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Wepresent an example of an anthropomorphic approach, in which auditory-based cues are combined with temporal correlation to
implement a source separation system. The auditory features are based on spectral amplitude modulation and energy information
obtained through 256 cochlear filters. Segmentation and binding of auditory objects are performed with a two-layered spiking
neural network. The first layer performs the segmentation of the auditory images into objects, while the second layer binds the
auditory objects belonging to the same source. The binding is further used to generate a mask (binary gain) to suppress the
undesired sources from the original signal. Results are presented for a double-voiced (2 speakers) speech segment and for sentences
corrupted with different noise sources. Comparative results are also given using PESQ (perceptual evaluation of speech quality)
scores. The spiking neural network is fully adaptive and unsupervised.

Keywords and phrases: auditory modeling, source separation, amplitude modulation, auditory scene analysis, spiking neurons,
temporal correlation.

1. INTRODUCTION

1.1. Source separation

Source separation of mixed signals is an important problem
with many applications in the context of audio processing. It
can be used to assist robots in segregating multiple speakers,
to ease the automatic transcription of videos via the audio
tracks, to segregate musical instruments before automatic
transcription, to clean up signal before performing speech
recognition, and so forth. The ideal instrumental setup is
based on the use of arrays of microphones during recording
to obtain many audio channels.

In many situations, only one channel is available to the
audio engineer that still has to solve the separation problem.
Most monophonic source separation systems require a pri-
ori knowledge, that is, expert systems (explicit knowledge)
or statistical approaches (implicit knowledge) [1]. Most of
these systems perform reasonably well only on specific sig-
nals (generally voiced speech or harmonic music) and fail

to efficiently segregate a broad range of signals. Sameti
[2] uses hidden Markov models, while Roweis [3, 4] and
Royes-Gomez [5] use factorial hidden Markov models. Jang
and Lee [6] use maximum a posteriori (MAP) estimation.
They all require training on huge signal databases to estimate
probability models. Wang and Brown [7] have first proposed
an original bio-inspired approach that uses features obtained
from correlograms and F0 (pitch frequency) in combination
with an oscillatory neural network. Hu andWang use a pitch
tracking technique [8] to segregate harmonic sources. Both
systems are limited to harmonic signals.

We propose here to extend the bio-inspired approach to
more general situations without training or prior knowledge
of underlying signal properties.

1.2. System overview

Physiology, psychoacoustic, and signal processing are inte-
grated to design a multiple-source separation system when
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Figure 1: Source separation system. Depending on the sources’ auditory images (CAM or CSM), the spiking neural network generates the
mask (binary gain) to switch on/off—in time and across channels—the synthesis filter bank channels before final summation.

only one audio channel is available (Figure 1). It com-
bines a spiking neural network with a reconstruction anal-
ysis/synthesis cochlear filter bank along with auditory im-
age representations of audible signals. The segregation and
binding of the auditory objects (coming from different sound
sources) is performed by the spiking neural network (imple-
menting the temporal correlation [9, 10]) that also generates
a mask1 to be used in conjunction with the synthesis filter
bank to generate the separated sound sources.

The neural network uses third-generation neural net-
works, where neurons are usually called spiking neurons [11].
In our implementation, neurons firing at the same instants
(same firing phase) are characteristic of similar stimuli or
comparable input signals.2 Usually spiking neurons, in op-
position to formal neurons, have a constant firing ampli-
tude. This coding yields noise and interference robustness
while facilitating adaptive and dynamic synapses (link be-
tween neurons) for unsupervised and autonomous system
design. Numerous spike timing coding schemes are pos-
sible (and observable in physiology) [12]. Among them,
we decided to use synchronization and oscillatory cod-
ing schemes in combination with a competitive unsuper-
vised framework (obtained with dynamic synapses), where
groups of synchronous neurons are observed. This choice
has the advantage to allow the design of unsupervised sys-
tems with no training (or learning) phase. To some ex-
tent, the neural network can be viewed as a map where
links between neurons are dynamic. In our implementa-
tion of the temporal correlation, two neurons with simi-
lar inputs on their dendrites will increase their soma to
soma synaptic weights (dynamic synapses), forcing syn-
chronous response. On the other hand, neurons with dissim-
ilar dendritic inputs will have reduced soma to soma synaptic
weights yielding reduced coupling and asynchronous neural
responses.

1Mask and masking refer here to a binary gain and should not be con-
fused with the conventional definition of masking in psychoacoustics.

2The information is coded in the firing instants.
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Figure 2: Dynamic temporal correlation for two simultaneous
sources: time evolution of the electrical output potential for four
neurons from the second layer (output layer). T is the oscillatory
period. Two sets of synchronous neurons appear (neurons 1 and 3
for source 1; neurons 2 and 4 for source 2). Plot degradations are
due to JPEG coding.

Figure 2 illustrates the oscillatory response behavior of
the output layer of the proposed neural network for two
sources.

Compared to conventional approaches, our system does
not require a priori knowledge, is not limited to harmonic
signals, does not require training, and does not need pitch ex-
traction. The architecture is also designed to handle contin-
uous input signals (no need to segment the signal into time
frames) and is based on the availability of simultaneous au-
ditory representations of signals. Our approach is inspired
by knowledge in anthropomorphic systems but is not an at-
tempt to reproduce physiology or psychoacoustics.

The next two sections motivate the anthropomorphic ap-
proach, Section 4 describes in detail the system, Section 5
describes the experiments, Section 6 gives the results, and
Section 7 is the discussion and conclusion.
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2. ANTHROPOMORPHIC APPROACH

2.1. Physiology: multiple features
Schreiner and Langner in [13, 14] have shown that the in-
ferior colliculus of the cat contains a highly systematic to-
pographic representation of AM parameters. Maps showing
best modulation frequency have been determined. The pi-
oneering work by Robles et al. in [15, 16, 17] reveals the
importance of AM-FM3 coding in the peripheral auditory
system along with the role of the efferent system in rela-
tion to adaptive tuning of the cochlea. In this paper, we use
energy-based features (Cochleotopic/Spectrotopic Map) and
AM features (Cochleotopic/AMtopic Map) as signal repre-
sentations. The proposed architecture is not limited by the
number of representations. For now, we use two represen-
tations to illustrate the relevance of multiple representations
of the signal available along the auditory pathway. In fact,
it is clear from physiology that multiple and simultaneous
representations of the same input signal are observed in the
cochlear nucleus [18, 19]. In the remaining parts of the pa-
per, we call these representations auditory images.

2.2. Cocktail-party effect and CASA
Humans are able to segregate a desired source in a mixture of
sounds (cocktail-party effect). Psychoacoustical experiments
have shown that although binaural audition may help to
improve segregation performance, human beings are capa-
ble of doing the segregation even with one ear or when all
the sources come from the same spatial location (e.g., when
someone listens to a radio broadcast) [20]. Using the knowl-
edge acquired in visual scene analysis and by making an anal-
ogy between vision and audition, Bregman developed the key
notions of the auditory scene analysis (ASA) [20]. Two of the
most important aspects in ASA are the segregation and group-
ing (or integration) of sound sources. The segregation step
partitions the auditory scene into fundamental auditory el-
ements and the grouping is the binding of these elements in
order to reproduce the initial sound sources. These two stages
are influenced by top-down processing (schema-driven). The
aim in computational auditory scene analysis (CASA) is to
develop computerized methods for solving the sound segre-
gation problem by using psychoacoustical and physiological
characteristics [7, 21]. For a review see [1].

2.3. Binding of auditory sources

We assume here that sound segregation is a generalized clas-
sification problem in which we want to bind features ex-
tracted from the auditory image representations in differ-
ent regions of our neural network map. We use the tem-
poral correlation approach as suggested by Milner [9] and
Malsburg in [22, 23] who observed that synchrony is a cru-
cial feature to bind neurons associated to similar characteris-
tics. Objects belonging to the same entity are bound together
in time. In this framework, synchronization between differ-
ent neurons and desynchronization among different regions

3Other features like transients, on-, off-responses are observed, but are
not implemented here.

perform the binding. In the present work, we implement
the temporal correlation to bind auditory image objects. The
binding merges the segmented auditory objects belonging to
the same source.

3. PROPOSED SYSTEM STRATEGY

Two representations are simultaneously generated: ampli-
tude modulation map, which we call Cochleotopic/AMtopic
(CAM) Map4 and the Cochleotopic/Spectrotopic Map
(CSM) that encodes the averaged spectral energies of the
cochlear filter bank output. The first representation some-
what reproduces the AM processing performed by multipo-
lar cells (Chopper-S) from the anteroventral cochlear nucleus
[19], while the second representation could be closer to the
spherical bushy cell processing from the ventral cochlear nu-
cleus areas [18].

We assume that different sources are disjoint in the au-
ditory image representation space and that masking (binary
gain) of the undesired sources is feasible. Speech has a spe-
cific structure that is different from that of most noises and
perturbations [26]. Also, when dealing with simultaneous
speakers, separation is possible when preserving the time
structure (the probability at a given instant t to observe over-
lap in pitch and timbre is relatively low). Therefore, a binary
gain can be used to suppress the interference (or separate all
sources with adaptive masks).

4. DETAILED DESCRIPTION

4.1. Signal analysis

Our CAM/CSM generation algorithm is as follows.

(1) Down-sample to 8000 samples/s.
(2) Filter the sound source using a 256-filter Bark-scaled

cochlear filter bank ranging from 100Hz to 3.6 kHz.
(3) (i) For CAM, extract the envelope (AM demod-

ulation) for channels 30–256; for other low-
frequency channels (1–29) use raw outputs.5

(ii) For CSM, nothing is done in this step.
(4) Compute the STFT of the envelopes (CAM) or of the

filter bank outputs (CSM) using a Hamming window.6

(5) To increase the spectro-temporal resolution of the
STFT, find the reassigned spectrum of the STFT [28]
(this consists of applying an affine transform to the
points to realocate the spectrum).

(6) Compute the logarithm of the magnitude of the STFT.
The logarithm enhances the presence of the stronger
source in a given 2D frequency bin of the CAM/CSM.7

4To some extent, it is related to modulation spectrograms. See for exam-
ple work in [24, 25].

5Low-frequency channels are said to resolve the harmonics while others
do not, suggesting a different strategy for low-frequency channels [27].

6Nonoverlapping adjacent windows with 4-millisecond or 32-
millisecond length have been tested.

7log(e1 + e2) � max(log e1, log e2) (unless e1 and e2 are both large and
almost equal) [4].
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Figure 3: Example of a 24-channel CAM for a mixture of /di/ and
/da/ pronounced by two speakers; mixture at SNR = 0 dB and frame
center at t = 166milliseconds.

It is observed that the efferent loop between the medial olivo-
cochlear system (MOC) and the outer hair cells modifies
the cochlear response in such a way that speech is enhanced
from the background noise [29]. To a certain extent, one can
imagine that envelope detection and selection between the
CAM and the CSM, in the auditory pathway, could be as-
sociated to the efferent system in combination with cochlear
nucleus processing [30, 31]. For now, in the present exper-
imental setup, selection between the two auditory images is
done manually. Figure 3 is an example of a CAM computed
through a 24-cochlear-channel filter bank for a /di/ and /da/
mixture pronounced by a female and male speaker. Ellipses
outline the auditory objects.

4.2. The neural network

4.2.1. First layer: image segmentation

The dynamics of the neurons we use is governed by a mod-
ified version of the Van der Pol relaxation oscillator (Wang-
Terman oscillators [7]). The state-space equations for these
dynamics are as follows:

dx

dt
= 3x − x3 + 2− y + ρ + p + S, (1)

dy

dt
= ε

[
γ
(
1 + tanh

(
x

β

))
− y

]
, (2)

where x is the membrane potential (output) of the neuron
and y is the state for channel activation or inactivation. ρ
denotes the amplitude of a Gaussian noise, p is the exter-
nal input to the neuron, and S is the coupling from other
neurons (connections through synaptic weights). ε, γ, and β
are constants.8 The Euler integration method is used to solve

8In our simulation, ε = 0.02, γ = 4, β = 0.1, and ρ = 0.02.
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Figure 4: Architecture of the two-layer bio-inspired neural net-
work. G stands for global controller (the global controller for the
first layer is not shown on the figure). One long-range connection is
shown. Parameters of the controller and of the input layer are also
illustrated in the zoomed areas.

the equations. The first layer is a partially connected network
of relaxation oscillators [7]. Each neuron is connected to its
four neighbors. The CAM (or the CSM) is applied to the in-
put of the neurons. Since the map is sparse, the original 256
points computed for the FFT are down-sampled to 50 points.
Therefore, the first layer consists of 256 × 50 neurons. The
geometric interpretation of pitch (ray distance criterion) is
less clear for the first 29 channels, where harmonics are usu-
ally resolved.9 For this reason, we have also established long-
range connections from clear (high-frequency) zones to con-
fusion (low-frequency) zones. These connections exist only
across the cochlear channel number axis of the CAM.

The weight, wi, j,k,m(t) (Figure 4), between neuron(i, j)
and neuron(k,m) of the first layer is

wi, j,k,m(t) = 1
Card

{
N(i, j)

} 0.25
eλ|p(i, j;t)−p(k,m;t)| , (3)

where p(i, j) and p(k,m) are, respectively, external inputs
to neuron(i, j) and neuron(k,m) ∈ N(i, j). Card{N(i, j)} is
a normalization factor and is equal to the cardinal number
(number of elements) of the set N(i, j) containing neighbors
connected to the neuron(i, j) (can be equal to 4, 3, or 2 de-
pending on the location of the neuron on the map, i.e., cen-
ter, corner, etc.). The external input values are normalized.
The value of λ depends on the dynamic range of the inputs
and is set to λ = 1 in our case. This same weight adaptation

9Envelopes of resolved harmonics are nearly constants.
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is used for long-range clear-to-confusion zone connections (6)
in CAM processing case. The coupling Si, j defined in (1) is

Si, j(t) =
∑

k,m∈N(i, j)

wi, j,k,m(t)H
(
x(k,m; t)

)

− ηG(t) + κLi, j(t),
(4)

where H(·) is the Heaviside function. The dynamics of G(t)
(the global controller) is as follows:

G(t) = αH(z − θ),

dz

dt
= σ − ξz,

(5)

where σ is equal to 1 if the global activity of the network is
greater than a predefined ζ and is zero otherwise (Figure 4).
α and ξ are constants.10

Li, j(t) is the long-range coupling as follows:

Li, j(t) =


0, j ≥ 30,∑
k=225···256

wi, j,i,k(t)H
(
x(i, k; t)

)
, j < 30. (6)

κ is a binary variable defined as follows:

κ =


1 for CAM,

0 for CSM.
(7)

4.2.2. Second layer: temporal correlation
andmultiplicative synapses

The second layer is an array of 256 neurons (one for each
channel). Each neuron receives the weighted product of the
outputs of the first layer neurons along the frequency axis of
the CAM/CSM. The weights between layer one and layer two
are defined as wll(i) = α/i, where i can be related to the fre-
quency bins of the STFT and α is a constant for the CAM
case, since we are looking for structured patterns. For the
CSM, wll(i) = α is constant along the frequency bins as we
are looking for energy bursts.11 Therefore, the input stimu-
lus to neuron( j) in the second layer is defined as follows:

θ( j; t) =
∏
i

wll(i)Ξ
{
x(i, j; t)

}
. (8)

The operator Ξ is defined as

Ξ
{
x(i, j; t)

} =


1 for x(i, j; t) = 0,

x(i, j; t) elsewhere,
(9)

where (·) is the averaging over a time window operator (the
duration of the window is in the order of the discharge pe-
riod). The multiplication is done only for nonzero outputs

10ζ = 0.2, α = −0.1, ξ = 0.4, η = 0.05, and θ = 0.9.
11In our simulation, α = 1.

(in which spike is present) [32, 33]. This behavior has been
observed in the integration of ITD (interaural time differ-
ence) and ILD (interlevel difference) information in the barn
owl’s auditory system [32] or in the monkey’s posterior pari-
etal lobe neurons that show receptive fields that can be ex-
plained by a multiplication of retinal and eye or head posi-
tion signals [34].

The synaptic weights inside the second layer are adjusted
through the following rule:

w′i j(t) =
0.2

eµ|p( j;t)−p(k;t)|
, (10)

where µ is chosen to be equal to 2. The binding of these fea-
tures is done via this second layer. In fact, the second layer
is an array of fully connected neurons along with a global
controller. The dynamics of the second layer is given by an
equation similar to (4) (without long-range coupling). The
global controller desynchronizes the synchronized neurons
for the first and second sources by emitting inhibitory activ-
ities whenever there is an activity (spikings) in the network
[7].

The selection strategy at the output of the second layer
is based on temporal correlation: neurons belonging to the
same source synchronize (same spiking phase) and neurons
belonging to other sources desynchronize (different spiking
phase).

4.3. Masking and synthesis

Time-reversed outputs of the analysis filter bank are passed
through the synthesis filter bank giving birth to zi(t). Based
on the phase synchronization described in the previous sec-
tion, a mask is generated by associating zeros and ones to
different channels:

s(t) =
256∑
i=1

mi(t)zi(t), (11)

where s(N − t) is the recovered signal (N is the length of the
signal in discrete mode), zi(t) is the synthesis filter bank out-
put for channel i, andmi(t) is the mask value. Energy is nor-
malized in order to have same SPL for all frames. Note that
two-source mixtures are considered throughout this article
but the technique can be potentially used for more sources.
In that case, for each time frame n, labeling of individual
channels is equivalent to the use of multiple masks (one for
each source).

5. EXPERIMENTS

We first illustrate the separation of two simultaneous speak-
ers (double-voiced speech segregation), separation of a
speech sentence from an interfering siren, and then compare
with other approaches.

The magnitude of the CAM’s STFT is a structured image
whose characteristics depend heavily on pitch and formants.
Therefore, in that representation, harmonic signals are sep-
arable. On the other hand, the CSM representation is more
suitable for inharmonic signals with bursts of energy.
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Figure 5: (a) Spectrogram of the /di/ and /da/ mixture. (b) Spectro-
gram of the sentence “I willingly marryMarilyn” plus sirenmixture.

5.1. Double-speech segregation case

Two speakers have simultaneously and respectively pro-
nounced a /di/ and a /da/ (spectrogram Figure 5a). We ob-
served that the CSM representation does not generate very
discriminative representation while, from the CAM, the 2
speakers are well separable (see Figure 6). After binding,
two sets of synchronized neurons are obtained: one for
each speaker. Separation is performed by using (11), where
mi(t) = 0 for one speaker andmi(t) = 1 for the other speaker
(target speaker).

5.2. Sentence plus siren

A modified version of the siren used in Cooke’s database [7]
(http://www.dcs.shef.ac.uk/∼martin/) is mixed with the sen-
tence “I willingly marry Marilyn.” The spectrogram of the
mixed sound is shown in Figure 5b.

In that situation, we look at short but high energy bursts.
The CSM representation generates a very discriminative rep-
resentation of the speech and siren signals, while, on the
other hand, the CAM fades the image as the envelopes of
the interfering siren are not highly modulated. After binding,
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Figure 6: (a) The spectrogram of the extracted /di/. (b) The spec-
trogram of the extracted /da/.

two sets of synchronized neurons are obtained: one for each
source. Separation is performed by using (11), wheremi(t) =
0 for the siren andmi(t) = 1 for the speech sentence and vice
versa.

5.3. Comparisons

Three approaches are used for comparison: themethods pro-
posed by Wang and Brown [7] (W-B), by Hu and Wang [8]
(H-W), and by Jang and Lee [35] (J-L). W-B uses an oscilla-
tory neural network but relies on pitch information through
correlation, H-W uses a multipitch tracking system, and J-L
needs statistical estimation to perform the MAP-based sepa-
ration.

6. RESULTS

Results can be heard and evaluated at http://www-edu.gel.
usherbrooke.ca/pichevar/, http://www.gel.usherb.ca/rouat/.

6.1. Siren plus sentence

The CSM is presented to the spiking neural network. The
weighted product of the outputs of the first layer along the

http://www.dcs.shef.ac.uk/~martin/
http://www-edu.gel.usherbrooke.ca/pichevar/
http://www-edu.gel.usherbrooke.ca/pichevar/
http://www.gel.usherb.ca/rouat/
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Figure 7: (a) The spectrogram of the extracted siren. (b) The spec-
trogram of the extracted utterance.

frequency axis is different when the siren is present. The
binding of channels on the two sides of the noise intrud-
ing zone is done via the long-range synaptic connections of
the second layer. The spectrogram of the result is shown in
Figure 7. A CSM is extracted every 10milliseconds and the
selection is made by 10-millisecond intervals. In a future
work, we will use much smaller selection intervals and
shorter STFT windows to prevent discontinuities, as ob-
served in Figure 7.

6.2. Double-voiced speech

Perceptual tests have shown that although we reduce sound
quality after the process, the vowels are separated and are
clearly recognizable.

6.3. Evaluation and comparisons

Table 1 reports the perceptive evaluation of speech quality
criterion (PESQ) on sentences corrupted with various noises.
The first column is the intruding noise, the second column
gives the initial SNR of the mixtures, and other columns are
the PESQ scores for the reference methods. Table 2 gives the

Table 1: PESQ for three different methods: P-R (our proposed ap-
proach), W-B [7], and H-W [8]. The intrusion noises are (a) 1 kHz
pure tone, (b) FM siren, (c) telephone ring, (d) white noise, (e)
male-speaker intrusion (/di/) for the French /di//da/ mixture, and
(f) female-speaker intrusion (/da/) for the French /di//da/ mixture.
Except for the last two tests, the intrusions aremixed with a sentence
taken from Martin Cooke’s database.

Intrusion Ini. SNR P-R W-B H-W
(noise) mixture (PESQ) (PESQ) (PESQ)
Tone −2dB 0.403 0.223 0.361
Siren −5dB 2.140 1.640 1.240

Telephone ring 3 dB 0.860 0.700 0.900
White −5dB 0.880 0.223 0.336

Male (da) 0 dB 2.089 N/A N/A
Female (di) 0 dB 0.723 N/A N/A

Table 2: PESQ for two different methods: P-R (our proposed ap-
proach) and J-L [35]. The mixture comprises a female voice with
musical background (rock music).

Mixture
Separated P-R J-L
sources (PESQ) (PESQ)

Music & female Music 1.724 0.346
(AF) Voice 0.550 0.630

comparison for a female speech sentence corrupted with rock
music (http://home.bawi.org/∼jangbal/research/demos/
rbss1/sepres.html).

Many criteria are used in the literature to compare sound
source separation performance. Some of the most important
are SNR, segmental SNR, PEL (percentage of energy loss),
PNR (percentage of noise residue), and LSD (log-spectral
distortion). As they do not take into account perception, we
propose to use another criterion, that is, the PESQ, to bet-
ter reflect human perception. The PESQ (perceptual eval-
uation of speech quality) is an objective method for end-
to-end speech quality assessment of narrowband telephone
networks and speech codecs. The key to this process is the
transformation of both the original and degraded signals into
an internal representation that is similar to the psychophys-
ical representation of audio signals in the human auditory
system, taking into account the perceptual frequency (Bark
scale) and loudness (sone). This allows a small number of
quality indicators to be used to model all subjective effects.
These perceptual parameters are combined to create an ob-
jective listening quality MOS. The final score is given on a
range of −0.5 to 4.5.12

In all cases, the system performs better than W-P [7]
and H-W [8], except for the telephone ring intrusion where
H-W is slightly better. For the double-voiced speech, the
male speaker is relatively well extracted. Other evaluations
we made are based on LSD and SNR and also converge to
similar results.

120 corresponds to the worst quality and 4.5 corresponds to the best qual-
ity (no degradation).

http://home.bawi.org/~jangbal/research/demos/rbss1/sepres.html
http://home.bawi.org/~jangbal/research/demos/rbss1/sepres.html
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7. CONCLUSION AND FURTHERWORK

Based on evidences regarding the dynamics of the efferent
loops and on the richness of the representations observed in
the cochlear nucleus, we proposed a technique to explore the
monophonic source separation problem using a multirepre-
sentation (CAM/CSM) bio-inspired preprocessing stage and
a bio-inspired neural network that does not require any a pri-
ori knowledge of the signal.

For the time being, the CSM/CAM selection is made
manually. In a near future, we will include a top-down mod-
ule based on the local SNR gain to selectively find the suitable
auditory image representation, also depending on the neural
network synchronization.

In the reported experiments, we segregate two sources to
illustrate the work, but the approach is not restricted to that
number of sources.

Results obtained from signal synthesis are encouraging
and we believe that spiking neural networks in combination
with suitable signal representations have a strong potential
in speech and audio processing. The evaluation scores show
that our system yields fairly comparable (and most of the
time better) performance than other methods even if it does
not need a priori knowledge and is not limited to harmonic
signals.
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