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Measuring speech quality by machines overcomes two major drawbacks of subjective listening tests, their low speed and high cost.
Real-time, accurate, and economical objective measurement of speech quality opens up a wide range of applications that cannot
be supported with subjective listening tests. In this paper, we propose a statistical data mining approach to design objective speech
quality measurement algorithms. A large pool of perceptual distortion features is extracted from the speech signal. We examine
using classification and regression trees (CART) and multivariate adaptive regression splines (MARS), separately and jointly, to
select the most salient features from the pool, and to construct good estimators of subjective listening quality based on the selected
features. We show designs that use perceptually significant features and outperform the state-of-the-art objective measurement
algorithm. The designed algorithms are computationally simple, making them suitable for real-time implementation. The pro-
posed design method is scalable with the amount of learning data; thus, performance can be improved with more offline or online

training.

Keywords and phrases: speech quality, speech perception, mean opinion scores, data mining, classification trees, regression.

1. INTRODUCTION

“Plain old telephone service,” as traditionally provided using
dedicated circuit-switched networks, is reliable and econom-
ical. A contemporary challenge is to provide high-quality, re-
liable, and low-cost voice telephone services over nondedi-
cated and heterogeneous networks. Good voice quality is a
key factor in garnering customer satisfaction. In a dynamic
network, voice quality can be maintained through a combi-
nation of measures: design planning, online quality monitor-
ing, and call control. Underlying these measures is the need
to measure user opinion of voice quality. Traditionally, user
opinion is measured offline using subjective listening tests.
Such tests are slow and costly. In contrast, machine compu-
tation (“objective measurement”), which involves no human
subjects, provides a rapid and economical means to estimate
user opinion. Objective measurement enables network ser-
vice providers to rapidly provision new network connectiv-
ity and voice services. Online objective measurement is the
only viable means of measuring voice quality, for the pur-
pose of real-time call monitoring and control, on a network-
wide scale. Other applications of voice quality measurement

include evaluation of disordered speech [1] and synthesized
speech [2].

Algorithms for objective measurement of speech qual-
ity can be divided into two types: single-ended and double-
ended (see Figure 1). Double-ended algorithms need to in-
put both the original (“clean”) and degraded speech signals,
whereas single-ended algorithms need only to input the de-
graded speech signal. Single-ended algorithms can be used
for “passive” monitoring, that is, nonintrusively tapping into
a voice connection. Double-ended algorithms are sometimes
called “intrusive” because a voice signal known to the algo-
rithm has to be injected into the transmit end. Neverthe-
less, Conway in [3] proposes a method that employs double-
ended algorithms without intruding on an ongoing call. The
method is based on measuring packet degradations at the re-
ceive end. The measured degradations are applied to a typical
speech signal to produce a degraded signal. A double-ended
algorithm is used to map the speech signal and degraded sig-
nal to speech quality.

The performance of objective measurement algorithms is
primarily characterized by the accuracy of the user opinion
scores produced by the algorithm, using the opinion scores
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obtained from subjective tests as accuracy benchmarks. The
mean opinion score (MOS) [4], obtained by averaging the ab-
solute categorical ratings (ACRs) produced by a group of lis-
teners, is the most commonly used measure of user opinion.
Subjective listening tests are generally performed with a lim-
ited number of listeners, so that the MOS varies with the lis-
tener sample and its size. In such a case, the degree of accu-
racy of objective scores can be assessed up to the degree of
accuracy of the subjective scores used as benchmarks.

The International Telecommunications Union (ITU)
standard [5, P.862], also called Perceptual Evaluation of
Speech Quality (PESQ), is a double-ended algorithm that ex-
emplifies the “state-of-the-art” An ITU standard for single-
ended quality measurement [6, P.563] has recently reached
a “prepublished” status. Objective measurement has the ad-
vantage of being consistent. While subjective tests can be
used to estimate the MOS very accurately by using a large
listening panel, objective measurement can provide a more
accurate MOS estimate than a small listener panel (see [7]
for a simple model of measurement variance). Hence, objec-
tive measurement, which can be automated and performed
in real time, provides a very attractive alternative to subjec-
tive tests.

The process of human judgment of speech quality can be
modeled in two parts. The first part, auditory perception, en-
tails transduction of the received speech acoustic signal into
auditory nerve excitations. Auditory models are well stud-
ied in the literature [8] and have been applied to the de-
sign of PESQ and other objective measurement algorithms
[9, 10, 11]. Essential elements of auditory processing include
bark-scale frequency warping and spectral power to sub-
jective loudness conversion. The second part of the human
judgment process entails cognitive processing in the brain,
where compact features related to normative and anomalous
behaviors in speech are extracted from auditory excitations
and integrated to form a final impression of the perceived
speech signal quality. Cognitive models of speech distortions
are less well developed. Nevertheless, for the goal of accurate
prediction of subjective opinion of speech quality, anthro-
pomorphic modeling of cognitive processing is not strictly
necessary.

In place of cognitive modeling, we pursue a statisti-
cal data mining approach to design novel double-ended al-
gorithms. The success of statistical techniques in advanc-
ing speech recognition performance lends promise to the
approach. Our algorithms are designed based on classi-
fying perceptual distortions under a variety of contexts.

A large pool of context-dependent feature measurements
is created. Statistical data mining tools are used to find
good features in the pool. Features are selected to produce
the best estimator of the subjective MOS value. The algo-
rithms demonstrate significant performance improvement
over PESQ, at a comparable computational complexity. In
effect, the statistical classifier-estimators serve as utilitarian
models of human-cognitive judgment of speech quality.

This paper is organized as follows. Section 2 provides the
background by introducing existing double-ended speech
quality measurement schemes and two statistical data min-
ing algorithms. Section 3 describes our speech quality mea-
surement algorithm architecture, its basic elements and de-
sign framework, and feature design and mining. Lastly, in
Section 4, various design methods and designed algorithms
are examined and their performance are assessed experimen-
tally.

2. BACKGROUND

In this section, we review briefly existing objective speech
quality measurement methods and the statistical data min-
ing techniques we have used.

2.1. Current objective methods

Early speech quality measures were used for assessing the
quality of waveform speech coders. These measures calcu-
late the difference between the waveform of the nondegraded
speech and that of the degraded speech, in effect using wave-
form matching as a criterion of quality. Representative mea-
sures include the signal-to-noise ratio (SNR) and segmental
SNR [12]. Measures of distortions in the short-time spec-
tral envelopes of speech [13] were later introduced. These
measures do not require the waveforms to match in order
to produce zero distortion. They are suitable for low-bit-
rate speech coders that may not preserve the original speech
waveform, for example, linear-prediction-based analysis-by-
synthesis (LPAS) coders [14]. For a comprehensive review of
objective methods known till late 1980s, the reader can con-
sult [15].

Measurement algorithms that exploit the human audi-
tory perception rather than just the acoustic features of
speech provide more accurate prediction of subjective qual-
ity. Representative algorithms include BSD (Bark spectral
distortion) [11], MNB (measuring normalizing block) [9,
10], and PESQ (perceptual evaluation of speech quality)
[5, 16]. A major difference among algorithms of this kind
is in the postprocessing of the auditory error surface. Hollier
etal. [17] uses an entropy measure of the error surface. MNB
uses a hierarchical structure of integration over a range of
time and frequency intervals. PESQ (Figure 2) furnishes the
current state-of-the-art performance. PESQ performs inte-
gration in three steps, first over frequency, then over short-
time utterance intervals, and finally over the whole speech
signal. Different p values are used in the L, norm integra-
tions of the three steps. (PESQ also provides a delay compen-
sation algorithm that is essential for quality measurement of
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FIGURE 2: Schematic diagram of PESQ method [5].

voice packets that are subject to delay variation in the net-
work.) The different methods of integration, though they
may not resemble cognitive processes, achieve their respec-
tive degrees of effectiveness through using subjectively scored
speech data to calibrate the mapping to estimated speech
quality.

Subjects in MOS tests rate speech quality on the integer
ACR scale of 1 to 5, with 5 representing excellent quality,
and 1 representing the worst quality. The MOS is a contin-
uous value based on averaging the listener’s ACR scores. Ide-
ally, the MOS obtained using a large and well-formed listener
panel reflects the “true” mean opinion of the listener pop-
ulation. In practice, the measured MOS varies across tests,
countries, and cultures. In subjective tests that use a different
measure called DMOS [4], or degradation MOS, the sub-
ject listens to the original speech before scoring the degree
of degradation of the degraded speech relative to the origi-
nal. In MOS tests, a subject listens to a speech sample and
chooses his/her opinion of its quality in a “categorical” sense,
without first listening to a “reference” speech sample. The
subject relies on his/her experience of speech quality to de-
cide on the quality of the sample. Hence, single-ended algo-
rithms are akin to MOS tests, while double-ended algorithms
are akin to DMOS tests. Though most existing double-ended
algorithms are designed to predict MOS, they may actually
predict DMOS with better accuracy than MOS [18]. Rely-
ing on differences or distortions with respect to a “clean” sig-
nal alleviates the need to model “clean” speech in a norma-
tive sense. Nevertheless, distortions that are measurable on
psychoacoustical scales do not necessarily contribute to per-
ceived quality degradation. Speech signals can be modified
in ways such that the modified signal can be distinguished
from its original in a comparison test, but the modified signal
would not be judged as degraded in a MOS test. Any “cogni-
tive” processing ought to give no weight to differences that
are measurable but do not affect the type of quality judg-
ment that is predicted by the objective measurement. Exist-
ing double-ended algorithms do not have the intelligence to
disregard such type of differences. The algorithms will pre-
dict a poorer quality for speech that has been transformed

but not degraded. Consider the contrived example where an
utterance is replaced with a different utterance of the same
duration; the quality stays the same but the measured differ-
ence may be huge.

2.2, Statistical data mining

A major aim of this work is to use statistical data mining
methods to find psychoacoustic features which most signifi-
cantly correlate with quality judgment. Statistical data min-
ing involves using statistical analysis tools to find underly-
ing patterns or relationships in large data sets. Statistical data
mining techniques have been applied to solve diverse prob-
lems in manufacturing quality control, market analysis, med-
ical diagnosis, financial services, and so forth with much suc-
cess. We consider two techniques in this paper: classification
and regression trees (CART) [19] and multivariate adaptive
regression splines (MARS) [20].

Suppose we have a response variable y and n predictor
variables xi, ..., x,. Suppose we observe N joint realizations
of the response and predictor variables. Our observations can
be modeled as

y=f(x1,...,%0) +6, (1)
where § represents a noise term. Our aim is to find a sub-
set of predictor variables {x;,...,x;,}, ij € {l,...,n}, j

1,...,m, m < n, and a mapping f(xil,...,xim), such that f
yields a good estimate of the response variable y.

2.2.1. CART

CART (classification and regression trees) [19] is a recur-
sive partitioning algorithm. The domain D of the desired
mapping is partitioned into M disjoint regions {R,,}}". The
partitioning process is recursive; new regions are generated
by splitting regions that have been found so far. In conven-
tional application of CART, the splitting is restricted to be
perpendicular to the axis of the predictor variable chosen at
each step of the recursion. This enables the splitting to be ef-
fected by answering a simple “yes” or “no” question on the
predictor variable. The variable is chosen amongst x1,...,x,
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F1gure 3: CART regression tree.

to minimize a splitting cost criterion. CART results are easy
to interpret due to its simple binary tree representation. In
Figure 3, a simplistic CART tree is shown, where circles rep-
resent internal nodes and rectangles represent leaf nodes.
Each internal node in the tree is always split into two child
nodes.

CART trees are designed in a two-stage process. First, an
oversize tree is grown. The tree is then pruned based on per-
formance validation, until the best-size tree is found. During
tree growing, the next split is found by an exhaustive search
through all possible single-variable splits at all the current
leaf nodes. In CART regression, each region is approximated
by a constant function

~

f(x) =a, ifxe€Ry,. (2)

The splitting cost criterion is the decrease in regression error
resultant from the split. The regions generated by CART are
disjoint, and the piecewise constant regression function f is
discontinuous at region boundaries. This can lead to poor re-
gression performance, unless the dataset is sufficiently large
to support a large tree. Nevertheless, CART has been success-
fully used in classifying high-risk patients [19], quality con-
trol [21], and image vector quantization [22].

2.2.2. MARS

Multivariate adaptive regression spline (MARS) [20] was
proposed as an improvement over recursive partitioning al-
gorithms such as CART. Unlike CART, MARS produces a

continuous regression function f, and the regions of MARS

may overlap. In MARS, f is constructed as a sum of M basis
functions:

M
f60 = auBu(x), (3)
m=1

—-10

—— MARS regression
- - - Linear regression

FIGURE 4: A MARS regression function with three knots (marked
by x).

where the basis function By, (x) takes the form of a truncated
spline function. In Figure 4, a single-variable f with three
“knots” is shown, where each knot marks the end of one
region of data and the beginning of another. Compared to
the linear regression function, the MARS regression function
better fits the data.

Like CART, the MARS regression model is also built
in two stages. First, an oversize model is built by progres-
sively adding more basis functions. In the second stage, ba-
sis functions that contribute the least to modeling accuracy
are progressively pruned. At each step in the model’s grow-
ing phase, the best pair of basis functions to add is found
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by an exhaustive search, similar to finding the best split dur-
ing CART tree growing. MARS has been applied to predict
customer spending and forecast recession [23], and predict
mobile radio channels [24].

3. PROPOSED DESIGN METHOD

In the proposed method, double-ended measurement algo-
rithms are designed based on the architecture depicted in
Figure 5. Auditory processing (Figure 6) is first applied to
both the clean speech and the degraded speech, to produce
a subband decomposition for each signal. The subband de-
composed signals and the clean speech signal are input to
the cognitive mapping module (Figure 7), where a distortion
surface is produced by taking the difference of the two sub-
band decompositions. A large pool of candidate feature vari-
ables is extracted from the distortion surface. MARS and/or
CART is applied to sift out a small set of predictor variables
from the pool of candidate variables, while progressively con-

structing and optimizing the regression mapping f This
mapping replaces the statistical mining block in Figure 7
upon completion of the design.

The auditory processing modules decompose the input
speech signals into power distributions over time frequency
and then convert them to auditory excitations on a loudness
scale. The cognitive mapping module interprets the differ-
ences (distortions) between the auditory excitations of the
clean and the degraded speech signals. In effect, the cogni-
tive module “integrates” the distortions over time and fre-
quency to arrive at a predicted quality score. We make the
simple observation that “distortions are not created equal.”
An isolated large distortion event is likely to be cognitively
distinct from small distortions that are widely diffused over
time frequency, though the small distortions may integrate
to a substantial amount. The latter kind of distortion may be
less annoying than the former kind. We take an agnostic view
of how human cognition weighs the contributions from dif-
ferent types of distortions. The approach we take is to create
a plethora of “contexts” under which distortion events occur.
Distortions with the same context are integrated to a value
which we call a “feature.” Straightforward root-mean-square
(RMS) integration is used to compute the feature value. Each
context gives rise to one candidate feature, so that there are
as many candidate features as the number of contexts. From
the pool of candidate features, data mining techniques are
used to find a small subset of features and the best way to

combine them to estimate the speech quality. The modules
are described next in Sections 3.1 and 3.2. Detailed design
considerations and justifications of the modules then follow
in Section 3.3, and finally computational complexity is con-
sidered in Section 3.4.

3.1. Auditory processing

A block diagram of auditory processing is depicted in
Figure 6. Human auditory processing of acoustic signals is
commonly modeled by signal decomposition through a bank
of filters whose bandwidths increase with filter center fre-
quency according to the bark or critical-band scale [8]. A
typical realization of this model employs roughly 17 filters or
spectral bands to cover the telephone voice channel. In our
experiments, we found that 7 bands, each with bandwidth
of about 2.4 bark, strike a good balance between prediction
performance and sensitivity to irrelevant variations in the in-
put data (for further elaboration, see Section 3.3.1). In our
scheme, the speech signal is partitioned into 10-millisecond
frames. For each frame, a 128-point power spectrum is cal-
culated by applying FFT to a 128-point Hanning-windowed
signal segment centering on each frame. The spectral power
coefficients are grouped into 7 bands. The coefficients in each
band are summed, to produce altogether 7 subband power
samples. The samples are converted to subjective loudness
scale using Zwicker’s power law [8]:

) () [0+ Pgd) 1) o

where the exponent k = 0.23, Ly = 0.068, E is the reference
excitation power level, Erq(f) is the excitation threshold at
frequency f, E(f) is the input excitation at frequency f, and
s(f) is the threshold ratio.

3.2. Cognitive mapping

The “cognitive mapping” module comprises functional
blocks as depicted in Figure 7. The decomposed clean and
degraded speech signals from the auditory processing mod-
ules are first subtracted to obtain their absolute difference,
which is called the “distortion”. The distortion over the whole
speech signal can be organized into a two-dimensional array,
representing a distortion surface over time frequency. A goal
of the cognitive mapping is to aggregate cognitively similar
distortions through segmentation and classification (elabo-
rated below). The perceptually significant aggregated distor-
tions are found using data mining. The statistical data min-
ing block in Figure 7 is present during the design phase of
the cognitive mapping block. Once the design is completed,
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the block is replaced by a simple mapping block. The map-
ping (the aforementioned f) is computationally simple, as

can be seen from the example presented in Appendix B.

3.2.1. Time segmentation

The clean speech signal is processed through a voice activ-
ity detector (VAD) and then a voicing detector. Each 10-
millisecond speech frame is thereby labeled as either “back-
ground,” “active-voiced,” or “active-unvoiced.” We use the
VAD algorithm from ITU-T G.729B [25], omitting the com-
fort noise generation part of the algorithm. More recent VAD
algorithms such as that in the AMR codec [26] may also be
used to advantage. The purpose of the segmentation is to sep-
arate the different types of speech frames so that they can
exert separate influence on the speech quality estimate. The
advantage of such segmentation is suggested in [27], where
performance was improved using clustering-based segmen-
tation.

3.2.2. Severity classification

The total distortion of each frame is classified into different
severity levels. The aim is to sift out the significant distor-
tion events. Different forms of classifiers can be used. We
have experimented with simple thresholding, CART classi-
fication [19], and Gaussian mixture density modeling. Based
on our simulation results, we have found that a simple clas-
sification scheme, thresholding the average frame distortion,
suffices to produce most of the benefit. Results presented be-
low are based on thresholding to 3 severity levels, which we
call low, medium, and high distortion severity. In [28], fixed
thresholding of frame energy is shown to provide perfor-
mance gain. Gains obtained from classification and segmen-
tation are discussed in Section 3.3.2.

3.2.3. Context and aggregation

The speech signal now has a time-frequency representation,
with a distortion sample in each time-frequency bin. Each
sample is labeled according to its frequency band index,
time-segmentation type, and severity level. Contexts are cre-
ated by combining label values. For instance, the above seg-
mentation and classification creates 7 X 3 X 3 = 63 distinct

values. The distortion samples that have the same composite-
label value belong to the same context, which is named af-
ter the composite-label value. By associating a context with
each distinct composite-label value, we form 63 distinct con-
texts. Each context contributes one feature variable to the
candidate feature pool to be mined. The value of a feature
is obtained via root-mean-square integration of the distor-
tion samples in the context, normalized by the number of
frames in the speech signal. Thus, each context establishes a
specific class of distortion, and contributes to data mining a
feature variable which captures the level of the distortion in
that class. The feature variables are defined in Appendix A. As
an example, the variable U_B_2_0 captures the integrated dis-
tortion of the context: unvoiced frame, subband 2, and low
severity (level 0). We assume that the lengths of the speech
signals are no more than several seconds so that recency ef-
fects can be ignored. Recency effects can be accounted for by
introducing forgetting factors.

3.2.4. Feature pool

Additional contexts are defined in order to create a “rich”
pool of candidate features for mining. Besides labeling each
frequency subband with its natural subband index, each sub-
band is also labeled with the rank order obtained by ranking
the 7 distortions in a frame in order of decreasing magnitude.
Thus, a candidate feature has either a natural or ordered sub-
band index. Rank ordering the subband distortions as well
as classifying frame-level distortions based on severity cre-
ate contexts that capture distortions independent of specific
time-frequency locations, but dependent on the absolute or
relative level of distortion severity. This is hypothetically jus-
tifiable by the nature of the quality judgment process, and
helps the data mining algorithm to pick out cognitively sig-
nificant events.

Additional contexts are also created by omitting some la-
bels such as the severity level. These contexts are the 7 sub-
bands, in natural or ordered index, for each of the 3 time-
segmented frame classes, without severity classification; alto-
gether there are 7 X 3 = 21 such contexts (whose feature vari-
ables are listed in Appendix A as T_B_b and T_O_b). We also
include weighted mean and root-mean distortions, proba-
bility of each frame type, and the lowest-frequency-band
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and the highest-frequency-band energy of the clean speech
frames, to produce a pool totaling 209 candidate features, as
listed in Appendix A. The weighted mean of the 7 subband
distortions is calculated using the weights [29]

1.0 for0<i<d4,
w; =408 fori=>5, (5)
0.4 fori=6.

The pool of candidate features is redundant for the pur-
pose of quality estimation. A brute force approach to find-
ing the best subset of features to use would entail examining
2299 — 1 possible subsets, a clearly impossible task. Yet the
success of our approach crucially depends on finding a small
subset of features that are good for quality estimation. We
resort to data mining techniques to perform this task. The
effectiveness of the techniques and performance of their de-
signs are assessed experimentally in Section 4.

3.3. Feature design and selection
In this section, we present some design justifications.

3.3.1. Number of subbands

We first experimented with using 22 subbands, with each
band roughly three-quarter-bark wide. Using CART for re-
gression, we found that roughly one out of every three bands
was selected. Therefore, we conjectured that we could group
the distortions over 22 subbands into a smaller set of 7 sub-
band distortions, to achieve a better tradeoff between retain-
ing relevant spectral information and easy generalization. In
a similar rein, reduced spectral resolution was found to im-
prove the accuracy of speaker-independent speech recogni-
tion [30]. The 2.4-bark bandwidth in our frequency decom-
position can also be compared with the 3-3.5 bark critical
distance between vowel formant peaks [31].

3.3.2. Design of segmentation and
severity classification

In this section, we show the improvements on speech quality
estimation due to using segmentation and severity classifica-
tion. Estimation performance is assessed using the correla-
tion R and root-mean-square error (RMSE) € between the
subjective MOS x; and objective MOS y;. Pearson’s formula
gives

_ SV (% — %) (yi — 7) )
VN (-2 SN (- 3)°

where X is the average of x;, and y is the average of y;. RMSE
is calculated using

(6)

N 2
€ — i) (9;\:]_ )’i) . 7)

The performance results exhibited in Table 1 are based on
designing a MARS model for a speech database. As we can
see, time segmentation alone provides some improvement.

TaBLE 1: Performance with different combinations of segmentation
and severity classification.

Correlation R RMSE €

No segmentation or classification 0.906 0.306
Segmentation only 0.927 0.273
Severity classification only 0.896 0.339
Segmentation and severity classification 0.977 0.155

An interesting phenomenon is that distortion severity classi-
fication alone does not result in any improvement. However,
a large improvement is obtained by combining segmentation
and classification. We attribute this phenomenon to the dif-
ferent significance of a given distortion level across the three
types of speech frames: inactive (background noise), voiced,
and unvoiced. The signal contents of the three frame types
are perceptually very distinct. We expect each type of con-
tents to condition the perception of distortion in a certain
characteristic fashion. Separating the distortions according
to the frame types allows the distortions to be weighed dif-
ferently for each type.

For feature definition, we also compared between using
(i) the number of distortion samples in a severity class, nor-
malized by the number of frames in a speech file, versus
(ii) RMS integration of the distortion samples in a severity
class. The latter was found to provide better performance.

3.3.3. Feature selection

In this section, we acquire a sense of the features selected by
MARS by perturbing a MARS designed model. The “Origi-
nal” column in Table 2 lists the variables of the model being
perturbed, in order of decreasing importance. Variable im-
portance is determined by the amount of reduction in pre-
diction error provided by the variable, relative to the greatest
reduction amount achieved amongst all variables. Hence, the
variable that results in the largest prediction error reduction
has importance 100%, and its amount of error reduction is
used as reference. The importance of other variables is cal-
culated as the percentage of their prediction error reduction
relative to the reference.

An inspection of the “Original” list naturally raises the
question of why some of the variables are important. For ex-
ample, [_.P_VUYV, the ratio of the number of inactive frames
to the number of active frames, is rated most important.
Moreover, low-rank subband distortion variables U_O_4,
U_0.3,U_0.5, and U_0._6_1 are included in the model, and
yet the high-rank subband distortions of the same unvoiced
frame type are not included. To address these questions, we
removed the above feature variables from the candidate pool
and redesigned the model. The resultant features are listed in
the “Modified” column of Table 2. We see from this list that
[_P, the fraction of inactive frames, is rated more important
than before. I_P and I_.P_VUYV provide different encoding of
the same information, but I_P and I_.P_VUYV are not linearly
related. Also, in lieu of the omitted low-rank subband vari-
ables for the unvoiced frames, the high-rank subband vari-
able U_0O_0 is brought into the modified model. Thus, we see
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TaBLE 2: Variable importance list for feature selection investigation. Original: list generated using the full feature pool. Modified: list gener-

ated after trimming the feature pool.

Rank Original Modified Rank Original Modified
Variable Import. Variable Import. Variable Import. Variable Import.
1 I.P_VUV 100.000 V_B.2 100.000 11 V_P_VUV 34.706 I.B_1.0 29.661
2 V_B.5 68.859 I_P 68.556 12 I-WM_1 33.749 I-WM_1 24.958
3 V_B_2 68.051 V_B22 58.165 13 I[.B_1.0 33.033 V_B.0.1 22.584
4 V_B22 47.966 V_0.0 49.106 14 V_B.3 32.877 V_WM_0 15.747
5 U_P_VUV 47.214 REF_1 41.957 15 U_B2 24.440 V_B.3 15.665
6 V.00 42.583 I.B.0 39.036 16 V_B.0.1 23.568 V_RM_0 15.339
7 I.B_O 42.382 V_p 37.517 17 U033 21.882 V_B.5.1 11.970
8 REF_1 41.220 1.B2 36.124 18 V.04 18.121 U_.0.0 10.877
9 I_P 41.014 V_B.5 35.681 19 U_05 15.959 1.0.0 9.818
10 U.04 36.489 V_P_.VUV 35.255 20 U_0.6-1 14.487 — —

that both the information captured in a variable as well as the
manner of encoding of the information in the variable affect
its importance. A rich candidate pool should convey a va-
riety of information as well as information encoding. MARS
consistently picks out from the available feature variables, the
ones with the most relevant information and the best encod-
ing. The original model, drawn from a richer pool, is pre-
ferred over the modified model. The original model provides
root-mean-square prediction error (RMSE) of 0.3902 and
0.3844 on the 90% training database and 10% test database,
respectively. (Databases and performance assessment are dis-
cussed in the next section.) For the same databases, the modi-
fied model achieves RMSE of 0.3968 and 0.4318, respectively.

3.4. Complexity

The computational complexity of the algorithms designed
using the proposed approach is mainly attributable to the au-
ditory processing modules and to feature extraction process-
ing in the cognitive module. While the design of the mapping
from features to the MOS estimate is somewhat involved, the
actual processing needed to realize the mapping once it is de-
signed is simple. As the purpose of this paper is to study the
application of data mining techniques to design speech qual-
ity measurement algorithms, we offer below a rough guide of
the algorithm complexity. The actual complexity in specific
applications will vary with the details of the features selected.
Moreover, as with other measurement algorithms (see, for
example, [32]), algorithm complexity may be reducible with-
out seriously degrading the estimation accuracy. Such pur-
suit of complexity reduction is left to future study.

The complexity of auditory processing in the designed
algorithms is no greater than that of the auditory process-
ing component in PESQ. A somewhat lower complexity is
obtained in our case by using fewer subbands. RMS integra-
tion of distortion samples to compute the values of the fea-
tures employed in the data-mining designed mapping has a
roughly similar complexity to the L, integrations performed
in PESQ. Our use of squared integration throughout, as op-
posed to using several different values of p in PESQ, low-
ers the integration complexity. Computation of the mapping
function (see Appendix B for an example), done only once
for the whole speech file, has relatively negligible complexity.

Severity classification also has negligible complexity. The seg-
mentation functionalities, VAD and voicing decision, are
commonly found in speech coders and other speech pro-
cessing applications. We have used the VAD algorithm in
ITU-T G.729B [25], omitting its comfort noise generation
functionality. We estimate that the segmentation function-
alities require no more than 20% of the processing time of
the ITU-T G.729 speech codec. The processing time of PESQ
is roughly 2.8 times that of G.729. We note that PESQ pro-
vides additional functionalities such as variable delay com-
pensation. Hence, a speech quality estimator using an algo-
rithm designed using the proposed approach while providing
a similar suite of functionalities as PESQ would incur a 7%
higher complexity than PESQ. As this is a conservative upper
bound, we believe complexity implementations lower than
PESQ are readily achievable.

4. EXPERIMENT RESULTS

The effectiveness of the data mining approach is demon-
strated experimentally with actual designs. We compare the
performance of the algorithms designed using our method
to the current state-of-the-art algorithm in voice quality esti-
mation, PESQ. Below, we first introduce the speech databases
used for the experiments. Then we compare the designs ob-
tained using different data mining techniques, namely CART,
hybrid CART-MARS, and MARS. We finally focus on the
method that offers the best performance: MARS design us-
ing cross validation. The greatest difference between our de-
signed algorithms and PESQ is in the cognitive mapping
part; thus, the comparisons below can be regarded as eval-
uating different cognitive mappings.

4.1. Speech databases

The speech databases used in our experiments are listed in
Table 3. They include the 7 multilingual databases in ITU-T
P-series Supplement 23 [33], two wireless databases (IS-96A
and IS-127 EVRC), and a mixed wireline-wireless database
[18]. We combine the 10 databases into a global database for
algorithm design. There are altogether 1760 degraded-speech
files in the global database.
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TaBLE 3: Properties of the speech databases used for experiments.
Database Language No. of Minimum Maximum Average MOS MOS
files MOS MOS MOS spread std. error
ITU-T Supp23 ExplA French 176 1.000 4583 3.106 0.781 0.148
ITU-T Supp23 Exp1D Japanese 176 1.000 4.208 3.666 0.701 0.158
ITU-T Supp23 ExplO English 176 1.208 4.542 3.050 0.822 0.155
ITU-T Supp23 Exp3A French 200 1.292 4.833 3.226 0.732 0.152
ITU-T Supp23 Exp3C Ttalian 200 1.083 4.833 2.950 0.896 0.152
ITU-T Supp23 Exp3D Japanese 200 1.042 4.417 2.331 0.737 0.155
ITU-T Supp23 Exp30 English 200 1.167 4.542 2.782 0.772 0.187
Wireless IS-127 EVRC English 96 2.250 4.500 3.427 0.500 0.340
Wireless IS-96A English 96 1.625 3.875 2.760 0.451 0.341
Mixed English 240 1.090 4.610 3.200 0.728 n.a.

The three Explx databases in ITU-T Supp23 contain
speech coded using the G.729 codec, singly or in tan-
dem with one or two other wireline or wireless standard
codecs, under the clean channel condition. Also included are
single-encoded speech using these standard codecs. The four
Exp3x databases contain single- and multiple-encoded G.729
speech under various channel error conditions (BER 0%-—
10%; burst and random frame erasure 0%-5%) and input
noise conditions (clean, street, vehicle, and hoth noises at
20 dB SNR).

The wireless I1S-96A and IS-127 EVRC (Enhanced Vari-
able Rate Codec) databases contain speech coded using the
IS-96A and IS-127 codecs, respectively, under various clean
and degraded channel conditions (forward FER 3%, re-
verse FER 3%), with or without the G.728 codec in tan-
dem, and MNRU (modulated noise reference unit) condi-
tions of 5-25 dB. The mixed database [18] contains speech
coded with a variety of wireline and wireless codecs, under
a wide range of degradation conditions: tandeming, chan-
nel errors (BER 1%-3%), and clipping (see [18] for more
details). All databases include reference conditions such as
speech degraded by various levels of MNRU.

The range of the MOSs in each database is determined
by its mix of test conditions. The range is characterized in
Table 3 by the maximum, minimum, average, and “spread”,
which is the standard deviation of the MOSs around the aver-
age. The imprecision of the subjective MOS is characterized
by its standard error (“MOS std. error” in Table 3, which is
determined by the number of listeners who participated in
the subjective test). The RMSE of the objective scores can be
assessed no better than the standard error of the subjective
scores used to benchmark the accuracy. Moreover, the mea-
surement accuracy of algorithms trained using a database is
also limited by the imprecision of its subjective scores. Note
that “No. of files” in Table 3 refers to the number of speech
files that are subjectively scored; the “clean original” speech
files are not counted.

The designs presented in this paper are based on the
above databases which cover a range of waveform codecs,
wireline and wireless LPAS [14] codecs, and a range of codec
tandeming and channel error conditions, and input back-
ground noise conditions. Additional impairments that can
be found in telephone connections but are not currently
covered by our databases include echo, variable delay, tones,

distortions due to harmonic or sinusoidal coders and due to
music and artificial speech, and so forth the reader can also
consult [5] for its list of transmission impairments. The pro-
posed design method is highly automated and should scale
well with the amount of database material available for de-
sign (see Section 4.6).

4.2. CARTresults

We first experimented with using CART for mining, moti-
vated by the fact that CART results are easier to interpret than
MARS results, and CART can be regarded as a special case
of MARS. For CART mining, we randomly assigned 90% of
the global database to a training data set and the rest to a test
data set. The tree-growing phase uses the training set, and the
tree-pruning phase uses the test set to select the best-size tree,
that is, the one that gives the lowest regression error on the
test data. The CART-designed tree has 38 leaf nodes. The per-
formance scores are R = 0.8861 and € = 0.3734 on the train-
ing set, and R = 0.7627 and € = 0.5098 on the test set. The
large difference in RMSE values between training and test-
ing indicates that the designed CART tree does not general-
ize well. For PESQ, we use the PESQ-LQ mapping suggested
in [34] to obtain R = 0.8170 and € = 0.4705 on the global
undivided set, R = 0.8198 and € = 0.4700 on the training
set, and R = 0.7939 and € = 0.4744 on the test set. It appears
that CART regression trees cannot outperform PESQ.

4.3. Hybrid CART-MARS results

By inspecting the variables mined using CART, we expect
them to be perceptually important. The poor performance
might be due more to the aforementioned limitations of
CART in regression, rather than to the feature selection.
Thus, we experimented with using MARS to circumvent the
limitations of CART. Below, we present the results from two
hybrid CART-MARS schemes.

The first hybrid CART-MARS method uses CART to pre-
screen features from the feature candidate pool. The feature
variables selected by CART are used as a smaller feature can-
didate pool for MARS model building. In this method, CART
is used only during model design; the final model is con-
structed solely by MARS. The performance obtained, R =
0.8501 and € = 0.4242 on the training set, and R = 0.8233
and € = 0.4379 on the test set, is better than PESQ and CART
regression.
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TaBLE 4: MARS model selection as a function of DS using 10-fold cross-validation.
Training Testing

bs N M R 5 % R € %

3 78 125 0.9261 0.3025 35.6 0.8403 0.4409 7.1
6 47 66 0.9055 0.3402 27.6 0.8527 0.4200 11.5
10 21 39 0.8880 0.3685 21.6 0.8550 0.4164 12.2
15 20 25 0.8756 0.3872 17.6 0.8530 0.4182 11.8
20 19 21 0.8707 0.3941 16.1 0.8546 0.4156 12.4
25 16 18 0.8652 0.4019 14.5 0.8502 0.4223 11.0

The second hybrid CART-MARS method is similar to the
method used in [35]. In [35], the feature candidate pool for
MARS mining is augmented by the “leaf-node index” ob-
tained from a CART tree. We improve on the method by
adding the CART regression output variable, instead of the
node index variable, to the candidate feature pool. The aug-
mented candidate pool is used for MARS model building.
In this method, if the CART output were incorporated into
the MARS model, feature extraction for the model would
also include computation as prescribed by the CART tree.
Indeed, an inspection of the variable importance list found
that the CART tree output is the most important feature
variable selected. The performance obtained, R = 0.9108
and € = 0.3326 on the training set, and R = 0.8231 and
€ = 0.4423 on the test set, is also better than PESQ and
CART regression. The larger difference between training and
testing RMSE in this “augmentation” method, in compari-
son with the earlier “prescreening” method, suggests that the
“prescreening” method is more robust.

Although both hybrid CART-MARS methods outper-
form PESQ and CART, they are inferior to the MARS model
of Section 3.3.3 on the test set. In the rest of this paper,
we present detailed results based on using MARS alone, as
MARS tends to offer the best performance. For the applica-
tion in [35], a hybrid CART-MARS scheme provides better
performance than CART or MARS alone. Thus, we should
not eliminate the possibility of some hybrid schemes outper-
forming MARS-only schemes.

4.4. MARS model selection via cross-validation

Picking the size of the regression model is a crucial step in
the design. The size of the model designed using MARS is a
function of M, the number of basis functions in (3). For lin-
ear spline basis functions, two real parameters are associated
with each function, the “knot” and the linear combination
weight. (Please refer to the example in Appendix B.) Thus,
the number of optimized parameters, 2M, is a useful mea-
sure of model size. A large model yields low regression error,
but the model is highly biased towards the training data and
exhibits large variance over unseen data. On the other hand,
a small model might omit some important features neces-
sary for high measurement accuracy. In Friedman’s original
MARS design [20], a penalty term controlled by a “degree of
smoothness” (DS) parameter is used in the criterion func-
tion to penalize the increased variance due to large model
size. Larger DS results in more basis functions taken out
during the pruning phase. Friedman’s design method does

not incorporate validation of the model through testing with
data not used in model building. We improve on Friedman’s
design by using cross-validation to select the model size.

In conventional model design, available data is split into
a training set and a test set. The model is built on the for-
mer, and validated on the latter. However, when the amount
of available data is small, as in our case, we ought to use all
the data for model building. Using a small sample to design
and validate can be achieved by n-fold cross-validation [36].
The results presented below are based on n = 10-fold cross-
validation. The global database is randomly divided into 10
data sets with almost equal size. Training and testing is per-
formed 10 times. Each time, one of the data sets serves as the
test set, and the remaining 9 data sets combined serve as the
training set. Each data set serves as a test set only once. For
each training-test set combination, a series of MARS mod-
els corresponding to various DS values are constructed using
the training set. The 10 R and € values obtained for each DS
value are averaged to obtain the cross-validation R and € val-
ues; separate averages are obtained from the training and test
sets. Finally, the DS value corresponding to the best cross-
validation performance is used to build the desired MARS
model using the entire global database.

Table 4 shows the cross-validation performance results
for a series of MARS models obtained using different values
of DS. Both training and test results are shown, with N de-
noting the average number of distinct feature variables used
in the cross-validation models, M the average number of ba-
sis functions, and % the average percentage reduction in €
compared to PESQ. From Table 4, we pick the best DS value
for designing our final model. We see that for DS = 20, the
RMSE reduction is the largest, and the discrepancy between
the training and test performance is the smallest. Thus, the
final model is built using the global database, with DS = 20.

The resultant “global model” has N = 21 feature vari-
ables and M = 24 basis functions. The variables and their
importance are listed in Table 5, and the MARS regression
function and its basis functions are given in Appendix B. We
see from Table 5 that the most important variables and most
of the variables are related to voiced frames. The overall trend
is that features from voiced frames are treated as more im-
portant than those from unvoiced and inactive frames. This
is consistent with the fact that the great majority of active
speech frames are voiced and that human perception is more
sensitive to distortion of the spectral envelopes of voiced
frames than unvoiced frames. The most important variable
V_RM, the root-mean distortion of voiced frames, is akin to
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TaBLE 5: Variable importance ranking for the global model.
Rank Variable Importance Rank Variable Importance Rank Variable Importance
1 V_RM 100.00 8 I.B_O 39.782 15 U.04 24.530
2 1P 76.280 9 I.B_1.0 37.531 16 U.05 22.092
3 V_B22 56.375 10 V_0.0 37.143 17 V_P_1 21.172
4 REF_1 50.151 11 V_B.2 36.379 18 U_B_4 19.639
5 V_p 44.425 12 V_0.5 33.179 19 V_B.0-1 17.459
6 V_0.02 41.897 13 [ZWM_1 31.807 20 U_0.6-1 17.048
7 V_P_VUV 40.472 14 V_P2 25.562 21 I.B_5 15.592
TaBLE 6: MARS model performance on the 10 speech databases: variation over samples.
Database Language Correlation R RMSE € Pel‘rcen‘tage
Proposed Method PESQ Proposed Method PESQ reduction in € (%)
ITU-T Supp23 ExplA French 0.8753 0.8498 0.3909 0.4507 13.3
ITU-T Supp23 ExplD Japanese 0.9141 0.8725 0.3988 0.5893 32.3
ITU-T Supp23 ExplO English 0.8998 0.9164 0.3581 0.3616 1.0
ITU-T Supp23 Exp3A French 0.8480 0.8199 0.4327 0.5482 21.1
ITU-T Supp23 Exp3C Italian 0.9099 0.8935 0.4048 0.4499 10.0
ITU-T Supp23 Exp3D Japanese 0.8728 0.8965 0.4127 0.5366 23.1
ITU-T Supp23 Exp30 English 0.8757 0.8857 0.3749 0.4222 11.2
Wireless EVRC English 0.6364 0.5522 0.3952 0.4359 9.3
Wireless IS-96A English 0.5786 0.4562 0.3845 0.4282 10.2
Mixed English 0.8771 0.8732 0.3496 0.4083 14.4
Average — — — — — 14.6

the logarithmic spectral distortion that speech spectral quan-
tizers are generally designed to minimize [14]. V_.B_2_2 is the
RMS distortion in subband 2 of the voiced frames that have
the highest severity of frame distortion. Subband 2 covers
the frequency region where the long-term power spectrum of
speech peaks. V_0_0_2 is the RMS distortion in the highest-
distortion subband of the voiced frames that have the highest
severity of frame distortion; in effect, V_O_0_2 measures the
intensity of peak distortions. The selection of V_B_2_2 and
V_0_0-2 suggests that speech quality perception is strongly
dependent on prominent spectral regions and distortion
events. The variables I_P, V_P, and V_P_VUYV, which measure
the relative amount of specific frame types, and REF_1, which
measures the level of high-frequency loudness in the refer-
ence signal, serve to adjust the regression mapping. For in-
stance, in Appendix B, we see that the predicted quality value
is raised when the fraction of inactive frames is above 0.27,
and is decreased when the fraction drops below 0.27.

4.5. Database results

We apply the global model to the individual databases listed
in Section 4.1. We report performance results in two formats:
variation over samples (VOS) in Table 6, and variation over
conditions (VOC) in Table 7. In VOS, the correlation and
RMSE between the objective and subjective MOS of each
sample is reported. A “sample” refers to a pair of speech files
used for quality calculation: the speech file that was played
to the listener panel, and the “clean” original version of the
speech that was played. For VOC, the subjective MOSs for the
speech files within the same test condition are first averaged
together.

The objective MOSs are also likewise grouped and aver-
aged. Then, R and € are calculated between the per-condition
averaged subjective and objective MOSs, over all conditions
in the database. The VOS results better reflect performance
in voice quality monitoring applications [3]. The VOC re-
sults are more appropriate for codec or transmission equip-
ment evaluation. To the best of our knowledge, all the per-
formance results that have been reported in the literature for
PESQ by its inventors use the VOC format. The results for
PESQ are based on using the PESQ-LQ 3rd-order regression
polynomial specified in [34]. The results in Tables 6 and 7
show that the global model provides an average reduction in
RMSE € of 14.6% and 21.4%, for VOS and VOC averaging,
respectively.

We adopt the simple model proposed in [7] to help us in-
terpret the relationship between the R and € values in Tables
6 and 7; the model is modified with the addition of a bias
term. Accordingly, R and € satisfy the following relationship:

€’ = 0*(1 - R + o305 + b7 (8)
where ¢? and UI%/IOS are the “MOS spread” and “MOS std.
Error” in Table 3, respectively, and b is systematic bias. The
equation states that €2 is the sum of unexplained variance
in the estimation model, MOS estimation error due to lim-
ited number of listeners, and bias error between subjective
and objective MOSs. In comparing estimation algorithms us-
ing the same databases, o3 is an irreducible noise term
affecting all the algorithms equally. Tables 6 and 7 show that
PESQ produces large € values on databases Exp1D, Exp3A,
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TaBLE 7: MARS model performance on the 10 speech databases: variation over conditions.
Database Laneuage Correlation R RMSE € Percentage
suag Proposed Method PESQ Proposed Method PESQ reduction in € (%)
ITU-T Supp23 ExplA French 0.9381 0.9343 0.2769 0.3609 23.3
ITU-T Supp23 ExplD Japanese 0.9391 0.9539 0.2595 0.5136 49.5
ITU-T Supp23 ExplO English 0.9644 0.9566 0.2441 0.2705 9.8
ITU-T Supp23 Exp3A French 0.9400 0.8776 0.3109 0.4743 34.5
ITU-T Supp23 Exp3C Italian 0.9508 0.9455 0.3243 0.3441 5.8
ITU-T Supp23 Exp3D Japanese 0.9455 0.9452 0.2888 0.4785 39.6
ITU-T Supp23 Exp30 English 0.9459 0.9254 0.2551 0.3522 27.6
Wireless EVRC English 0.8224 0.8116 0.2139 0.2176 1.3
Wireless IS-96A English 0.6323 0.6203 0.2371 0.2250 —5.4
Mixed English 0.9364 0.9188 0.2438 0.3366 27.6
Average — — — — — 21.4
1 0.4 T
0351
0.8 |
03
= 06| . 0251
E 2 o2t
e >
g ~
o 047 015t
0.1}
02
0.05
0 0
1A 1D 10 3A 3C 3D 30 1A~ 1D 10 3A 3C 3D 30
Database Database

[ 7 databases
Il 10 databases

(a)

[ 7 databases
Il 10 databases

(b)

Ficure 8: Comparison of MARS model performance between training on the 7 ITU-T databases and on all 10 speech databases. (a) Corre-

lation and (b) RMSE results are shown for variation over conditions.

and Exp3D, even though R is quite high for databases Exp1D
and Exp3D. According to (8), the large € values can be due
to bias errors, which we attribute to biases between individ-
ual databases and the global database. The MARS model is
able to adjust for individual databases, thus reducing the bias
component.

4.6. Scalability

It is highly desirable to be able to design models that can
scale with the amount of data available for learning. Also,
new forms of speech degradations arise as a result of new
transmission environments, new speech codecs, and so forth.
The data mining approach enables designing best-size mod-
els for a given amount of learning data, and adapting to new
learning data. To demonstrate the scalability of the proposed
method, we created a smaller global database comprising

only the seven ITU-T databases. New MARS models with
different DS values were designed using the new global
database. In Figure 8, we compare the performance of the
new model, with DS = 20, N = 13, and M = 15, to that
of the larger global model designed earlier. The results are
for VOG; the results for VOS are similar. One might ex-
pect the MARS model designed for the global database to
be “diluted” and hence less effective than the new model de-
signed for the seven ITU-T databases. However, we see that
the two models provide about the same level of performance.
In fact, it is somewhat surprising that the global model fur-
nishes 14% lower RMSE than the more tuned seven-database
MARS model. Thus, the proposed method appears to scale
well with the amount of learning data, and suggests favor-
ably the possibility of large-scale (semi-)automated, online
model (re-)training.
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5. CONCLUSION

We have proposed an approach to design objective speech
quality measurement algorithms using statistical data mining
methods. We have examined various methods of using CART
and MARS to design novel objective speech quality measure-
ment algorithms. The methods select feature variables from a
large pool to form speech quality estimation models. We have
obtained designs that outperform the state-of-the-art stan-
dard PESQ algorithm in our databases. The variables form-
ing the models are found to be perceptually significant, and
the methods offer some insights into the relative importance
of the variables. The designed algorithms are computation-
ally simple, making them suitable for real-time implemen-
tation. The best performing algorithm was designed using
MARS.

We also showed that the proposed design method can
scale with the amount of learning data. The experience
learned from building training-based systems such as speech
recognizers suggests using that the performance of the algo-
rithms designed using our approach can be substantially im-
proved with large-scale training, offline or online. The algo-
rithms also show promise for further optimization and com-
plexity reduction. The design approach can be extended to
other media modalities such as video.

APPENDICES

A. FEATURE VARIABLE DEFINITIONS

The feature variables are defined below. The first letter, de-
noted by T in a variable name, gives the frame type: T =1
for Inactive, T = V for Voiced, and T = U for Unvoiced.
The subband index is denoted by b, with b € {0,...,6} in-
dexing from the lowest to the highest frequency band if the
index is natural, or from the highest to the lowest distortion
if the index is rank-ordered. The frame distortion severity
class is denoted by d, with d € {0, 1,2} indexing from low-
est to highest severity. With the above notations, the feature
variables are as follows.

(i) T_P_d: fraction of T frames in severity class d frames.

(ii) T_P: fraction of T frames in the speech file.

(iii) T_P_VUYV: ratio of the number of T frames to the total
number of active (V and U) speech frames.

(iv) T_B_b: distortion for subband b of T frames, without
distortion severity classification, for example, I.B_1
represents subband 1 distortion for inactive frames.

(v) T_B_b_d: distortion for severity class d of subband b of
T frames, for example, V_B_3_2 represents distortion
for subband 3, severity class 2, of voiced frames.

(vi) T_O_b: distortion for ordered subband b of T frames,
without severity classification, for example, U_O_3
represents ordered-subband 3 distortion for unvoiced
frames, without distortion severity classification.

(vii) T_O_b_d: distortion for distortion class d of ordered
subband b of T frames, for example, U_O_6_1 repre-
sents distortion for severity class 1 of ordered-subband
6 of unvoiced frames.

(viii) T_-WM_d: weighted mean distortion for severity class
d of T frames.
(ix) T-WM: weighted mean distortion for T frames.
(x) T_RM_d: root-mean distortion for severity class d of T
frames.
(xi) T_RM: root-mean distortion for T frames.
(xii) REF_O: the loudness of the lower 3.5 subbands of the
reference signal.
(xiii) REF_1: the loudness of the upper 3.5 subbands of the
reference signal.

B. GLOBAL MARS MODEL

The basis functions BFn, where 7 is an integer, and the re-
gression equation of the global model are listed below:

BF3 = max(0, I_P — 0.270);

BF4 = max(0, 0.270 — I_P);

BF6 = max(0, 33.581 — REF_1);

BF8 = max(0, 0.725 — V_B_2);

BF10 = max(0, 0.131 — I_B_0);

BF12 = max(0, 1.731 — V_B_2.2);

BF13 = max(0, V_P_2 — 0.710);

BF17 = max(0, LWM_1 — 0.177);

BF20 = max(0, 0.758 — V_P_VUV);

BF23 = max(0, V_P — 0.422);

BF24 = max(0, 0.422 — V_P);

BF25 = max(0, V_O_0 — 2.284);

BF28 = max(0, 0.031 — U_O_6_1);

BF30 = max(0, 0.134 — I_B_5);

BF41 = max(0, V.RM — 0.786);

BF42 = max(0, 0.786 — V_RM);

BF44 = max(0, 0.070 — I_B_1.0);

BF50 = max(0, 0.390 — U_0_4);

BF52 = max(0, 1.657 — U_B_4);

BF62 = max(0, 0.132 — U_0_5);

BF68 = max(0, 0.331 — V_P_1);

BF75 = max(0, V_B_0_1 — 0.337061E-08);

BF154 = max(0, V_0_0_2 — 2.036);

BF169 = max(0, V_O_5 — 0.548);

Objective MOS

= 2.534 + 6.738 * BF3 — 1.833 * BF4

— 0.040 x BF6 — 1.331 * BF8 — 2.616 * BF10
+0.600 * BF12 + 1.981 * BF13 + 4.820 x BF17
+3.847 * BF20 + 3.481 * BF23 — 6.184 x BF24
—0.629 x BF25 — 5.552 * BF28 + 2.977 x BF30
— 1.296 x BF41 + 2.655 * BF42 — 3.328 * BF44
+1.833 % BF50 — 0.320 * BF52 — 4.596 * BF62
— 1.257 x BF68 — 0.476 * BF75+ 0.577 * BF154
+ 1.585 * BF169.
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