individual experiments. For the purpose of the anal-
ysis of the core properties of IHC-AN synapse and construc-
tion of the anthropomorphic artificial algorithms, we further
narrow our consideration to the deterministic and continu-
ous case.

Meddis version of the reservoir model is represented by
schematic drawing in Figure 1, and is described by the set of
(1). “Free transmitter pool” is the main storage facility for
the transmitter that is immediately ready to be released from
the cell to the “synaptic cleft.” It is filled with neurotransmit-
ter coming from the “transmitter factory” as well as that re-
cycled at the “reprocessing store.” Neurotransmitter is being
released into “synaptic cleft” with a certain rate, dependent
upon IHC stimulation, as well as instantaneous quantity of
the stored transmitter. From the “synaptic cleft,” transmitter
is either being returned to the cell for reprocessing or lost by
diffusion.
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We assume that the pool capacity equalsM. The quantity
of the transmitter stored in the pool at a certain time instant
will be denoted by q(t). The rate, at which the factory pro-
duces new transmitter, is proportional to the free volume of
the pool y[M − q(t)], here operation [· · · ] constitutes the
choice of the biggest value between zero and the value inside
square brackets. Alternatively we may put that coefficient y
becomes zero at the moment the pool is filled to the limit. We
denote the instantaneous amount of the transmitter in the
reprocessing by w(t). The recirculation rate is proportional
to the amount of the transmitter in the reprocessing xw(t).
The rate, at which transmitter is sent to the cleft, is equal to
the product of membrane permeability k(t) and the quantity
of the transmitter in the pool q(t). The quantity of the neu-
rotransmitter in the cleft at certain instant will be denoted by
c(t). Rates of neurotransmitter loss and return for reprocess-
ing are proportional to the amount of the transmitter in the
clefts lc(t) and rc(t), respectively.

As it follows from the above-presented description, Med-
dis version of the reservoir model is described by the follow-
ing set of differential equations:

dq(t)
dt

= xw(t) + y
[
M − q(t)

]− k(t)q(t),

dc

dt
= k(t)q(t)− (l + r)c(t),

dw

dt
= rc(t)− xw(t).

(1)

Initial conditions of the model are taken in accordance
with the assumption that at a certain instant t0 the system is
in an equilibrium state:

xw
(
t0
)
+ y
[
M − q

(
t0
)] = k

(
t0
)
q
(
t0
)
,

k
(
t0
)
q
(
t0
) = (l + r)c

(
t0
)
,

rc
(
t0
) = xw

(
t0
)
.

(2)

3. ADAPTATION PROPERTY OF THE RESERVOIR
MODEL OF IHC-AN CHEMICAL SYNAPSE

Figure 2 presents a typical response of the Meddis model to
the excitation. Signal k(t) is an input to the reservoir model
and is computed by earlier stages of cochlear model (the
cochlear filter bank [12] in combination with the first part
of IHC model [10]) when the test tone of 6 kHz is presented.
IHC medium-spontaneous rate fiber model gets its input
from the cochlear filter bank section with the closest to 6 kHz
centre frequency. It is running at the sampling frequency of
16 kHz.

Typical values of the model coefficients were taken from
the works of Meddis [6, 7, 8, 9] and are as follows:

M = 10, x = 66.3, y = 10,

l = 2580, r = 6580.
(3)
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Figure 2: Reservoir model response to the excitation with the 6 kHz
tone, CF ∼ 6 kHz, Fs = 48 kHz, medium-spontaneous rate fiber. A:
steady state, B: onset, C: adaptation, D: offset.

In order to perform this digital simulation (depicted in
Figure 2) of the synapse model, the forward difference ap-
proximation of the set of differential equations (1) was used,
as it is advised in [8].

As it can be seen from the above figure, there are four dis-
tinct regions in the model response signal c(t): steady-state
response to a long-term absence of stimulation (denoted as
region A); onset response (region B)—brief rise of the re-
sponse level to higher values; subsequent adaptation of the
response level to a much lower activity (region C); offset
region (region D), when synapse recovers from the stimu-
lation and response level slowly converges to a steady-state
level.

For a detailed review of adaptation properties of IHC,
please refer to [11].

4. ANALYSIS OF THE RESERVOIRMODEL
OF IHC-AN CHEMICAL SYNAPSE

Looking at the equation set (1), one can easily notice that
functions c(t) and f (t) = k(t)q(t) are linked with the lin-
ear constant-coefficient differential equation of the first or-
der with zero-free member:

dc(t)
dt

+ (l + r)c(t) = f (t). (4)

Thus, (4) describes a linear time invariant system, which
performs transformation of f (t) into c(t). Taking forward
difference approximation of the differential problem and as-
suming that both functions take discrete values at discrete-
time instances, it is possible to approximate this system with
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Figure 3: Frequency characteristic of filter A (Fs = 16 kHz).

a digital filter:

c(n) = 1
Fs

f (n− 1)−
(
l + r − Fs

)
Fs

c(n− 1), (5)

HA = (1/Fs)z−1

1− ((1− (l + r)/Fs
))
z−1

. (6)

Here Fs denotes the sampling frequency. We will further
refer to this filter as “filter A.” With the typical values of
parameters l and r, this filter is a lowpass filter, which has
rather smooth slope response characteristic that is presented
in Figure 3.

Further analysis of the equation set (1) leads to a con-
clusion that functions s(t) = M − q(t) and f (t) = k(t)q(t)
are also linked with the linear constant-coefficient differen-
tial equation of the first order with zero-free member:

d3s(t)
dt3

+ (x + y + l + r)
d2s(t)
dt2

+
(
(x + y)(l + r) + xy

)ds(t)
dt

+ xy(l + r)s(t) = d2 f (t)
dt2

+ (x + l + r)
df (t)
dt

+ xl f (t).

(7)

We note that this equation is valid for all such values
s(t) = M − q(t) ≥ 0. If s(t) = M − q(t) ≤ 0, then it must
be substituted with the following equation, which is obtained
from (7) by letting y = 0:

d3s(t)
dt3

+ (x + l + r)
d2s(t)
dt2

+ x(l + r)
ds(t)
dt

= d2 f (t)
dt2

+ (x + l + r)
df (t)
dt

+ xl f (t).

(8)

The performed digital simulations show that for realistic
input signals and reasonably high sampling frequency, it is
enough to use (7) only.
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Figure 4: Frequency characteristic of filter B (Fs = 16 kHz).

Again it is possible to approximate the system described
by (7) with a digital filter:

s(n) = b1
a0

f (n− 1) +
b2
a0

f (n− 2) +
b3
a0

f (n− 3)

− a1
a0
s(n− 1)− a2

a0
s(n− 2)− a3

a0
s(n− 3),

a0 = F3
s ,

a1 = −3F3
s + F2

s (x + y + l + r),

a2 = 3F3
s − 2F2

s (x + y + l + r) + Fs
(
(x + y)(l + r) + xy

)
,

a3 = −F3
s + F2

s (x + y + l + r)

− Fs
(
(x + y)(l + r) + xy

)
+ xy(l + r),

b1 = F2
s ,

b2 = −2F2
s + Fs(x + l + r),

b3 = F2
s − Fs(x + l + r) + xl.

(9)

We denote this filter as “filter B.” This is a lowpass fil-
ter with rather sharp frequency response characteristic (see
Figure 4) for typical values of parameters x, y, l, and r.

Filter B has two real zeros and three real poles:

nB1,2 = 1− 1
2Fs

(
(x + l + r)±

√
(x + l + r)2 − 4xl

)
, (10)

pB1 = 1− l + r

Fs
, pB2 = 1− x

Fs
, pB3 = 1− y

Fs
.

(11)

The above conclusions imply that there must be a link
between functions c(t) and s(t) = M − q(t) in the form
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Figure 5: Frequency characteristic of filter C (Fs = 16 kHz).

of the linear constant-coefficient differential equation of the
first order with zero-free member. Indeed, it is the case

d2c(t)
dt2

+ (x + l + r)
ds(t)
dt

+ xlc(t)

= −d2s(t)
dt2

− (x + y)
ds(t)
dt

+ xys(t).

(12)

As in the case of (7), this equation is valid for s(t) =M−
q(t) ≥ 0, if it is less than zero, then y in (12) should be put to
zero.

The digital filter, which is equivalent to the system (12),
is defined as follows:

s(n) = d0
c0

f (n) +
d1
c0

f (n− 1) +
d2
c0

f (n− 2)

− c1
c0
s(n− 1)− c2

c0
s(n− 2),

c0 = F2
s ,

c1 = −2F2
s + Fs(x + l + r),

c2 = F2
s − Fs(x + l + r) + xl,

d0 = −F2
s ,

d1 = 2F2
s − Fs(x + y),

d2 = −F2
s + Fs(x + y)− xy.

(13)

We will further denote this filter as “filter C.” It is a high-
pass filter with rather sharp frequency response characteristic
(see Figure 5) for typical values of its parameters.

We also note that a cascade connection of filters B and
C should be equivalent to filter A. This is true and can be
immediately proved by looking at (9), (13), and (5).
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Figure 6: Reservoir model equivalent structures.

5. EQUIVALENT DIGITAL STRUCTURES
FOR THE RESERVOIRMODEL

Analysis of the Meddis reservoir model allows us to plot its
equivalent structures for realisation in the digital form (see
Figure 6). The realisation with the help of filter A is more
preferable since it is more computationally efficient.

Apart from the linear digital filters, the developed equiv-
alent representations include an operation of multiplica-
tion of the signals in the time domain. It should be noted
that, in general, multiplication of time-varying signals does
not comply with the superposition principle, thus the reser-
voir model equivalent structure performs a nonlinear signal
transformation. The signal q(t) = M − s(t), which is multi-
plied by k(t) is confined in the interval [0,M] in accordance
with the reservoir model definition. It consists mainly of low-
frequency components of signal k(t)q(t) in accordance with
the properties of filter B.

Operation of the multiplication in the equivalent struc-
ture may be viewed as an automatic gain-control (AGC) op-
eration. The gain q(t) is a parameter, which slowly varies
through time betweenM in the case of weak input signal and
zero in the case of strong one.

Our equivalent structure of the Meddis reservoir model
has similarities with that plotted in the works of Perdigao [13,
14].

6. LINEAR APPROXIMATIONOF THE SIGNAL
MULTIPLICATION OPERATION IN THE EQUIVALENT
STRUCTURE OF THE RESERVOIRMODEL

It is possible to build a linear digital filter, which approxi-
mates the effect of the AGC mechanism for the case of small
deviations of the system from the equilibrium state. Partic-
ular form of such filter is dependent on initial conditions,
namely, the steady-state input signal value k0.

A method we are going to use is thoroughly investigated
in [15]. Similar methods of differential equation linearisation
(which lead to the identical results) are widely known and
used in the classical literature on theoretical mechanics.
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Indeed, we assume that the system depicted in Figure 6,
at a certain time instant, resides in the equilibrium. For such
case, we may write

f0 = k0q0,

q0 =M − s0,

y(l + r)s0 = l f0.

(14)

Any deviations from the steady state are sufficiently
small:

k(n) = k0 + δk(n),

f (n) = f0 + δ f (n),

q(n) = q0 + δq(n),

s(n) = s0 + δs(n).

(15)

Thus, for such system at an arbitrary time instant, we
may write the following set of equations (see Figure 6):

f0 + δ f (n) = (k0 + δk(n)
)(
q0 + δq(n)

)
,

q0 + δq(n) =M − (s0 + δs(n)
)
,

(
a0 + a1 + a2 + a3

)
s0 + a0δs(n) + a1δs(n− 1) + a2δs(n− 2)

+ a3δs(n− 3) = (b1 + b2 + b3
)
f0 + b1δ f (n− 1)

+ b2δ f (n− 2) + b3δ f (n− 3).
(16)

Coefficients in the third equation of the set are those of
filter B. Comparing sets (15) and (16), we may conclude that
the following set of equations holds for deviations:

δ f (n) = k0δq(n) + q0δk(n),

δq(n) = −δs(n),
a0δs(n) + a1δs(n− 1) + a2δs(n− 2) + a3δs(n− 3)

= b1δ f (n− 1) + b2δ f (n− 2) + b3δ f (n− 3).

(17)

A solution of the equation set (17) with respect to vari-
ables δk(n) and δ f (n) is represented as

q0 = My(l + r)
y(l + r) + lk0

,

q0
(
a0δk(n) + a1δk(n− 1) + a2δk(n− 2) + a3δk(n− 3)

)

= a0δ f (n) +
(
b1k0 + a1

)
δ f (n− 1)

+
(
b2k0 + a2

)
δ f (n− 2) +

(
b3k0 + a3

)
δ f (n− 3).

(18)

This equation represents a desired linear digital filter,
which linearly approximates AGC of the equivalent struc-
ture. This filter is capable of transforming the signal δk(t) =
k(t) − k0 into δ f (t) = δ(k(t)q(t)) = f (t) − f0 under the
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Figure 7: Frequency characteristic of filter D (Fs = 16 kHz, k0 =
10).

condition that these deviations are sufficiently small. The
transfer function of this filter is expressed as

HD
(
z, k0

)

= My(l + r)(
y(l + r) + lk0

)

· a0 + a1z−1 + a2z−2 + a3z−3

a0 +
(
b1k0 + a1

)
z−1 +

(
b2k0 + a2

)
z−2 +

(
b3k0 + a3

)
z−3

.

(19)

Note the explicit dependency of the form of this transfer
function on the value of k0. We will further denote this filter
as “filter D.”

The steady-state output f0(k0) of the system is derived
from the equilibrium set of (14) and is expressed as

f0
(
k0
) = q0k0 = My(l + r)

y(l + r) + lk0
k0. (20)

Filter D is a highpass filter with quite sharp frequency
response characteristic (see Figure 7) for a typical value of
k0 = 10.

In order to illustrate the dependence of the properties of
filter D upon the value of k0, Figure 8 depicts frequency char-
acteristic of that filter with k0 = 1000. As it can be seen from
the comparison of Figures 7 and 8, apart from the change of
the gain, the cut-off frequency of the filter is getting bigger
with the increase of k0.

From the digital filter theory it is known that the lin-
ear digital filter is “bounded-input bounded-output” (BIBO)
stable if all of its poles lay inside the unit circle in z-plane. Fil-
ter D has three real poles. Analytical derivation of their val-
ues is rather complex in general. To perform such derivation,
one could take advantage of Cardano formula for the roots
of cubic equation.
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Figure 8: Frequency characteristic of filter D (Fs = 16 kHz, k0 =
1000).

An alternative way is to estimate positions of the filter
poles. Indeed, for realistic values of k0 ∼ 101–102 with quite
good precision, filter D poles lay in the vicinity of its zeros.
Zeros of filter D coincide with poles of filter B (11), and ap-
proximately we may put

pD1 ≈ nD1 = 1− l + r

Fs
, pD2 ≈ nD2 = 1− x

Fs
,

pD3 ≈ nD3 = 1− y

Fs
.

(21)

It must be noted also that if k0 → 0, then pDN → nDN .
Pole pD1 first leaves the unit circle while sampling fre-

quency is being decreased, indeed the realistic values of l + r
are significantly larger than the values of x and y. Conse-
quently, approximation of the position of the first pole gives
us a condition of filter D stability, while k0 → 0:

Fs >
l + r

2
. (22)

Pole pD1 moves to the right on the real axis if the value of
k0 is being increased. This allows for filter D to become stable
with increased k0 even if it was unstable with the smaller val-
ues of k0. This leads us to a conclusion that (22) represents
sufficient condition for filter D to be stable with arbitrary re-
alistic values of k0.

In the work [8], it is required that the sampling frequency
must be sufficiently large for a successful digital implemen-
tation of the reservoir model. Our finding of stability con-
dition (22) puts a quantitative restriction on the sampling
frequency for the linearised approximation.

Under the same assumption of small deviations from the
equilibrium state, it is possible to construct an equivalent lin-
ear filter, which would serve as linear approximation of rela-
tion of the signals δk(t) and δc(t) = c(t)− c0, that is, the in-
put and the output signals of the reservoir model measured
relatively to their corresponding equilibrium values.

Such filter (further denoted as filter E) corresponds to the
cascade of the filters D and A. Its frequency response charac-
teristic is presented in Figure 9. Filter E transfer function is
defined as

HE
(
z, k0

) = 1
FS
· My(l + r)(

y(l + r) + lk0
) ·

(
1− nD2z−1

)(
1− nD3z−1

)
z−1

1 +
((
b1k0 + a1

)
/a0
)
z−1 +

((
b2k0 + a2

)
/a0
)
z−2 +

((
b3k0 + a3

)
/a0
)
z−3

. (23)

It should be noted that the pole of filter A and the first
zero of filter D are equal, thus they are removed from (23).

Response magnitude in the equilibrium state is derived
from (2) and (20) and it looks like

c0
(
k0
) = 1

(l + r)
f0
(
k0
) = My

y(l + r) + lk0
k0. (24)

The notion that poles of filter E coincide with those of
filter D leads to a conclusion that condition of the stability of
the filter is identical to that of filter D.

7. PRACTICAL OUTCOMEOF THE PRESENTED
RESERVOIRMODEL ANALYSIS

As it can be seen from Figure 6, the reservoir model is equiv-
alent to a kind of signal-dependent gain-control mechanism.
The presented equivalent structure may be perceived as the
interpretation of the IHC adaptation mechanism from the

algorithmical signal processing point of view. In the equiva-
lent structure, filters A, B, and C are all linear time-invariant
structures, the only nonlinear element here is the multiplica-
tion of the signals. Implementation of the equivalent struc-
ture via a combination of filters A and B seems more prefer-
able among the alternatives, presented in Figure 6, since it
requires less computational effort.

A brief look at the poles of filter A (6) and B (11) gives
an indication that their stability conditions are identical to
that of filter D (22). This fact is a direct result of employment
of forward difference approximation of the differential prob-
lem in the filter synthesis. All known digital implementations
of the IHC reservoir model [16, 17, 18] share this method
of differential approximation. However, this limitation seems
impractical from the technological point of view, since it pre-
vents implementation of the described equivalent structure,
as well as other implementations mentioned above, for sig-
nals with sampling frequency below ∼ 4, 6 kHz using the
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Figure 9: Frequency characteristic of filter E (Fs = 16 kHz, k0 =
50).

realistic values of the model parameters. Indeed, such limi-
tation of the lowest possible sampling frequency makes effi-
cient combination of the model with multirate cochlear filter
banks impossible.

Fortunately, there exist other methods of approximation
of the differential problem in the digital domain, for exam-
ple, bilinear transformation. In accordance with its proper-
ties, any stable analog linear time-invariant filter, described
by the corresponding differential equation, is converted into
a stable digital filter. With the help of bilinear transforma-
tion, it is possible to construct universally stable digital fil-
ters A and B regardless of the sampling frequency. This pro-
cedure as well as its combination with computationally effi-
cient implementation of the multirate cochlear filter bank is
described in detail in [19].

However, in the case of bilinear transformation, unlike
the situation with difference approximation, the coefficient
b0 of the filter B is not equal to zero:

HB(z) = b0 + b1z−1 + b2z−2 + b3z−3

a0 + a1z−1 + a2z−2 + a3z−3
,

a0 = 8F3
s + 4F2

s (x + y + l + r)

+ 2Fs
(
(x + y)(l + r) + xy

)
+ xy(l + r),

a1 = −24F3
s − 4F2

s (x + y + l + r)

+ 2Fs
(
(x + y)(l + r) + xy

)
+ 3xy(l + r),

a2 = 24F3
s − 4F2

s (x + y + l + r)

− 2Fs
(
(x + y)(l + r) + xy

)
+ 3xy(l + r),

a3 = −8F3
s + 4F2

s (x + y + l + r)

− 2Fs
(
(x + y)(l + r) + xy

)
+ xy(l + r),

b0 = 4F2
s + 2Fs(x + l + r) + xl,

b1 = −4F2
s + 2Fs(x + l + r) + 3xl,

b2 = −4F2
s − 2Fs(x + l + r) + 3xl,

b3 = 4F2
s − 2Fs(x + l + r) + xl.

(25)
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Figure 10: Transposed direct form II realization.

This fact leads to the additional operations at the imple-
mentation of the signal flow of Figure 6. Indeed, writing a
set of equations describing the signal flow over the feedback
loop of Figure 6 results in the following relations:

f (n) = k(n)q(n) = k(n)
(
M − s(n)

)
,

3∑
i=0

bi f (n− i) =
3∑
i=0

ais(n− i).
(26)

It is evident that simple substitution of the second equa-
tion into the first does not lead to the expression of the out-
put signal f (n) through the current value of the input signal
k(n) and previous values of the signals f and s. The current
value of the output is present on the both sides of the equa-
tion. Separation of the variables leads to the following ex-
pression for the output signal:

f (n)= k(n)
1+
(
b0/a0

)
k(n)

·

M−

3∑
i=1

bi
a0

f (n−i)+
3∑
i=1

ai
a0
s(n−i)


.
(27)

It appears that the most computationally effective way to
implement filter B with its signal feedback is a transposed di-
rect form II structure (Figure 10). This realisation minimises
the number of delay units.

For the sake of completeness of the picture, the follow-
ing formula presents a version of the digital filter A, which is
obtained with the help of bilinear transformation:

HA(z) = 1
l + r + 2Fs

· 1 + z−1

1 +
((
l + r − 2Fs

)
/
(
l + r + 2Fs

))
z−1

.

(28)

The formulae (25), (27), and (28), as well as the Figures 6
and 10, contain exact instructions for the implementation of
the reservoir IHC model, which remains stable at any sam-
pling frequency. As it was noted above, this property saves
computational load and is desirable for efficient incorpora-
tion of the model into multirate cochlear filter bank.
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Linear approximation (23) of the reservoir model might
be viewed as a computationally effective way to implement
the model when input signal does not significantly deviate
from a certain fixed stationary value. It might also serve as
the linear time-variant filter, which simulates the reservoir
model, when the slowly varying stationary value of the signal
k0 is known in advance or is estimated through a long-term
moving average procedure.

This linear approximation is also important because of
its link to the RASTA filtering technique [20, 21], a well-
established channel normalisation and speech augmentation
means in ASR. Although the nature of this link needs further
investigation, both techniques represent low-passband filters,
running in separate frequency channels, which are converted
with the help of nonlinearity. In the case of RASTA, each fre-
quency channel is decimated to represent one frequency bin
of the short time Fourier transform spectrogram and con-
verted into modulation-frequency domain by Jah-log trans-
formation [16]. In the case of reservoir model there is no
explicit decimation and the passband signal is transformed
by “BM vibration—membrane permeability” transforma-
tion [6], which somewhat resembles Jah-log transform.

8. EXPERIMENTS

Several experiments were run in order to validate the orig-
inal assumption that the anthropomorphic auditory mod-
elling in general and IHC adaptationmodel in particularmay
indeed augment performance of the ASR systems. A compar-
ison involved three experimental setups, which are described
in more detailed fashion in [22].

(i) BASELINE: an ASR feature extraction (FE) algorithm,
which is based on linear time-invariant perceptually
aligned filters.

(ii) A-MORPHIC: anthropomorphic feature extraction al-
gorithm [22], which combined linear time-variant
cochlear filters to model auditory suppression and
the above-described IHC reservoir model implemen-
tation. However, results mainly reflect effect of the
IHC reservoir model since speech recordings in the ex-
periment had approximately the same loudness level
(∼ 40 dB SPL).

(iii) RASTA: the conventional RASTA algorithm-based fea-
ture extraction [16].

In order to be effective, ASR FE algorithms should con-
vey as much information about the speech source as possible.
The measure of the amount of conveyed information, that is,
the mutual information between a speech source S, which at
any instant of time resides in one of the possible states Ci,
i = 1, 2, . . . ,N , and a measured feature vector component X
is defined as follows:

I(S,X) = H(S)−H(S | X)
= −

∑
∀Ci∈{c}

P
(
Ci
)
log2 P

(
Ci
)

+
∑

∀Ci∈{c}

∫
G(X)

P
(
Ci,X

)
log2 P

(
Ci | X

)
dX.

(29)
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Figure 11:Mutual information of feature components (∆X = 0.01).

Estimation of the mutual information has been per-
formed with the help of the following procedure [22]:

I∆X(S,X) ≈ log2N +
1
N


∑
∀i

∑
∀ j

N
(
Ci, ∆Xj

)
log2N

(
Ci, ∆Xj

)

−
∑
∀i

N
(
Ci
)
log2N

(
Ci
)

−
∑
∀ j

N
(
∆Xj

)
log2N

(
∆Xj

).
(30)

Here N denotes a total number of feature frames
in the measurement; N(∆Xj)—a number of frames when
the feature value falls into the interval [min(X) + ( j −
1)∆X ,min(X) + j∆X]; N(Ci)—a number of frames which
were generated in the state Ci; N(Ci, ∆Xj)—a number of
frames, belonging to the certain feature interval, which were
generated by the source in the state Ci.

Phonetically labelled TIMIT speech corpus was used
in this experiment. Probability distributions were approx-
imated with histograms that had a step size ∆X = 0.01.
Results, which are presented in Figure 11, show that A-
MORPHIC features are generally the most informative.

Another experiment was performed to estimate a degree
of invariance of the feature vectors to different kinds of ad-
verse interference. To provide estimates of the feature invari-
ance degree a simple Euclidian distance between feature vec-
tors was used. Exact experiment description may be found
in [22]. Results of the experiment, which are presented in
Table 1, reflect a mean distance of the feature vectors in ad-
verse conditions to those perceived in a “clean” environment.
As it can be seen from the table, A-MORPHIC features are
less invariant to the adverse interference than RASTA. Any-
way, a distance between “clean” and severely noisy (SNR
0 dB) features in the case of A-MORPHIC FE matches that
between “clean” and mildly-noisy (SNR 30 dB) features in
the BASELINE case.

Results of the depicted experiments are also supported
by the reported in [22] comparison of the speech recogniser
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Table 1: Expected mean distance between the feature vectors in ad-
verse conditions and clean environment.

Feature extraction
algorithm

Interference

Noise Noise Noise Convol.

30 dB 10 dB 0 dB channel

BASELINE 0.41597 0.78894 1.05047 0.49298

RASTA FE 0.09842 0.17563 0.22338 0.05300

A-MORPHIC 0.26853 0.44951 0.42615 0.16665

performances (refer to [23] for a description of the recog-
niser). It’s main result is that in adverse environments the
recogniser with A-MORPHIC FE performs at least as good as
the one with RASTA FE. These facts support the conjecture
of the present paper that application of the anthropomor-
phic algorithms in technical devices, namely, ASR engines, is
fruitful.

9. CONCLUSIONS

Analysis of the physiological model of the chemical IHC-AN
synapse creates an opportunity to implement it in the form
of the anthropomorphic algorithm, which is computation-
ally efficient and thus may be used in technical devices. The
equivalent digital and linearised equivalent representations
create alternatives for a traditional direct difference approx-
imation of the original set of differential equations. These
representations allow for a multiple “accuracy versus compu-
tational load” tradeoffs at the implementation stage. Within
the described framework, it is possible to create implementa-
tions, which remain stable regardless to the signal sampling
frequency.

It was found that effect of the IHC adaptation model
is equivalent to the action of signal-dependent automatic
gain control mechanism. It is also conjectured that effect
of the linearised equivalent representation resembles that of
RASTA, an algorithm engineered with the aim of alleviating
the influence of additive and convolutive noises. This inter-
pretation of the IHC-AN synapse model gives us reasons to
believe that it is important as a mean of increasing ASR ro-
bustness to the real-world environments (e.g., “too slow” and
“too fast” varying additive and convolutive noises) and also
as a mean of enhancement of the useful signal in the speech
coding applications. Presented and referenced experiments
confirm viability of the application of the discussed anthro-
pomorphic algorithm to the ASR field. However, the exact
form of the relation between the IHC-AN synapse model and
RASTA should be investigated further.
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