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We explore the use of physiologically inspired auditory features with both physiologically motivated and statistical audio classifi-
cation methods. We use features derived from a biophysically defensible model of the early auditory system for audio classification
using a neural network classifier. We also use a Gaussian-mixture-model (GMM)-based classifier for the purpose of comparison
and show that the neural-network-based approach works better. Further, we use features from a more advanced model of the
auditory system and show that the features extracted from this model of the primary auditory cortex perform better than the
features from the early auditory stage. The features give good classification performance with only one-second data segments used

for training and testing.
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1. INTRODUCTION

Human-like performance by machines in tasks of speech and
audio processing has remained an elusive goal. In an attempt
to bridge the gap in performance between humans and ma-
chines, there has been an increased effort to study and model
physiological processes. However, the widespread use of bi-
ologically inspired features proposed in the past has been
hampered mainly by either the lack of robustness to noise
or the formidable computational costs.

In physiological systems, sensor processing occurs in sev-
eral stages. It is likely the case that signal features and bio-
logical processing techniques evolved together and are com-
plementary or well matched. It is precisely because of this
reason that modeling the feature extraction processes should
go hand in hand with the modeling of the processes that use
these features.

We present features extracted from a model of the early
auditory system that have been shown to be robust to noise
[1, 2]. The feature extraction can be implemented in low-
power analog VLSI circuitry which apart from providing

substantial power gains also enables us to achieve feature ex-
traction in real time. We specifically study a four-class audio
classification problem and use a neural-network-based clas-
sifier for the classification. The method used herein is sim-
ilar to that used by Teolis and Shamma [3] for classifying
transient signals. The primary difference in our approach is
in the additional processing of the auditory features before
feeding them to the neural network. The rest of the paper is
organized as follows. Section 2 introduces the early auditory
system. Section 3 discusses models of the early auditory sys-
tem and the primary auditory cortex. Section 4 explains the
feature extraction process and Section 5 introduces the two
methods used to evaluate the features in a four-case audio
classification problem. Section 6 presents the experiments,
followed by the results and the conclusion.

2. EARLY AUDITORY SYSTEM

As sounds enter the ear, a small amount of signal condi-
tioning and spectral shaping occurs in the outer ear, but the
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FIGURE 1: A cut-away view of the human ear. This shows the three
stages of the ear. The outer ear includes the pinna, the ear canal,
and the tympanum (ear drum). The middle ear is composed of
three small bones, or ossicles. Simply put, these three bones work
together for gain control and for impedance matching between the
outer and the inner ear. The inner ear is the snail-shaped bone called
the cochlea. This is where the incoming sounds are decomposed
into the respective frequency components.

signals remain relatively unscathed until they contact the ear
drum, which is the pathway to the middle ear. The mid-
dle ear is composed of three small bones, or ossicles. Sim-
ply put, these three bones work together for gain control and
for impedance matching between the outer and the inner ear
(matching the low impedance of the auditory canal with the
high impedance of the cochlear fluid). The middle ear cou-
ples the sound energy in the auditory canal to the inner ear
or the cochlea which is a snail-shaped bone. The placement
of the cochlea with respect to the rest of the ear is shown in
Figure 1.

Figure 2 shows a cross-sectional view of the cochlea. The
input to the cochlea is through the oval window, and bar-
ring a scale factor resulting from the gain control, the signal
that enters the oval window of the cochlea is largely the same
as that which enters the ear. The oval window leads to one
of three fluid-filled compartments within the cochlea. These
chambers called scala vestibuli, scala media, and scala tym-
pani are separated by flexible membranes. Reissner’s mem-
brane separates the scala vestibuli from the scala media, and
the basilar membrane separates the scala tympani from the
scala media [4, 5].

As the oval window is pushed in and out as a result of
incident sound waves, pressure waves enter the cochlea in
the scala vestibuli and then propagate down the length of
the cochlea. Since the scala vestibuli and the scala tympani
are connected, the increased pressure propagates back down
the length of the cochlea through the scala tympani to the
front end, also called the basal end. When the pressure wave
hits the basal end, it causes a small window, called the round
window, that is similar in composition to the oval window,
to bow outwards to absorb the increased pressure. During
this process, the two membrane dividers bend and bow in
response to the changes in pressure [6] giving rise to a trav-
eling wave in the basilar membrane.
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FIGURE 2: A cross-section of the human cochlea. Within the bone
are three fluid-filled chambers that are separated by two mem-
branes. The input to the cochlea is in the scala vestibuli, which is
connected at the apical end to the scala tympani. Pressure differ-
ences between these two chambers lead to movement in the basilar
membrane. The scala media is isolated from the other two cham-
bers.

At the basal end, the basilar membrane is very narrow but
gets wider towards the apical end. Further, the stiffness of the
basilar membrane decreases down its length from the base to
the apex. Due to these variations along its length, different
parts of the basilar membrane resonate at different frequen-
cies, and the frequencies at which they resonate are highly
dependent upon the location within the cochlea. The travel-
ling wave that develops inside the cochlea propagates down
the length of the cochlea until it reaches the point where the
basilar membrane resonates with the same frequency as the
input signal. The wave will essentially die out after the point
where resonance occurs because the basilar membrane will
no longer support the propagation. It has been observed that
the lower frequencies travel further than the higher frequen-
cies. Also the basilar membrane has exponential changes in
the resonant frequency for linear distances down the length
of the cochlea.

The basilar membrane is also attached to what is known
as the organ of Corti. One important feature of the organ of
Corti is that it has sensory cells called inner hair cells (IHC)
that sense the motion of the basilar membrane. As the basi-
lar membrane moves up and down in response to the pres-
sure waves, it causes the local movement of the cochlear fluid.
The viscous drag of the fluid bends the cilia attached to the
IHC. The bending of the cilia controls the ionic flow into the
hair cells through a nonlinear channel. Due to this ionic cur-
rent flow, charge builds up across the hair-cell membrane.
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FIGURE 3: Mathematical model of the early auditory system consisting of filtering in the cochlea (analysis stage), conversion of mechanical
displacement into electrical activity in the THC (transduction stage), and the lateral inhibitory network in the cochlear nucleus (reduction

stage) [1].

This mechanism converts the mechanical displacement of
the basilar membrane into electrical activity. Once the po-
tential builds up above a certain threshold, the hair cell fires.
This neural spike is carried to the cochlear nucleus by the au-
ditory nerve fibre. The neurons in the cochlear nucleus (CN)
exhibit inhibition characteristics and it is believed that lateral
inhibition exists in the cochlear nucleus. The lateral interac-
tion of the neurons is spatially limited, that is, as the distance
between the neurons increases, the interaction decreases [7].

3. MATHEMATICAL MODEL OF THE
AUDITORY SYSTEM

3.1. Model of the early auditory system

Yang et al. [8] have presented a biophysically defensible
mathematical model of the early auditory system. The model
is shown in Figure 3 and described below.

When viewing the way the cochlea acts on signals of dif-
ferent frequencies from an engineering perspective, it can be
seen that the cochlea has bandpass frequency responses for
each location. An accurate but computationally prohibitive
model would have a bank of bandpass filters with center fre-
quencies corresponding to the resonant frequency of every
point along the cochlea—the cochlea has about 3000 inner
hair cells acting as transduction points. In practice 10-20 fil-
ters per octave are considered an adequate approximation.
The cochlear filters h(t; s) typically have 20 dB/decade rolloffs
on the low-frequency side and a very sharp rolloff on the
high-frequency side.

The coupling of the cochlear fluid and the inner hair cells
is modeled by a time derivative (dt). This can be justified
since the extent of IHC cilia deflection depends on the vis-
cous drag of the cochlear fluid and the drag is directly de-
pendent on the velocity of motion. The nonlinearity of the
ionic channel is modeled by a sigmoid-like function g(-) and
the leakiness of the cell membrane is modeled by a lowpass
filter w(t).

Lateral inhibition in the cochlear nucleus is modeled by
a spatial derivative (ds). The spatial derivative is leaky in the
sense that it is accompanied by a local smoothing that reflects
the limited spatial extent of the interactions of the CN neu-
rons. Thus, the spatial derivative is often modeled along with
a spatial lowpass filter v(s). The nonlinearity of the CN neu-
rons is modeled by a half-wave rectifier (HWR) and the in-
ability of the central auditory neurons to react to rapid tem-
poral changes is modeled by temporal integration (). The
output of this model is referred to as the auditory spectrum
and it has been shown that this representation is more robust
to noise as compared to the normal power spectrum [1].
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FIGURE 4: Schematic of the cortical model. It is proposed in [9] that
the response fields of neurons in the primary auditory cortex are ar-
ranged along three mutually perpendicular axes: the tonotopic axis,
the bandwidth or scale axis, and the symmetry or phase axis.

3.2. Cortical model

Wang and Shamma [9] have proposed a model of the spectral
shape analysis in the primary auditory cortex. The schematic
of the model is shown in Figure 4. According to this model,
neurons in the primary auditory cortex (Al) are organized
along three mutually perpendicular axes. The response fields
of neurons lined along the tonotopic axis are tuned to differ-
ent center frequencies. The bandwidth of the response field
of neurons lined along the scale axis monotonically decreases
along that axis. Along the symmetry axis, the response field
of the neurons displays a systematic change in symmetry. At
the center of Al, the response field has an excitatory center,
surrounded by inhibitory sidebands. The response field tends
to be more asymmetrical with increasing distance from the
center of Al. It has been argued that the tonotopic axis is akin
to a Fourier transform, and the presence of different scales
over which this transform is performed leads to a multiscale
Fourier transform. It has been shown that performing such
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an operation on the auditory spectrum leads to the extrac-
tion of spatial and temporal modulation information [10].
This model is used to extract the cortical features explained
in Section 4.

4. FEATURE EXTRACTION

4.1. Simplified model of the early auditory system

The cochlear filters h(t;s) are implemented through a band-
pass filter bank (BPF), with 40 dB/decade rolloff on the low
frequency. This models the 20 dB/decade cochlear filter roll-
off and also provides a time differentiation of the input sig-
nal. The nonlinearity of the ionic channel g(-) is imple-
mented by a sigmoid-like function. The temporal lowpass
filter w(¢) is ignored and it has been shown that at moder-
ate sound intensities, this is a valid approximation [1]. The
spatial derivative ds is approximated by a difference opera-
tion between the adjacent frequency channels and the spa-
tial low-pass filter v(s) is ignored (this corresponds to lim-
iting the spatial extent of lateral inhibition of the CN neu-
rons to adjacent channels). The half-wave rectification stage
is retained and the temporal averaging is implemented by a
lowpass filter (LPF).

4.2. Features
4.2.1.

The auditory spectrum derived from the simplified model
of the early auditory system is a two-dimensional time-
frequency representation. The filter bank consists of 128
channels tuned from 180 Hz to 7246 Hz and the tempo-
ral averaging (lowpass filtering) is done over 8-milliseconds
“frames”, thus the auditory spectrum for one second of data
is a 128 x 125 two-dimensional matrix. The neural response
over time is modeled by a mean activity level (temporal av-
erage) and by the variation of activity over time (temporal
variance). Thus taking the temporal average and temporal
variance of the auditory spectrum, we end up with a 256-
dimensional feature vector for each one-second segment. We
refer to these as the AM short features.

Auditory model features

4.2.2. Noise-robust auditory features

We modified the early auditory model to incorporate the log
compression due to the outer hair cells [11] and also intro-
duced a decorrelation stage. The decorrelation stage is im-
portant for practical reasons; while the neural networks nat-
urally perform this operation, doing so explicitly reduces the
training requirements for the networks. We refer to this rep-
resentation as noise-robust auditory features (NRAF). The
noise robustness of these features is shown elsewhere [2].
The NRAF extraction can be implemented in low-power ana-
log VLSI circuitry as shown in Figure 5. The auditory spec-
trum is log compressed and transformed using a discrete
cosine transform (DCT) which effectively decorrelates the
channels. The temporal average and temporal variance of
this representation yield a 256-dimensional feature vector for
every one-second segment. We refer to these as the NRAF
short features. The NRAF feature extraction is similar to
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FIGURE 5: The bandpass-filtered version of the input is nonlinearly
compressed and fed back to the input. The difference operation be-
tween lower and higher channels approximates a spatial derivative.
The half-wave rectification followed by the smoothing filter picks
out the peak. Log compression is performed followed by the DCT
to decorrelate the signal.

extracting the continuous-time mel-frequency cepstral coef-
ficients (MFCCs) [12], however the NRAF features are more
faithful to the processes in the auditory system.

4.2.3. Rate-scale-frequency features

A multiscale transform (performed using the cortical model)
on the auditory spectrum leads to a four-dimensional rep-
resentation referred to as rate-scale-frequency-time (RSFT)
[9]. The processing done by the cortical model on the audi-
tory spectrum is similar to a two-dimensional wavelet trans-
form. Frequency represents the tonotopic axis in the basi-
lar membrane and in our implementation is the center fre-
quency of the bandpass filters of the early auditory model.
Each unit along the time axis corresponds to 8 millisec-
onds. This is the duration over which the temporal integra-
tion is performed in the early auditory model. Rate corre-
sponds to the center frequency of the temporal filters used
in the transform and yields temporal modulation informa-
tion. Scale corresponds to the center frequency of the spa-
tial (frequency) filters used in the transform and yields spa-
tial modulation information. The RSFT representation is col-
lapsed across the time dimension to obtain the RSF features.
Principal component analysis is performed to reduce the RSF
features to a dimension of 256. These features are referred to
as the RSF short features.

4.2.4. Mel-frequency cepstral coefficients

For the purpose of comparison, we also extracted the
MFCCs. Each one-second training sample is divided into
32-millisecond frames with 50% overlap and 13 MFCC
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FiGURE 6: Extraction of the different features used in the classifica-
tion.

coefficients are computed from each frame. The mean and
variance of the 13 features over one-second segment were cal-
culated to give a 26-dimensional feature vector.

Figure 6 gives a graphic representation of how different
feature sets are obtained. The NRAF short features differ
from the AM short features in that they incorporate an ad-
ditional log compression and decorrelation stage. The RSF
short features are obtained by a multiresolution processing
on the auditory spectrum, followed by dimensionality reduc-
tion.

5. CLASSIFICATION METHODS

We used two different methods for classification, a Gaussian-
mixture-model (GMM) -based classifier and a neural-net
(NN) -based classifier. The GMM-based classifier is used as
the nonanthropomorphic control case and was chosen be-
cause of its successful use in audio classification and speech
recognition. It is easily trained and can match feature space
morphologies.

5.1. GMM-based classifier

The feature vectors from each class were used to train the
GMM models for those classes. During testing, the likelihood
of a test sample belonging to each model is computed and
the sample is assigned to the class whose model produces the
highest likelihood. Diagonal covariance was assumed with a
separate covariance matrix for each of the mixtures. The pri-
ors are set based on the number of data samples in each mix-
ture. To implement the GMM, we used the Netlab software
provided by Nabney and Bishop [13].

5.2. NN-based classifier

Through iterative development, the optimal classification
system was found to be a collaborative committee of four
independently trained binary perceptrons. Three of the per-
ceptrons were trained solely on two of the four classes (class
1 (noise) versus class 2 (animal sounds), class 1 versus class
3 (music), and class 2 versus class 3). Because of the linear
separability of class 4 (speech) within the feature space, the
fourth perceptron was trained on all four classes, learning
to distinguish speech from the other three classes. All four
perceptrons employed the tanh(-) decision function and the
conjugate gradient descent training with momentum learn-
ing. All training converged within 500 epochs of training,
and consistent performance and generalization results were
realized. With the four perceptrons independently trained, a
collaborative committee was established with decision rights
shown in Figure 7. The binary classifier for classifying speech
versus the rest was allowed to make the decisions on the
speech class due to its ability to learn this class extremely
well. A collaborative committee using majority voting was
instituted to arbitrate amongst the other three binary classi-
fiers. The performance curve for training and testing for the
three different features is as shown in Figures 8, 9, and 10. We
see that while NRAF short and RSF short features generalize
well, AM short features do not perform as well.

6. EXPERIMENTS

MEFCCs are the most popular features in state-of-the-art au-
dio classification and speech recognition. Peltonen et al. [14]
showed that MFCCs used in conjunction with GMM-based
classifiers performed very well for an auditory scene recogni-
tion experiment involving identifying 17 different auditory
scenes from amongst 26 scenes. They reported near-human-
like performance when using 30 seconds of data to per-
form the scene recognition. We use a similar approach using
MEFCCs and a GMM-based classifier as the baseline system.



A Physiologically Inspired Method for Audio Classification

1379

100

Performance (% correct)

65

100 150 200 250 300 350 400 450 500
Epoch

0 50

o Training; 96.07%
x Generalization; 91.99%

F1GURE 8: Performance curves during training and testing of the NN
classifier with the NRAF short features.
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FIGURE 9: Performance curves during training and testing of the NN
classifier with the AM short features.

The database consisted of four classes; noise, animal
sounds, music, and speech. Each of the sound samples was a
second long. The noise class was comprised of nine different
types of noises from the NOISEX database which included
babble noise. The animal class was comprised of a random
selection of animal sounds from the BBC Sound Effects au-
dio CD collection. The music class was formulated using the
RWC music database [15] and included different genres of
music. The speech class was made up of spoken digits from
the TIDIGITS and AURORA database. The training set con-
sisted of a total of 4325 samples with 1144 noise, 732 animal,
1460 music, and 989 speech samples and the test set consisted
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FIGURE 10: Performance curves during training and testing of the
NN classifier with the RSF short features.

of 1124 samples with 344 noise, 180 animal, 354, music, and
246 speech samples.

Dimensionality reduction was necessitated by the inabil-
ity of the GMM to handle large-dimensional feature vectors.
For the AM short features, it was empirically found that re-
ducing to a 64-dimensional vector by using principal compo-
nent analysis (PCA) provided the best result. Since the PCA
helps decorrelate the features, a diagonal covariance matrix
was used in the GMMs. Performing linear discriminant anal-
ysis [16] for dimensionality reduction and decorrelation did
not provide better results as compared to PCA. The NRAF
short features were also reduced to 64 dimensions similarly.
For these two feature sets, a 4-mixture GMM was used to per-
form the classification. The RSF short features were further
reduced to a dimension of 55 using PCA, and a 6-mixture
GMM was used to perform the classification. For MFCCs,
a 4-mixture GMM was used. The GMMs were optimized to
give the best results on the database. However, the improve-
ment in accuracy comes at a cost of reduced generalization
ability.

Further experiments were performed to incorporate tem-
poral information into the baseline classifier (GMM-based
classifier using MFCCs). The MFCCs per frame were used
to generate models for each class. It was determined that us-
ing 9 mixtures gave the best result. In the test phase the log
likelihood of each frame in the one second segment belong-
ing to each of the classes was computed and summed over
one second. The class with the highest summed log likeli-
hood was declared the winner.

7. RESULTS

As can be seen from Table 1, NRAF short features outper-
form MFCCs using GMM-based classifier. The NRAF short
features also outperform the AM short features using both
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TaBLE 1: Performance (% correct) for different features and differ-
ent classifiers.

TaBLE 5: Confusion matrix (rows give the decision and columns
give the true class) for AM short with GMM. This gave an accuracy
of 71.79%.

MFCC NRAF short AM short RSF short
GMM 85.85% 90.21% 71.79% 70.99%
NN — 91.99% 82.56% 95.28%

TaBLE 2: Confusion matrix (rows give the decision and columns
give the true class) for MFCC with GMM. This method gave an
accuracy of 85.85%.

Noise Animal Music Speech
Noise 181 23 10 2
Animal 19 121 33 10
Music 52 36 285 14
Speech 92 0 26 220

TaBLE 6: Confusion matrix (rows give the decision and columns
give the true class) for AM short with NN. This gave an accuracy of
82.56%.

Noise Animal Music Speech Noise Animal Music Speech
Noise 310 18 30 0 Noise 297 33 27 0
Animal 0 140 55 0 Animal 6 106 34 4
Music 34 22 269 0 Music 39 40 284 1
Speech 0 0 0 246 Speech 2 1 9 241

TaBLE 3: Confusion matrix (rows give the decision and columns
give the true class) for NRAF short with GMM. This gave an accu-
racy of 90.21%.

Noise Animal Music Speech
Noise 294 19 1 0
Animal 50 140 12 3
Music 0 9 339 2
Speech 0 12 2 241

TaBLE 4: Confusion matrix (rows give the decision and columns
give the true class) for NRAF short with NN. This gave an accuracy
0f 91.99%.

TaBLE 7: Confusion matrix (rows give the decision and columns
give the true class) for RSF short with GMM. This gave an accuracy
of 70.99%.

Noise Animal Music Speech
Noise 136 6 6 0
Animal 4 142 48 1
Music 54 30 280 5
Speech 150 2 20 240

TaBLE 8: Confusion matrix (rows give the decision and columns
give the true class) for RSF short with NN. This gave an accuracy of
95.28%.

Noise Animal Music Speech Noise Animal Music Speech
Noise 340 34 6 0 Noise 337 28 2 0
Animal 0 133 31 2 Animal 0 143 5 0
Music 4 10 317 0 Music 7 9 347 2
Speech 0 3 0 244 Speech 0 0 0 244

the GMM- and the NN-based classifiers. RSF short features
outperform NRAF short features while using the NN clas-
sifier. The results for all the features (except MFCCs, which
were not tested with the NN classifier) were better with an
NN classifier as compared to a GMM classifier. Tables 2, 3,
4,5, 6, 7, and 8 give the confusion matrices of the various
features for the two different classifiers.

It is seen from the confusion matrices that MFCCs do
a very good job of learning the speech class. All the other
features used are also able to separate out the speech class
with reasonable accuracy indicating the separability of the
speech class in the feature space. It is interesting to note that
most of the mistakes by MFCCs in the noise class are mis-
classifications as music (Table 2) but NRAF makes most of
its mistakes in this class as misclassifications into the animal
class (Table 6), which is more acceptable as some of the ani-
mal sounds are very close to noise. The animal class seems
to be the most difficult to learn but RSF short features in

TaBLE 9: Performance (% correct) for MFCCs. The one-second seg-
ment was divided into 30-millisecond frames, and the final decision
was made by combining the frame decisions.

Classifier
GMM + majority rule

Performance
81.49%

conjunction with the NN classifier do a good job of learning
this class. Most of the mistakes in this case are misclassifica-
tions as noise.

The result of incorporating temporal information into
the GMM-based classifier is shown in Table 9. It is seen that
the performance decreases in comparison with using mean
and variance of the MFCCs over one second. This could be
attributed to the fact that there is too much variability in each
of the classes. Performing temporal smoothing over one sec-
ond makes the features more robust.
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8. CONCLUSIONS

We have shown that for the given four classes, audio classifi-
cation problem features derived from a model of the auditory
system combine better with an NN classifier as compared to
a GMM-based classifier. The GMM-based classifier was op-
timized to give the best results for the database while the NN
classifier was trained with generalization in mind. The accu-
racy of the NN classifier can be increased but at the cost of
reducing the generalization ability of the classifier. It could
be argued that the few number of classes considered com-
bined with the high dimensionality of the feature space might
render the classes linearly separable and hence aid the NN
approach. The performance of GMM- and neural-network-
based classifiers was not tested for large number of classes
and the scalability of NN classifier to large number of classes
is an open question. Neural networks however provide an ef-
ficient and natural way of handling large-dimensional feature
vectors as obtained from models of the human auditory sys-
tem.
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