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The acoustic wave received at the ears is processed by the human auditory system to separate different sounds along the intensity,
pitch, and timbre dimensions. Conventional Fourier-based signal processing, while endowed with fast algorithms, is unable to
easily represent a signal along these attributes. In this paper, we discuss the creation of maximally separable sounds in auditory
user interfaces and use a recently proposed cortical sound representation, which performs a biomimetic decomposition of an
acoustic signal, to represent and manipulate sound for this purpose. We briefly overview algorithms for obtaining, manipulating,
and inverting a cortical representation of a sound and describe algorithms for manipulating signal pitch and timbre separately.
The algorithms are also used to create sound of an instrument between a “guitar” and a “trumpet.” Excellent sound quality can
be achieved if processing time is not a concern, and intelligible signals can be reconstructed in reasonable processing time (about
ten seconds of computational time for a one-second signal sampled at 8 kHz). Work on bringing the algorithms into the real-time
processing domain is ongoing.
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1. INTRODUCTION

When a natural sound source such as a human voice or a
musical instrument produces a sound, the resulting acoustic
wave is generated by a time-varying excitation pattern of a
possibly time-varying acoustical system, and the sound char-
acteristics depend both on the excitation signal and on the
production system. The production system (e.g., human vo-
cal tract, the guitar box, or the flute tube) has its own charac-
teristic response. Varying the excitation parameters produces
a sound signal that has different frequency components, but
still retains perceptual characteristics that uniquely identify
the production instrument (identity of the person, type of
instrument—piano, violin, etc.), and even the specific type

of piano on which it was produced. When one is asked to
characterize this sound source using descriptions based on
Fourier analysis, one discovers that concepts such as fre-
quency and amplitude are insufficient to explain such per-
ceptual characteristics of the sound source. Human linguis-
tic descriptions that characterize the sound are expressed in
terms of pitch and timbre. The goal of anthropomorphic al-
gorithms is to reproduce these percepts quantitatively.

The perceived sound pitch is closely coupled with its har-
monic structure and frequency of the first harmonic, or F0.
On the other hand, the timbre of the sound is defined broadly
as everything other than the pitch, the loudness, and the spa-
tial location of the sound. For example, two musical instru-
ments might have the same pitch if they play the same note,

mailto:dz@umiacs.umd.edu
mailto:tschi@isr.umd.edu
mailto:sas@eng.umd.edu
mailto:ramani@umiacs.umd.edu


Neuromimetic Sound Representation for Percept Manipulation 1351

but it is their differing timbre that allows us to distinguish be-
tween them. Specifically, the spectral envelope and the spec-
tral envelope variations in time that include, in particular,
onset and offset properties of the sound are related to the
timbre percept.

Most conventional techniques of soundmanipulation re-
sult in simultaneous changes in both the pitch and the timbre
and cannot be used to control or assess the effects in pitch
and timbre dimensions independently. A goal of this paper is
the development of controls for independent manipulation
of pitch and timbre of a sound source using a cortical sound
representation introduced in [2], where it was used for assess-
ment of speech intelligibility and for prediction of the corti-
cal response to an arbitrary stimulus, and later extended in
[3] providing fuller mathematical details as well as address-
ing invertibility issues. We simulate the multiscale audio rep-
resentation and processing believed to occur in the primate
brain [4], and while our sound decomposition is partially
similar to existing pitch and timbre separation and sound
morphing algorithms (in particular, MFCC decomposition
algorithm in [5], sinusoid-plus-noise model and effects gen-
erated with it in [6], and parametric source models using
LPC and physics-based synthesis in [7]), the neuromorphic
framework provides a view of processing from a different
perspective, supplies supporting evidence to justify the pro-
cedure performed, tailors it to the way the human nervous
system processes auditory information, and extends the ap-
proach to include decomposition in the time domain in ad-
dition to frequency. We anticipate our algorithms to be ap-
plicable in several areas, including musical synthesis, audio
user interfaces, and sonification.

In Section 2, we discuss the potential applications for
the developed framework. In Sections 3 and 4, we describe
the processing of the audio information through the cortical
model [3] in forward and backward directions, respectively,
and in Section 5, we propose an alternative, faster imple-
mentation of the most time-consuming cortical processing
stage.We discuss the quality of audio signal reconstruction in
Section 6 and show examples of timbre-preserving pitch ma-
nipulation of speech and timbre interpolation of musical
notes in Sections 7 and 8, respectively. Finally, Section 9 con-
cludes the paper.

2. APPLICATIONS

The direct application that motivated us to undertake the
research described (and the area it is currently being used
in) is the development of advanced auditory user interfaces.
Auditory user interfaces can be broadly divided into two
groups, based on whether speech or nonspeech audio signals
are used in the interface. The field of sonification [8] (“. . .
use of nonspeech audio to convey information”) presents
multiple challenges to researchers in that they must both
identify and manipulate different percepts of sound to rep-
resent different parameters in a data stream while at the
same time creating efficient and intuitive mappings of the
data from the numerical domain to the acoustical domain.
An extensive resource describing sonification work is the

International Community for Auditory Display (ICAD) web
page (see http://www.icad.org/), which includes past confer-
ence proceedings. While there are some isolated examples
of useful sonifications and attempts at creating multidimen-
sional audio interfaces (e.g., the Geiger counter or the pulse
oximeter [9]), the field of sonification, and as a consequence
audio user interfaces, is still in the infancy due to the lack of
a comprehensive theory of sonification [10].

What is needed for advancements in this area are iden-
tification of perceptually valid attributes (“dimensions”) of
sound that can be controlled; theory and algorithms for
sound manipulation that allow control of these dimensions;
psychophysical proof that these control dimensions con-
vey information to a human observer; methods for easy-to-
understand data mapping to auditory domain; technology
to create user interfaces using these manipulations; and re-
finement of acoustic user interfaces to perform some spe-
cific example tasks. Our research addresses some of these is-
sues and creates the basic technology for manipulation of ex-
isting sounds and synthesis of new sounds achieving speci-
fied attributes along the perceptual dimensions. We focus on
neuromorphic-inspired processing of pitch and timbre per-
cepts, having the location and ambience percepts described
earlier in [11]. Our real-time pitch-timbre modification and
scene rendering algorithms are capable of generating stable
virtual acoustic objects whose attributes can be manipulated
in these perceptual dimensions.

The same set of percepts may be modified in the case
when speech signals are used in audio user interfaces. How-
ever, the purpose of percept modification in this case is not
to convey information directly but rather to allow for max-
imally distinguishable and intelligible perception of (possi-
bly several simultaneous) speech streams under stress condi-
tions using the natural neural auditory dimensions. Applica-
tions in this area might include, for example, an audio user
interface for a soldier where multiple sound streams are to
be attended to simultaneously. To our knowledge, much re-
search has been devoted to selective attention to one signal
from a group [12, 13, 14, 15, 16] (the well-known “cocktail
party effect” [17]), and there have only been a limited num-
ber of studies (e.g., [18, 19]) on how well a person can si-
multaneously perceive and understand multiple concurrent
speech streams. The general results obtained in these two pa-
pers suggest that increasing separation along most of the per-
ceptual characteristics leads to improvement in the recogni-
tion rate for several competing messages. The characteristic
that provides the most improvement is the spatial separation
of the sounds, which is beyond the scope of this paper; these
spatialization techniques are well described in [11]. Pitch was
a close second, and in Section 7 of this paper, we present a
cortical-representation-based pitch manipulation algorithm
that can be used to achieve the desired perceptual separation
of the sounds. Timbre manipulations did not result in signif-
icant improvements in recognition rate in [18, 19], though.

Another area where we anticipate our algorithms to be
applicable to is musical synthesis. Synthesizers often use sam-
pled sound that has to be pitch shifted to produce differ-
ent notes [7]. Simple resampling that was widely used in the
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past in commercial-grade music synthesizers preserves nei-
ther the spectral nor the temporal envelope (onset and decay
ratios) of an instrument. More recent wavetable synthesizers
can impose the correct temporal envelope on the sound but
may still distort the spectral envelope. The spectral and the
temporal envelopes are parts of the timbre percept, and their
incorrect manipulation can lead to poor perceptual quality
of the resulting sound samples.

The timbre of the instrument usually depends on the size
and the shape of the resonator; it is interesting that for some
instruments (piano, guitar), the resonator shape (which de-
termines the spectral envelope of the produced sound) does
not change when different notes are played, and for others
(flute, trumpet), the length of resonating air column changes
as the player opens different holes in the tube to produce
different notes. Timbre-preserving pitch modification algo-
rithm described in Section 7 provides a physically correct
pitch manipulation technique for instruments with the res-
onator shape independent of the note played. It is also possi-
ble to perform timbre interpolation between sound samples;
in Section 8, we describe the synthesis of a new musical in-
strument with the perceptual timbre lying in between two
known instruments—the guitar and the trumpet. The syn-
thesis is performed in the timbre domain, and then a timbre-
preserving pitch shift described in Section 7 is applied to
form different notes of the new instrument. Both operations
use the cortical representation, which turned out to be ex-
tremely useful for separate manipulations of percepts.

3. THE CORTICALMODEL

In a complex acoustic environment, sources may simulta-
neously change their loudness, location, timbre, and pitch.
Yet, humans are able to integrate effortlessly the multitude
of cues arriving at their ears and derive coherent percepts
and judgments about each source [20]. The cortical model
is a computational model for how the brain is able to obtain
these features from the acoustic input it receives. Physiolog-
ical experiments have revealed the elegant multiscale strat-
egy developed in the mammalian auditory system for cod-
ing of spectro-temporal characteristics of the sound [4, 21].
The primary auditory cortex (AI), which receives its input
from the thalamus, employs a multiscale representation in
which the dynamic spectrum is repeatedly represented in AI
at various degrees of spectral and temporal resolutions. This
is accomplished by cells whose responses are selective to a
range of spectro-temporal parameters such as the local band-
width, the symmetry, and onset and offset transition rates
of the spectral peaks. Similarly, psychoacoustical investiga-
tions have shed considerable light on the way we form and
label sound images based on relationships among their phys-
ical parameters [20]. A mathematical model of the early and
the central stages of auditory processing in mammals was re-
cently developed and described in [2, 3]. It is a basis for our
work and is briefly summarized here; a full formulation of
the model is available in [3] and analysis code in the form of
a Matlab toolbox (“NSL toolbox”) can be downloaded from
http://www.isr.umd.edu/CAAR/pubs.html.
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Figure 1: Tuning curves for cochlear filter bank filters tuned at
180Hz, 510Hz, and 1440Hz (channels 24, 60, and 96), respectively.

The model consists of two basic stages. The first stage of
the model is an early auditory stage, which models the trans-
formation of an acoustic signal into an internal neural repre-
sentation, called the “auditory spectrogram.” The second is a
central stage, which analyzes the spectrogram to estimate its
spectro-temporal features, specifically its spectral and tem-
poral modulations, using a bank of modulation selective fil-
ters mimicking those described in the mammalian primary
auditory cortex.

The first processing stage converts the audio signal s(t)
into an auditory spectrogram representation y(t, x) (where x
is the frequency on a logarithmic frequency axis) and consists
of a sequence of three steps described below.

(i) In the analysis step, the acoustic wave creates a com-
plex pattern of mechanical vibrations on a basilar membrane
in mammalian cochlea. For an acoustic tone of a given fre-
quency, the amplitude of the traveling wave induced in the
membrane slowly increases along it up to a certain point x
and then sharply decreases. The position of the point x de-
pends on the frequency, with different frequencies resonat-
ing at different points along the membrane. These maximum
response points create a tonotopical frequency axis with fre-
quencies approximately logarithmically decreasing from the
base of the cochlea. This process is simulated by a cochlear
filter bank—a bank of highly asymmetric constant Q band-
pass filters (also called channels) spaced equally over the log-
frequency axis; we denote the impulse response of each filter
by h(t; x). There are 128 channels with 24 channels per octave
covering a total of 5(1/3) octaves with the lowest channel fre-
quency of 90Hz in the implementation of the model that we
use, and equivalent rectangular bandwidth (ERB) filter qual-
ity QERB ≈ 4. Figure 1 shows the frequency-response curves
of a few cochlear filters.

http://www.isr.umd.edu/CAAR/pubs.html
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(ii) In the transduction step, the mechanical vibrations
of the membrane are transduced into the intracellular po-
tential of the inner hair cells. Membrane displacements cause
the flow of liquid in the cochlea to bend the cilia (tiny hair-
like formations) that are attached to the inner hair cells. This
bending opens the cell channels and enables ionic current to
flow into the cell and to change its electric potential, which is
later transmitted by auditory nerve fibers to the cochlear nu-
cleus. In the model, these steps are simulated by a highpass
filter (equivalent to taking a time-derivative operation), non-
linear compression g(z), and the lowpass filter w(t) with cut-
off frequency of 2 kHz, representing the fluid-cilia coupling,
ionic channel current, and hair cell membrane leakage, re-
spectively.

(iii) Finally, in the reduction step, the input to the an-
teroventral cochlear nucleus undergoes lateral inhibition op-
eration followed by envelope detection. Lateral inhibition ef-
fectively enhances the frequency selectivity of the cochlear
filters from Q ≈ 4 to Q ≈ 12 and is modeled by a spatial
derivative across the channel array. Then, the nonnegative re-
sponse of the lateral inhibitory network neurons is modeled
by a half-wave rectifier, and an integration over a short win-
dow, µ(t; τ) = e−t/τ , with τ = 8milliseconds, is performed to
model the slow adaptation of the central auditory neurons.

In mathematical form, the three steps described above
can be expressed as

y1(t, x) = s(t)⊕ h(t; x),

y2(t, x) = g
(
∂t y1(t, x)

)⊕w(t),

y(t, x) = max
(
∂x y2(t, x), 0

)⊕ µ(t; τ),

(1)

where ⊕ denotes a convolution with respect to t.
The above sequence of operations essentially consists of

a bank of constant Q filters with some additional operations
and efficiently computes the time-frequency representation
of the acoustic signal, which is called the auditory spec-
trogram (Figure 2). The auditory spectrogram is invertible
through an iterative process (described in the next section);
perceptually perfect inversion can be achieved, albeit at a very
significant computational expense. A time slice of the spec-
trogram is called the auditory spectrum.

The second processing stage mimics the action of the
higher central auditory stages (especially the primary audi-
tory cortex). We provide a mathematical derivation (as pre-
sented in [3]) of the cortical representation below, as well as
qualitatively describe the processing.

The existence of a wide variety of neuron spectro-
temporal response fields (SRTF) covering a range of fre-
quency and temporal characteristics [21] suggests that they
may, as a population, perform a multiscale analysis of their
input spectral profile. Specifically, the cortical stage estimates
the spectral and temporal modulation content of the audi-
tory spectrogram using a bank of modulation selective filters
h(t, x;ω,Ω,ϕ, θ). Each filter is tuned (Q = 1) to a combi-
nation of a particular spectral modulation and a particular
temporal modulation of the incoming signal, and filters are
centered at different frequencies along the tonotopical axis.
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Figure 2: Example auditory spectrogram for the sentence “This
movie is provided . . . ”.

These two types of modulations are defined as follows.
(i) Temporal modulation, which defines how fast the sig-

nal energy is increasing or decreasing along the time axis at a
given time and frequency. It is characterized by the parame-
ter ω, which is referred to as rate or velocity and is measured
in Hz, and by characteristic temporal modulation phase ϕ.

(ii) Spectral modulation, which defines how fast the sig-
nal energy varies along the frequency axis at a given time
and frequency. It is characterized by the parameter Ω, which
is referred to as density or scale and is measured in cycles
per octave (CPO), and by characteristic spectral modulation
phase θ.

The filters are designed for a range of rates from 2
to 32Hz and scales from 0.25 to 8 CPO, which corre-
sponds to the ranges of neuron spectro-temporal response
fields found in the primate brain. The impulse response
function for the filter h(t, x;ω,Ω,ϕ, θ) can be factored into
hs(x;Ω, θ)-spectral and ht(t;ω,ϕ)-temporal parts, respec-
tively. The spectral impulse response function hs(x;Ω, θ) is
defined through a phase interpolation of the spectral filter
seed function u(x;Ω) with its Hilbert transform ū(x;Ω), and
the temporal impulse response function is similarly defined
via the temporal filter seed function v(t;ω):

hs(x;Ω, θ) = u(x;Ω) cos θ + ū(x;Ω) sin θ,

ht(t;ω,ϕ) = v(t;ω) cosϕ + v̄(t;ω) sinϕ.
(2)

The Hilbert transform is defined as

f̄ (x) = 1
π

∫∞
−∞

f (z)
z − x

dz. (3)

We choose

u(x) = (1− x2
)
e−x

2/2, v(t) = e−t sin(2πt) (4)
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Figure 3: Tuning curves for the basis (seed) filter for the rate-scale decomposition. The seed filter is tuned to the rate of 1Hz and the scale
of 1 CPO. (a) Spectral response. (b) Temporal response.

as the functions that produce the basic seed filter tuned to a
scale of 1 CPO and a rate of 1Hz. Figure 3 shows its spec-
tral and temporal responses generated by functions u(x) and
v(t), respectively. Differently tuned filters are obtained by di-
lation or compression of the filter (4) along the spectral and
temporal axes:

u(x;Ω) = Ωu(Ωx), v(t;ω) = ωv(ωt). (5)

The response rc(t, x) of a cell c with parameters ωc, Ωc,
ϕc, θc to the signal producing an auditory spectrogram y(t, x)
can therefore be obtained as

rc
(
t, x;ωc,Ωc,ϕc, θc

) = y(t, x)⊗ h
(
t, x;ωc,Ωc,ϕc, θc

)
, (6)

where ⊗ denotes a convolution both on x and on t.
An alternative representation of the filter can be derived

in the complex domain. Denote

h̃s(x;Ω) = u(x;Ω) + jū(x;Ω),

h̃t(t;ω) = v(t;ω) + jv̄(t;ω),
(7)

where j = √−1. Convolution of y(t, x) with a downward-
moving STRF obtained as h̃s(x;Ω)h̃t(t;ω) and an upward-
moving SRTF obtained as h̃s(x;Ω)h̃∗t (t;ω) (where asterisk
denotes complex conjugation) results in two complex re-
sponse functions:

zd
(
t, x;ωc,Ωc

) = y(t, x)⊗ [h̃s(x;Ωc
)
h̃t
(
t;ωc

)]
= ∣∣zd(t, x;ωc,Ωc

)∣∣e jψd(t,x;ωc ,Ωc),

zu
(
t, x;ωc,Ωc

) = y(t, x)⊗ [h̃s(x;Ωc
)
h̃∗t
(
t;ωc

)]
= ∣∣zu(t, x;ωc,Ωc

)∣∣e jψu(t,x;ωc ,Ωc),

(8)

and it can be shown [3] that

rc
(
t, x;ωc,Ωc,ϕc, θc

) = 1
2

[∣∣zd∣∣ cos (ψd − ϕc − θc
)

+
∣∣zu∣∣ cos (ψu + ϕc − θc

)] (9)

(the arguments of zd, zu, ψd, and ψu are omitted here for
clarity). Thus, the complex wavelet transform (8) uniquely
determines the response of a cell with parameters ωc, Ωc,
ϕc, θc to the stimulus, resulting in a dimensionality reduc-
tion effect in the cortical representation. In other words,
knowledge of the complex-valued functions zd(t, x;ωc,Ωc)
and zu(t, x;ωc,Ωc) fully specifies the six-dimensional cortical
representation rc(t, x;ωc,Ωc,ϕc, θc). The cortical representa-
tion thus can be obtained by performing (8) which results in
a four-dimensional (time, frequency, rate, and scale) hyper-
cube of (complex) filter coefficients that can be manipulated
as desired and inverted back into the audio signal domain.

Essentially, the filter output is computed by a convolu-
tion of its spectro-temporal impulse response (STIR) with
the input auditory spectrogram, producing a modified spec-
trogram. Since the spectral and temporal cross-sections of
an STIR are typical of a bandpass impulse response in hav-
ing alternating excitatory and inhibitory fields, the output at
a given time-frequency position of the spectrogram is large
only if the spectrogram modulations at that position are
tuned to the rate, scale, and direction of the STIR. A map of
the responses across the filter bank provides a unique charac-
terization of the spectrogram that is sensitive to the spectral
shape and dynamics over the entire stimulus.

To emphasize the features of the model that are im-
portant for the current work, note that every filter in the
rate-scale analysis responds well to the auditory spectro-
gram features that have high correlation with the filter shape.
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Figure 4: Sample scale decomposition of (h) the auditory spectrum using different scales: (a) DC, (b) 0.25, (c) 0.5, (d) 1.0, (e) 2.0,
(f) 4.0, and (g) 8.0.

The filter shown in Figure 3 is tuned to the scale of 1 CPO
and essentially extracts features that are of about this par-
ticular width on the log-frequency axis. A scale analysis per-
formed with filters of different tuning (different width) will
thus decompose the spectrogram into sets of decomposition
coefficients for different scales, separating the “wide” features
of the spectrogram from the “narrow” features. Somemanip-
ulations can then be performed on parts of the decomposed
spectrogram, and a modified auditory spectrogram can be
obtained by inverse filtering. Similarly, rate decomposition
allows for segregation of “fast” and “slow” dynamic events
along the temporal axis. A sample scale analysis of the audi-
tory spectrogram is presented in Figure 4 (Figure 4h is the
auditory spectrum, Figure 4a is the DC level of the signal
which is necessary for the reconstruction, and the remaining
6 plots show the results of processing of the given auditory
spectrum with filters of scales ranging from 0.25 to 8 CPO),
and the rate analysis is similar.

Additional useful insights into the rate-scale analysis can
be obtained if we consider it as a two-dimensional wavelet

decomposition of an auditory spectrogram using a set of ba-
sis functions, which are called sound ripples. The sound rip-
ple is simply a spectral ripple that drifts upwards or down-
wards in time at a constant velocity and is characterized by
the same two parameters—scale (density of peaks per octave)
and rate (number of peaks drifting past any fixed point on
the log-frequency axis per 1-second time frame). Thus, an
upward ripple with scale 1 CPO and rate 1Hz has alternat-
ing peaks and valleys in its spectrum with 1 CPO periodicity,
and the spectrum shifts up along the time axis, repeating it-
self with 1Hz periodicity (Figure 5). If this ripple is used as
an input audio signal for the cortical model, strong localized
response is seen at the filter with the corresponding selectiv-
ity of ω = 1Hz, Ω = 1 CPO. All other basis functions are
obtained by dilation (compression) of the seed-sound ripple
(Figure 5) in both time and frequency. (The difference be-
tween the ripples and the filters used in the cortical model
is that the seed spectro-temporal response used in cortical
model (4) and shown in Figure 3 is local; the seed-sound
ripple can be obtained from it by reproducing the spatial
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Figure 5: Sound ripple at the scale of 1 CPO and the rate of 1Hz.

response at every octave and removing the time decay from
the time response, andmultiscale decomposition can then be
viewed as overlapping the auditory spectrogram with differ-
ent sound ripples and performing local cross-correlations at
various places over the spectrogram.) In Figure 6, we show
the result of filtering of the sample spectrogram showed ear-
lier using two particular differently tuned filters, one with
ω = 8Hz, Ω = 0.5 CPO, and the other with ω = −2Hz,
Ω = 2 CPO. It can be seen that the filter output is the highest
when the spectrogram features match the tuning of the filter
both in rate and scale.

As such, to obtain a multiscale representation of the au-
ditory spectrogram, complex filters having the “local” sound
ripples (5) of different rates, scales, and central frequencies
as their real parts and Hilbert transforms of these ripples as
their imaginary parts are applied to the input audio signal as
a wavelet transform (8). The result of this decomposition is
a four-dimensional hypercube of complex filter coefficients
that can be modified and inverted back to the acoustic sig-
nal. The phase of the coefficient shows the best-fitting direc-
tion of the filter over a particular location of the auditory
spectrogram. This four-dimensional hypercube is called the
cortical representation of the sound. It can be manipulated
to produce desired effects on the sound, and in the following
sections, we show some of the possible sound modifications.

In the cortical representation, two-dimensional rate-scale
slices of the hypercube reveal the features of the signal that
are most prominent at a given time. The rate-scale plot
evolves in time to reflect changing ripple content of the spec-
trogram. Example of rate-scale plots are shown in Figure 7
where brightness of the pixel located at the intersection of

particular rate and scale values corresponds to the magni-
tude of response of the filter tuned to these rate and scale
values. For simplification of data presentation, these plots
are obtained by integration of the response magnitude over
the tonotopical axis. The first plot is a response of the cor-
tical model to a single downward-moving sound ripple with
ω = 3Hz, Ω = 2 CPO; the best-matching filter (or, in other
words, the “neuron” with the corresponding SRTF) responds
best. The responses of 2Hz and 4Hz units are not equal here
because of the cochlear filter bank asymmetry in the early
processing stage. The other three plots show the evolution of
the rate-scale response at different time instants of the sample
auditory spectrogram shown in Figure 2 (at approximately
600, 720, and 1100 milliseconds, respectively); one can in-
deed trace the plot time stamps back to the spectrogram
and see that the spectrogram has mostly sparse downward-
moving and mostly dense upward-moving features appear-
ing before the 720- and 1100-millisecondmarks, respectively.
The peaks in the test sentence plots are sharper in rate than
in scale, which can be explained by the integration performed
over the tonotopical axis in these plots (the speech signal is
unlikely to elicit significantly different rate-scale maps at dif-
ferent frequencies anyway because it consists mostly of equi-
spaced harmonics that can rise or fall only in unison, so the
rate at which the highest response is seen is not likely to dif-
fer at different points on the tonotopical axis; the prevalent
scale does change somewhat though due to higher number
of harmonics per octave at higher frequencies).

4. RECONSTRUCTING THE AUDIO FROM THEMODEL

After altering the cortical representation, it is necessary to re-
construct the modified audio signal. Just as with the forward
path, the reconstruction consists of two steps, correspond-
ing to the central processing stage and the early processing
stage. The first step is the inversion of the cortical multiscale
representation back to a spectrogram. It is a one-step inverse
wavelet transform operation because of the linear nature of
the transform (8), which in the Fourier domain can be writ-
ten as

Zd
(
ω,Ω;ωc,Ωc

) = Y(ω,Ω)H̃s
(
Ω;Ωc

)
H̃t
(
ω;ωc

)
,

Zu
(
ω,Ω;ωc,Ωc

) = Y(ω,Ω)H̃s
(
Ω;Ωc

)
H̃∗

t

(− ω;ωc
)
,

(10)

where capital letters signify the Fourier transforms of the
functions determined by the corresponding lowercase letters.
From (10), similar to the usual Fourier transform case, one
can write the formula for the Fourier transform of the recon-
structed auditory spectrogram yr(t, x) from its decomposi-
tion coefficients Zd, Zu as

Yr(ω,Ω) =
∑

ωc ,Ωc
Zd
(
ω,Ω;ωc,Ωc

)
H̃∗

t

(
ω;ωc

)
H̃∗

s

(
Ω;Ωc

)
+
∑

ωc ,Ωc
Zu
(
ω,Ω;ωc,Ωc

)
H̃t
(− ω;ωc

)
H̃∗

s

(
Ω;Ωc

)
∑

ωc ,Ωc

∣∣H̃t
(
ω;ωc

)
H̃s
(
Ω;Ωc

)∣∣2 +∑ωc ,Ωc

∣∣H̃∗
t

(− ω;ωc
)
H̃s
(
Ω;Ωc

)∣∣2 . (11)



Neuromimetic Sound Representation for Percept Manipulation 1357

0.5 CPO 8Hz
upwards

4000

2000

1000

500

250

Fr
eq
u
en
cy

(H
z)

200 600 1000
Time (ms)

4000

2000

1000

500

250

Fr
eq
u
en
cy

(H
z)

200 400 600 800 1000 1200
Time (ms)

2 CPO 2Hz
downwards

4000

2000

1000

500

250Fr
eq
u
en
cy

(H
z)

200 600 1000
Time (ms)

4000

2000

1000

500

250

Fr
eq
u
en
cy

(H
z)

200 400 600 800 1000 1200

Time (ms)

4000

2000

1000

500

250

Fr
eq
u
en
cy

(H
z)

200 400 600 800 1000 1200

Time (ms)

Figure 6: Wavelet transform of a sample auditory spectrogram (shown in Figure 2) using two sound ripples.

Then, yr(t, x) is obtained by inverse Fourier transform of
Yr(ω,Ω) and is rectified to ensure that the resulting spectro-
gram is positive. The subscript r here and below refers to the
reconstructed version of the signal. Excellent reconstruction
quality is obtained within the effective band because of the
linear nature of involved transformations.

The second step (going from the auditory spectrogram
to the acoustic wave) is a complicated task due to the non-
linearity of the early auditory processing stage (nonlinear
compression and half-wave rectification), which leads to the
loss of the component phase information (because the audi-
tory spectrogram contains only the magnitude of each fre-
quency component), and a direct reconstruction cannot be
performed. Therefore, the early auditory stage is inverted it-
eratively using a convex projection algorithm adapted from
[22], which takes the spectrogram as an input and recon-
structs the acoustic signal that produces the spectrogram
closest to the given one.

Assume that an auditory spectrogram yr(t, x) is obtained
using (11) after performing some manipulations in the cor-
tical representation, and it is now necessary to invert it back
to the acoustic signal sr(t). Observe that the analysis (first)
step of the early auditory processing stage is linear and thus
invertible. If an output of the analysis step y1r(t, x) is known,
the acoustic signal sr(t) can be obtained as

sr(t) =
∑
x

y1r(t, x)⊕ h(−t; x). (12)

The challenge is to proceed back from yr(t, x) to y1r(t, x).
In the convex projection method, an iterative adaptation of
the estimate ŷ1r(t, x) is performed based on the difference
between yr(t, x) and the result of the processing of ŷ1r(t, x)
through the second and third steps of the early auditory pro-
cessing stage. The processing steps are listed below.

(i) Initialize the reconstructed signal ŝ(1)r (t) by a
Gaussian-distributed white noise with zero mean and unit
variance. Set iteration counter k = 1.

(ii) Compute ŷ(k)1r (t, x), ŷ(k)2r (t, x), and ŷ(k)r (t, x) from

ŝ(k)r (t) using (1).

(iii) Compute the ratio r(k)(t, x) = yr(t, x)/ ŷ
(k)
r (t, x).

(iv) Adjust ŷ(k+1)1r (t, x) = r(k)(t, x) ŷ(k)1r (t, x).

(v) Compute ŝ(k+1)r (t) using (12). Increase k by 1.
(vi) Repeat from step 2 unless the preset number of itera-

tions is reached or a certain quality criterion is met (e.g., the
ratio r(k)(t, x) is sufficiently close to unity everywhere).

Sample auditory spectrograms of the original and the re-
constructed signals are shown later, and the reconstruction
quality for the speech signal after a sufficient number of iter-
ations is very good.

5. ALTERNATIVE IMPLEMENTATION OF THE EARLY
AUDITORY PROCESSING STAGE

An alternative, much faster implementation of the early au-
ditory processing stage was developed and can best be used
for a fixed-pitch signal (e.g., a musical instrument tone).
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Figure 7: Rate-scale plots of response of cortical model to different stimuli. (a) Response to 2 CPO 3Hz downward sound ripple. (b)–(d)
Response at different temporal positions within the sample auditory spectrogram presented in Figure 2 (at 600, 720, and 1100 milliseconds,
respectively).

In this implementation, which we will refer to as a log-
Fourier transform early stage, a simple Fourier transform is
used in place of the processing described by (1). We take a
short segment of the waveform s(t) at some time t( j) and
perform a Fourier transform of it to obtain S( f ). The S( f )
is obviously discrete with the total of L/2 points on the lin-
ear frequency axis, where L is the length of the Fourier trans-
form buffer. Somemappingmust be established from the lin-
ear frequency axis f to the logarithmically growing tonotopi-
cal axis x. We divide a tonotopical axis into segments corre-
sponding to channels. Assume that the cochlear filter bank
has N channels per octave and that the lowest frequency of

interest is f0. Then, the lower x
(i)
l and the upper x(i)h frequency

boundaries of the ith segment are set to be

x(i)l = f02i/N , x(i)h = f02(i+1)/N . (13)

S( f ) is then remapped onto the tonotopical axis. A point
f on a linear frequency axis is said to fall into the ith seg-

ment on the tonotopical frequency axis if x(i)l < f ≤ x(i)h . The
number of points that falls into a segment obviously depends
on the segment length, which becomes bigger for higher fre-
quencies (therefore the Fourier transform of s(t) must be
performed with very high resolution and s(t) padded appro-
priately to ensure that at least a few points on the f -axis fall
into the shortest segment on the x-axis). Spectral magnitudes
are then averaged for all points on the f -axis that fall into the
same segment i:

yalt
(
t( j), x(i)

) = 1
B(i)

∑
x(i)l < f≤x(i)h

∣∣S( f )∣∣, (14)

where B(i) is the total number of points on f -axis that falls
into the ith segment on x-axis (the number of terms in the
summation), and the averaging is performed for all i, gener-
ating a time slice yalt(t( j), x). The process is carried out for
all time segments of s(t), producing yalt(t, x), which can be
substituted for the y(t, x) computed using (1) for all further
processing.

The reconstruction proceeds in an inverse manner. At ev-
ery time slice t( j), a set of y(t( j), x) is remapped to the mag-
nitude spectrum S( f ) on a linear frequency axis f so that

S( f ) =

y
(
t( j), x(i)

)
if for some i, x(i)l < f ≤ x(i)h ,

0 otherwise.
(15)

At this point, the magnitude information is set cor-
rectly in S( f ) to perform inverse Fourier transform but the
phase information is lost. Direct one-step reconstruction
from S( f ) is much faster than the iterative convex projection
method described above but produces unacceptable results
with clicks and strong interfering noise at the frequency cor-
responding to the processing window length. Processing the
signal in heavily overlapping segments with gradual fade-in
and fade-out windowing functions somewhat improves the
results but the reconstruction quality is still significantly be-
low the quality achieved using the iterative projection algo-
rithm described in Section 4.

One way to recover the phase information and to use
one-step reconstruction of s(t) from magnitude spectrum
S( f ) is to save the bin phases of the forward-pass Fourier
transform and later impose them on S( f ) after it is recon-
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structed from the (altered) cortical representation. Signifi-
cantly better continuity of the signal is obtained in this man-
ner. However, it seems that the saved phases carry the imprint
of the original pitch of the signal, which produces undesir-
able effects if the processing goal is to perform a pitch shift.

However, the negative effect of the phase set carrying the
pitch imprint can be reversed and used for good simply by
generating the set of bin phases that corresponds to a desired
pitch and imposing them on S( f ). Of course the knowledge
of the signal pitch is required in this case, which is not al-
ways easy to obtain. We have used this technique in perform-
ing timbre-preserving pitch shift of musical instrument notes
where the exact original pitch F0 (and therefore the exact
shifted pitch F′0) is known. To obtain the set of phases cor-
responding to the pitch F′0, we generate, in the time domain,
a pulse train of frequency F′0 and take its Fourier transform
with the same window length as used in the processing of
S( f ). The bin phases of the Fourier transform of the pulse
train are then imposed on the magnitude spectrum S( f ) ob-
tained in (15). In this manner, very good results are obtained
at reconstructingmusical tones of a fixed frequency; it should
be noted that such reconstruction is not handled well by the
iterative convex projection method described above—the re-
constructed signal is not a pure tone but rather constantly
jitters up and down, preventing any musical perception, pre-
sumably because the time slices of s(t) are treated indepen-
dently by convex projection algorithm, which does not at-
tempt to match signal features from adjacent time frames.

Nevertheless, speech reconstruction is handled better by
the significantly slower convex projection algorithm, because
it is not clear how to select F′0 to generate the phase set.
If the log-Fourier transform early stage can be applied to
the speech signals, significant processing speed-up can be
achieved. A promising idea is to employ a pitch detection
mechanism at each frame of s(t) to detect F0, to compute F′0,
and to impose F′0-consistent phases on S( f ) to enable one-
step recovery of s(t), which is the subject of ongoing work.

6. RECONSTRUCTIONQUALITY

It is important to do an objective evaluation of the recon-
structed sound quality. The second (central) stage of the cor-
tical model processing is perfectly invertible because of the
linear nature of the wavelet transformations involved, and it
is the first (early) stage that presents difficulties for the in-
version because of the phase information loss in the pro-
cessing. Given the modified auditory spectrogram yr(t, x),
the convex projection algorithm described above tries to syn-
thesize the intermediate result ŷ1r(t, x) that, when processed
through the two remaining steps of the early auditory stage,
yields ŷr(t, x) that is as close as possible to yr(t, x). The wave-
form ŝr(t) can then be directly reconstructed from ŷ1r(t, x).
The reconstruction error measure E is defined as the average
relative magnitude difference between the target yr(t, x) and
the candidate ŷr(t, x):

E = 1
B

∑
i, j

∣∣ ŷr(t( j), x(i))− yr
(
t( j), x(i)

)∣∣
yr
(
t( j), x(i)

) , (16)

where B is the total number of terms in the summation. Dur-
ing the iterative update of ŷ1r(t, x), the error E does not drop
monotonically; instead, the lower the error, the higher the
chance that the next iteration actually increases the error, in
which case the newly computed ŷ1r(t, x) should be discarded
and a new iteration should be started from the best previ-
ously found ŷ1r(t, x).

In practical tests, it was found that the error E drops
quickly to units of percents, and any further improvement
requires very significant computational expense. For the pur-
poses of illustration, we took the 1200-milliseconds auditory
spectrogram (Figure 2) and ran the convex projection algo-
rithm on it. It takes about 2 seconds to execute one algorithm
iteration on a 1.7GHz Pentium computer. In this sample run,
the error after 20, 200, and 2000 iterations was found to be
4.73%, 1.60%, and 1.08%, respectively, which is representa-
tive of the general behavior observed in many experiments.

In Figure 8a, the original waveform s(t) and its corre-
sponding auditory spectrogram y(t, x) from Figure 2 are
plotted. The auditory spectrogram y(t, x) is used as an in-
put yr(t, x) to the convex projection algorithm, which, in
200 iterations, reconstructs the waveform ŝr(t) shown in the
top plot of Figure 8b. The spectrogram ŷr(t, x) correspond-
ing to the reconstructed waveform is also shown in the bot-
tom plot of Figure 8b. Because the reconstruction algorithm
attempts to synthesize a waveform ŝr(t) such that its spec-
trogram ŷr(t, x) is equal to yr(t, x), it can be expected that
the spectrograms of the original and of the reconstructed
waveforms would match. This is indeed the case in Figure 8,
but the fine waveform structure is different in the original
(Figure 8a) and in the reconstruction (Figure 8b), with no-
ticeably less periodicity in some segments. However, it can
be argued that because the original and the reconstructed
waveforms produce the same results when processed through
the early auditory processing stage, the perception of these
should be nearly identical, which is indeed the case when the
sounds are played to the human ear. Slight distortions are
heard in the reconstructed waveform, but the sound is clear
and intelligible. Increasing the number of iterations further
decreases distortions; when the error drops to about 0.5%
(tens of thousands of iterations), the signal is almost indis-
tinguishable from the original.

We also compared the quality of the reconstructed signal
with the quality of sound produced by existing pitch modifi-
cation and sound morphing techniques. In [5], spectrogram
modeling with MFCC coefficients plus residue spectrogram
and iterative reconstruction process are used for sound mor-
phing, and short morphing examples for voiced sounds are
available for listening in the online version of the same pa-
per. Book [7] also contains (among many other examples)
some audio samples derived using algorithms that are rele-
vant to our work and are targeted for the same application
areas as we are considering, in particular, samples of cross-
synthesis between the musical tone and the voice using chan-
nel vocoder and resynthesis of speech and musical tones us-
ing LPC with residual as an excitation signal and LPC with
pulse train as an excitation signal. In our opinion, the signal
quality we achieve is comparable to the quality of the relevant
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Figure 8: (a) Original waveform and corresponding spectrogram. (b) Reconstructed waveform and corresponding spectrogram after 200
iterations.

samples presented in these references, although the sound
processing through a cortical representation is significantly
slower than the algorithms presented in [5, 6, 7].

In summary, it can be concluded that reasonable qual-
ity of the reconstructed signal can be achieved in reasonable
time, such as ten seconds or so of computational time per one
second of a signal sampled at 8 kHz (although the iterative
algorithm is not suitable for the real-time processing). If un-
limited time (few hours) is allowed for processing, very good
signal quality is achieved. The possibility of iterative signal
reconstruction in real time is an open question and work in
this area is continuing.

7. TIMBRE-PRESERVING PITCHMANIPULATIONS

For speech and musical instruments, timbre is conveyed by
the spectral envelope, whereas pitch is mostly conveyed by
the harmonic structure, or harmonic peaks. This biologically
based analysis is in the spirit of the cepstral analysis used in
speech [23], except that the Fourier-like transformation in
the auditory system is carried out in a local fashion using
kernels of different scales. The cortical decomposition is ex-
pressed in the complex domain, with the coefficient magni-
tude being the measure of the local bandwidth of the spec-
trum and the coefficient phase being the measure of the lo-
cal symmetry at each bandwidth. Finally, just as it is the case
with cepstral coefficients, the spectral envelope varies slowly.
In contrast, the harmonic peaks are only visible at high res-
olution. Consequently, timbre and pitch occupy different re-
gions in the multiscale representation. If X is the auditory
spectrum of a given data frame, with the length N equal to
the number of filters in the cochlear filter bank, and the de-
composition is performed overM scales, then the matrix S of
the scale decomposition ofX hasM rows, one per scale value,
and N columns. If the first (top) row of S contains the de-
composition over the finest scale and theMth (bottom) row

is the coarsest one, then the components of S in the upper
left triangle can be associated with pitch, whereas the rest of
the components can be associated with timbre information
[24]. In Figure 9, sample plot of the scale decomposition of
the auditory spectrum is shown. (Please note that this is a
scale versus tonotopical frequency plot rather than scale-rate
plot; all rate decomposition coefficients carry timbre infor-
mation.) The brightness of a pixel corresponds to the mag-
nitude of the decomposition coefficient, whereas the rela-
tive length and the direction of the arrow at the pixel show
the coefficient phase. The white solid diagonal line shown in
Figure 9 roughly separates timbre and pitch information in
the cortical representation. The coefficients that lie above this
line carry primarily pitch information, and the rest can be as-
sociated with timbre.

To control pitch and timbre separately, we apply modi-
fications at appropriate locations in the cortical representa-
tion matrix and invert the cortical representation back to the
spectrogram. Thus, to shift the pitch while holding the tim-
bre fixed, we compute the cortical multiscale representation
of the entire sound, shift (along the frequency axis) the trian-
gular part of every time slice of the hypercube that holds the
pitch information while keeping the timbre information in-
tact, and invert the result. To modify the timbre keeping the
pitch intact, we do the opposite. It is also possible to splice
the pitch and the timbre information from two speakers, or
from a speaker and a musical instrument. The result after in-
version back to the sound is a “musical” voice that sings the
utterance (or a “talking” musical instrument).

We express the timbre-preserving pitch shift algorithm in
mathematical terms. The cortical representation consists of a
set of complex coefficients zu(t, x;ωc,Ωc) and zd(t, x;ωc,Ωc).
In the actual decomposition, the values of t, x, ωc, and Ωc

are discrete, and the cortical representation of a sound is just
a four-dimensional hypercube of complex coefficients Zi, j,k,l.
We agree that the first index i corresponds to the time axis,
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Figure 9: Plot of the sample auditory spectrum scale decomposi-
tion matrix. The brightness of the pixel corresponds to the magni-
tude of the decomposition coefficient, whereas the relative length
and the direction of the arrow at the pixel show the coefficient
phase. Upper triangle of the matrix of coefficients (above the solid
white line) contains information about the pitch of the signal. The
lower triangle contains information about the timbre.

the second index j corresponds to the frequency axis, the
third index k corresponds to the scale axis, and the fourth
index l corresponds to the rate axis. Index j varies from 1 to
N , whereN is the number of filters in the cochlear filter bank,
index k varies from 1 toM (in order of scale increase), where
M is the number of scales, and, finally, index l varies from 1
to 2L, where L is the number of rates (zd and zu are juxta-
posed in Zi, j,k,l matrix as pictured on the horizontal axis in
Figure 7: l = 1 corresponds to zd with the highest rate, l = 2
to zd with the next lower rate, l = L to zd with the lowest rate,
l = L+1 to zu with the lowest rate, l = L+2 to zu with the next
higher rate, and l = 2L to zu with the highest rate; this partic-
ular order is not critical for the pitch modifications described
below as they do not depend on it). Then, the coefficient is
assumed to carry pitch information if it lies above the diago-
nal shown in Figure 9 (i.e., if (M−k)/ j > (M−1)/N), and to
shift the pitch up by q channels, we fill the matrix Z∗i, j,k,l with
the coefficients of matrix Zi, j,k,l as follows:

Z∗i, j,k,l = Zi, j,k,l, j < jb,

Z∗i, j,k,l = Zj, jb ,k,l, jb ≤ j < jb + q,

Z∗i, j,k,l = Zi, j−q,k,l, jb + q ≤ j,

(17)

where jb = (M−k)N/(M−1) rounded to the nearest positive
integer (note that jb depends on k and therefore is different
in different hyperslices of the matrix that have different val-
ues of k). The similar procedure shifts the pitch down by q
channels:

Z∗i, j,k,l = Zi, j,k,l, j < jb,

Z∗i, j,k,l = Zi, j+q,k,l, jb ≤ j < N − q,

Z∗i, j,k,l = Zi,N ,k,l, jb ≤ j, N − q ≤ j.

(18)
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Figure 10: Spectrum of a speech signal (a) before and (b) after pitch
shift. Note that the spectral envelope is filled with the new set of
harmonics.

Finally, to splice the pitch of the signal S1 with the tim-
bre of the signal S2, we compose Z∗ from two corresponding
cortical decompositions Z1 and Z2, taking the elements for
which (M − k)/ j > (M − 1)/N from Z1 and all other ones
from Z2. Inversion of Z∗ back to the waveform gives us the
desired result.

We show one-pitch shift example here and refer the
interested reader to http://www.isr.umd.edu/CAAR/ and
http://www.umiacs.umd.edu/labs/pirl/NPDM/ for the actual
sounds used in this example, and for more samples. We
use the above-described algorithm to perform a timbre-
preserving pitch shift of a speech signal. The cochlear model
has 128 filters with 24 filters per octave, covering 5(1/3) oc-
taves along the frequency axis. The cortical representation is
modified using (18) to achieve the desired pitch modifica-
tion and then inverted using the reconstruction procedure
described in Section 4, resulting in a pitch-scaled version of
the original signal. In Figure 10, we show plots of the spec-
trum of the original signal and of the signal having the pitch
shifted down by 8 channels (one third of an octave) at a fixed
point in time. The pitches of the original and of the modi-
fied signals are 140Hz and 111Hz, respectively. It can be seen
from the plots that the signal spectral envelope is preserved
and that the speech formants are kept at their original loca-
tions, but a new set of harmonics is introduced.

The algorithm is sufficiently fast to be used in real time if
a log-Fourier transform early stage (described in Section 5)
is substituted for a cochlear filter bank to eliminate the need
for an iterative inversion process. Additionally, it is not neces-
sary to compute the full cortical representation of the sound
to do timbre-preserving pitch shifts. It is enough to perform
only scale decomposition for every time frame of the audi-
tory spectrogram because shifts are done along the frequency

http://www.isr.umd.edu/CAAR/
http://www.umiacs.umd.edu/labs/pirl/NPDM/
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Figure 11: (Left column) Waveform plots and (right column) spectrum plots for guitar (top plots), trumpet (middle plots), and new
instrument (bottom plots).

axis and can be performed in each time slice of the hypercube
independently; thus, the rate decomposition is unnecessary.
We have used the pitch-shift algorithm in a small-scale study
in an attempt to generate maximally separable sounds to im-
prove simultaneous eligibility of multiple competing mes-
sages [19]; it was found that the pitch separation does im-
prove the perceptual separability of sounds and the recogni-
tion rate. Also, we have used the algorithm to generate, from
one note of a given frequency, other notes of a newly created
musical instrument that has the timbre characteristics of two
existing instruments. This application is described in more
details in the following section.

8. TIMBREMANIPULATIONS

Timbre of the audio signal is conveyed both by the spec-
tral envelope and by the signal dynamics. Spectral envelope
is represented in the cortical representation by the lower
right triangle of the scale decomposition coefficients and
can be manipulated by modifying these. Sound dynamics
is captured by the rate decomposition. Selective modifica-
tions to enhance or diminish the contributions of compo-
nents of a certain rate can change the dynamic properties

of the sound. As an illustration, and as an example of
information separation across the cells of different rates, we
synthesize a few sound samples using simple modifications
to make the sound either abrupt or slurred. One such sim-
ple modification is to zero out the cortical representation de-
composition coefficients that correspond to the “fast” cells,
creating the impression of a low-intelligibility sound in an
extremely reverberant environment; the other one is to re-
move “slow” cells, obtaining an abrupt sound in an ane-
choic environment (see http://www.isr.umd.edu/CAAR/ and
http://www.umiacs.umd.edu/labs/pirl/NPDM/ for the actual
sound samples where the decomposition was performed over
the rates of 2, 4, 8, and 16Hz; from these, “slow” rates are 2
and 4Hz and “fast” rates are 8 and 16Hz). It might be pos-
sible to use such modifications in sonification (e.g., by map-
ping some physical parameter to the amount of simulated
reverberation and by manipulating the perceived reverbera-
tion time by gradual decrease or increase of contribution of
“slow” components) or in audio user interfaces in general.
Similarly, in the musical synthesis, playback rate and onset
and decay ratio can be modified with shifts along the rate
axis while preserving the pitch.

http://www.isr.umd.edu/CAAR/
http://www.umiacs.umd.edu/labs/pirl/NPDM/
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Figure 12: Spectrum of the new instrument playing (a) D#3, (b)
C3, and (c) G2.

To show the ease with which timbre manipulation can be
done using the cortical representation, we performed a tim-
bre interpolation between twomusical instruments to obtain
a new in between synthetic instrument, which has both the
spectral shape and the temporal spectral modulations (on-
set and decay ratio) that lie between the two original instru-
ments. The two instruments selected were the guitarWgC#3,
and the trumpet, WtC#3, playing the same note (C#3). The
rate-scale decomposition of a short (1.5 seconds) instrument
sample was performed and the geometric average of the com-
plex coefficients in the cortical representations of these two
instrument samples was computed and was converted back
to the sound wave to obtain the new instrument sound sam-
ple WnC#3. The behavior of the new instrument along the
time axis is intermediate between two original ones, and the
spectrum shape is also an average between two original in-
struments (Figure 11).

After the timbre interpolation, the synthesized instru-
ment can only play the same note as the original ones. To syn-
thesize other notes, we use the timbre-preserving pitch shift
algorithm (Section 7) on the waveform WnC#3 obtained by
the timbre interpolation (third waveform in Figure 11) as an
input. Figure 12 shows the spectrum of the new instrument
for three different newly generated notes—D#3, C3, and G2.
It can be seen that the spectral envelope is the same in all
three plots (and is the same as the spectral envelope of the
WnC#3), but this envelope is filled with different sets of har-
monics for different notes. For this synthesis, a log-Fourier
transform early stage with pulse-train phase imprinting

(Section 5) was used, as it is ideally suited for the task. A few
samples of music made with the new instrument are available
at http://www.umiacs.umd.edu/labs/pirl/NPDM/.

9. SUMMARY AND CONCLUSIONS

We developed and tested simple yet powerful algorithms
for performing independent modifications of the pitch and
the timbre of an audio signal and for performing interpola-
tion between sound samples. These algorithms constitute a
new application of the cortical representation of the sound
[3], which extracts the perceptually important audio features
simulating the processing believed to occur in auditory path-
ways in primates and thus can be used for making sound
modifications tuned for and targeted to the ways the human
nervous system processes information. We obtained promis-
ing results and are using these algorithms in ongoing devel-
opment of auditory user interfaces.
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