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1. INTRODUCTION

Dowling and MacFarlane [1, 2, 3] viewed a lightwave lat-
tice filter design using multistage etalons and resonators as
a discrete-time linear system. As such they discussed the
behavior of the system in terms of the transmission and re-
flection transfer functions. Given a desired transfer function
denominator for an all-pole system in transmission they de-
veloped a layer-peeling algorithm to determine the appro-
priate reflection coefficients. The reflection transfer func-
tion has this same denominator polynomial. They proved
that any denominator polynomial, and hence any autoregres-
sive (AR) transfer function in transmission, can be gener-
ated by proper choice of the reflection coefficients. Trans-
mission coefficients as well as reflection coefficients can be
chosen, but these transmission coefficients do not affect the
denominator polynomial. If an autoregressive moving av-
erage (ARMA) transfer function is desired in transmission,
then it must first be approximated by an AR transfer func-
tion of higher order, and a higher-order lattice filter be de-
signed.

The problem with the above optical lattice filter is that it
is a passive device, and once it is built with a given set of re-
flection (also transmission) coefficients, its filtering charac-
teristics cannot be changed. Hence this precludes program-
ming in the field to change the filter as needed. Moreover,

This is an open access article distributed under the Creative Commons
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from the point of view of signal processing, the entire set of
applications derived from adaptive signal processing is not
accessible. Adaptive signal processing is used in communi-
cations, control, radar, sonar, seismology, biomedical, target
tracking, and so forth [4]. Adaptation is needed if the statis-
tics of a signal are unknown or if a system is time varying
(nonstationary). Finite impulse response (FIR) filters have
dominated the field, but infinite impulse response (IIR) fil-
ters can often provide a system of much lower order [5].

To add adjustment to these optical lattice filters we pro-
pose to add gains to each stage. These gains can be changed
as needed and also serve to make our filters active instead
of passive. Suppose we are given a target all-pole transfer
function for transmission whose order is the same as the or-
der (number of stages) of our optical filter. Once the reflec-
tion coefficients (by layer peeling) and transmission coeffi-
cients are determined and the device is built, then we tune
the device by changing the gains. The question of interest is
what all-pole transfer functions (or denominator polynomi-
als) can we achieve by changing the gains? Certainly when the
gains are all unity we have the denominator polynomial of
the all-pole transfer function that we started. From the point
of tunable signal processing it would be desirable to generate
all “nearby” polynomials of the same degree.

It is interesting to note that after fixing these reflection
and transmission coefficients, it is not possible to use the
gains to generate an arbitrary all-pole transfer function in
transmission. We present an example to illustrate this point.
However, if we consider all gains as one when the reflection
and transmission coefficients are fixed, then there is an open

mailto:hunt@utdallas.edu
mailto:vishnupriyagovindan@hotmail.com
mailto:issa.panahi@utdallas.edu
mailto:jxt021000@utdallas.edu
mailto:govind@student.utdallas.edu
mailto:dlm@utdallas.edu
mailto:gae@engr.smu.edu


Active Optical Lattice Filters 1453

neighborhood U of these ones in gains space and an open
neighborhood V of the corresponding denominator polyno-
mial coefficients in polynomial coefficients space, so that for
each polynomial with coefficients in V there is a unique set
of gains in U that produce that polynomial. All that needs to
be checked is that the Jacobian matrix of the map from the
gains (actually gains squared) to the polynomial coefficients
is nonsingular when the gains are all one. If this matrix is
nonsingular it is natural to solve for the gains as functions of
the coefficients using the standard Newton-Raphson method
[6, 7]. The equations expressing the relationship of the poly-
nomial coefficients and the gains are easily generated and
have a high degree of symmetry. Hence we have a procedure
that will allow us to calculate all nearby (in terms of polyno-
mial coefficients) denominator polynomials for our transfer
functions. Thus we can use gains to adapt our filter. Of course
we are only interested in stable filters when applications are
considered.

For the map from the gains to the denominator polyno-
mial coefficients we stress the case where the gains are all one.
However, for a given denominator polynomial there may be
other sets of gains that yield the same polynomial coeffi-
cients. If for such a point in gain space, the Jacobian matrix
of the gains to polynomial coefficients map is nonsingular,
then there is an open neighborhood U∗ of the gain point
and an open neighborhood V∗ of the corresponding poly-
nomial coefficient point in polynomial coefficient space on
which the map is one-to-one and onto. Of course U and U∗

cannot intersect, so we can adapt in the set U (or U∗) with-
out disturbing the other set.

The main purpose of this paper is to provide design tools
for active lattice filters that contain active gain elements. This
discussion is particularly relevant to an optical architecture
that is currently under early development. This photonic re-
alization of the active lattice filter is described in Section 2 of
this paper. In particular we advocate a semiconductor laser
amplifier structure in which coupling between gain and delay
stages is accomplished by surface gratings [8]. While there is
a rich tradition of active electronic filters, optical filters with
gain are not generally used. Gain elements allow filters with
high-quality factors, and filters with programmable transfer
functions. Further, gain elements are essential to providing
an architecture that may be scaled to reasonable sophistica-
tion.

In Section 3 of this paper we discuss the Dowling-
MacFarlane optical lattice filter and the layer-peeling proce-
dure for computing the reflection coefficients. We indicate
how gains are added to their structure. We then compute the
transfer function denominator polynomials as functions of
the gains assuming that all reflection and transmission coef-
ficients have been fixed. In Section 4 we provide an example
showing that an arbitrary transmission all-pole denomina-
tor cannot be generated using gains once the reflection and
transmission coefficients have been chosen. Here we work
with a two-stage filter and a second-order transfer function
denominator polynomial. We generate the map from two-
dimensional gains space to two-dimensional polynomial co-
efficients space. For given polynomial coefficients this map

can be represented by two curves in gains space and there
are three possible outcomes: transversal intersection where
the Jacobian matrix is nonsingular, no intersection and no
solution, and tangential intersection where the Jacobian ma-
trix is singular. It is the first case that is of interest to us. It
is important to understand that we start with a given poly-
nomial and fix the reflection coefficients so that we have this
case if the Jacobian matrix is nonsingular when all gains are
unity. Then all “nearby polynomials” can be implemented by
a proper choice of gains.

Section 5 contains a development of the map from gains
(squared) space to denominator polynomial coefficient space
in the general case. Then we state and prove our main result
using the inverse function theorem [9]. The assumption on
the nonsingularity of the Jacobian matrix is the exact con-
dition needed to employ the Newton-Raphson algorithm to
solve our equations for the gains.We return to the example in
Section 4 for the nonsingular case, vary the coefficients of the
polynomial, and show the computations of the gains.We also
provide an example that is relevant to adaptive signal pro-
cessing, assuming that a feedback loop may be implemented
that is fast enough to respond to a changing environment.We
start with an output response of an AR system. Next we iden-
tify the all-pole transfer function and determine the appro-
priate reflection coefficients (through layer peeling), which
we fix in our lattice filter. Then we allow the time response
to change, identify the corresponding denominator polyno-
mials for the new transfer functions, and compute the gains
to deliver those polynomials. Here the time response could
be replaced by a frequency response or by autocorrelations.
In Section 6 we derive and calculate the sensitivities of filter
parameters with respect to gains. Section 7 contains our con-
clusions and a discussion of future research.

2. A REALIZATION ARCHITECTURE

The optical gains that are modeled in this paper may be real-
ized in a number of ways. For example, it is possible to imag-
ine using erbium-doped fibers or waveguides separated by
fiber Bragg gratings or an equivalent coupling interface. The
passive version of this fiber based-filter architecture is very
nicely described in the classic paper by Moslehi et al. [10].
The active fiber filter with gain would have particular inter-
est for fiber sensors and instrumentation [11]. In the interests
of faster updating speeds and adaptive operation we are en-
visioning a semiconductor laser amplifier structure in which
coupling between gain and delay stages is accomplished by
surface gratings. This architecture also offers faster clock fre-
quencies, higher efficiencies and integrated manufacture ad-
vantages.

In Figure 1 is shown a schematic of the active optical lat-
tice filter that uses semiconductor laser amplifier stages to
provide gain and delays. By way of example, the figure shows
a two-stage active lattice filter with two gain/delay regions
and three interstage couplers. The figure is drawn in side
view and shows a substrate with an epitaxial-grown quan-
tum well active region. On the surface of this substrate are
two electrodes throughwhich injection currentmay enter the
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Figure 1: Block diagram of an active lattice filter based on surface grating interstage couplers and semiconductor optical amplifiers.

quantum well. The filter stage gain is controlled by the injec-
tion current to the individually addressable gains in the am-
plifying regions. These regions also provide the phase delays
that lead to filter responses.

Also on the surface of the substrate are three grating cou-
plers that provide transmission and reflection of optical sig-
nals between the two stages under the two electrodes. These
gratings may be written by holographic lithography [8, 12]
or by focused ion beam micromachining.

In operation, an optical signal is injected into the hetero-
junction of the structure where it undergoes gain and delay.
At the grating couplers part of the signal is reflected and part
is transmitted. Each of these components combines with sig-
nals from the adjacent stage, and this delay and mix action
is the same as in coupled etalons, or in thin film filters. The
additional presence of gain provides advantages in filter per-
formance including a tunable response.

In practice, the semiconductor optical amplifier may suf-
fer from two impairments: saturation and phase distortion.
Since the theory presented herein applies to linear, time-
invariant (LTI) systems, either impairment will render the
results presented in this paper an approximation valid over a
finite region of operation. Since the filter will be operated in
a stable region, well below lasing threshold, the overall gains
needed for useful filters will be small, and will vary over a
limited range. Hence the linearity condition will often be jus-
tified. Similarly, it may also be argued that in this operating
region, the injected current will not substantially impact the
refractive index of the inversion region, particularly if the ef-
fective gain length is kept short and the epitaxy is properly
designed. An additional possibility for adjusting and main-
taining the correct phase is to add an additional phase con-
trol section to the filter as is done in many tunable lasers so
as to allow an additional adjustment for phase control.

3. DOWLING-MACFARLANE FILTER

In 1944 MacFarlane and Dowling studied the analysis and
design of purely passive coupled Fabry-Perot etalons and thin
film filters using digital signal processing techniques [1, 2].
This approach allowed certain design optimizations, and
brought an ease of use that proved helpful to electrical en-
gineers working in the photonic telecommunications indus-
try over the last decade. In Figure 2 is shown a z-transform-
based block diagram for an exemplary three-stage photonic
lattice filter. The interfaces are characterized by reflection and
transmission coefficients, and the signal transit time between
interfaces is described by a delay block. Considering the re-
alization architecture discussed above, we follow the nota-
tion of [2]. For a lossless interface, the field reflection and

transmission coefficients obey an energy conservation con-
dition:

r2i + t2i = 1. (1)

The transmission transfer function denominator polynomial
for one stage is

1 + r0r1z
−1, (2)

for two stages is

1 +
(
r0r1 + r1r2

)
z−1 + r0r2z

−2, (3)

and for three stages is

1 +
(
r0r1 + r1r2 + r2r3

)
z−1 +

(
r0r2+r0r1r2r3 + r1r3

)
z−2 + r0r3z

−3.
(4)

Simple induction can derive the polynomial for n stages.
In this paper we include gain as well as delay between the

interfaces, and this block diagram for an active lattice filter is
shown in Figure 3. Equations (2), (3), and (4) may be readily
generalized to include this gain. For example, the transmis-
sion transfer function denominator polynomial for one stage
with gains is

1 + r0r1G
2
1z
−1, (5)

for two stages with gains is

1 +
(
r0r1G

2
1 + r1r2G

2
2

)
z−1 + r0r2G

2
1G

2
2z
−2, (6)

and for three stages with gains is

1 +
(
r0r1G

2
1 + r1r2G

2
2 + r2r3G

2
3

)
z−1

+
(
r0r2G

2
1G

2
2 + r0r1r2r3G

2
1G

2
3 + r1r3G

2
2G

2
3

)
z−2

+ r0r3G
2
1G

2
2G

2
3z
−3.

(7)

Again, induction can be used to derive the polynomial for n
stages. The gain for every stage appears to a power 2, regard-
less of the number of stages used.

Given a desired polynomial of degree n we can use the
layer-peeling process [1, 2, 3] to compute r0, r1, . . . , rn (actu-
ally r0 can be chosen and the other reflection coefficients are
computed). Fixing these reflection coefficients we can simply
write the one-stage polynomial with gains as

1 + c1G
2
1z
−1, (8)
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Figure 2: Signal flow diagram for three stages of an optical lattice filter.
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Figure 3: Signal flow diagram for three stages of an active optical lattice filter.

the two-stage polynomial with gains as

1 +
(
c1G

2
1 + c2G

2
2

)
z−1 + c12G

2
1G

2
2z
−2, (9)

and the three-stage polynomial with gains as

1 +
(
c1G

2
1 + c2G

2
2 + c3G

2
3

)
z−1

+
(
c12G

2
1G

2
2 + c13G

2
1G

2
3 + c23G

2
2G

2
3

)
z−2 + c123G

2
1G

2
2G

2
3z
−3.
(10)

Here the c’s are computed from the r’s in the obvious way.
The nth-degree polynomial with gains is

1 +

( n∑
i=1

ciG
2
i

)
z−1 +

( n∑
i, j=1,i< j

ci jG
2
i G

2
j

)
z−2

+ · · · + c12···nG2
1G

2
2 · · ·G2

nz
−n.

(11)

Again the c coefficients are known numbers computed from
the r’s, and the gains Gi are allowed to vary. Since we are in-
terested in only nonnegative real gains Gi we set xi = G2

i and
replace (11) by

1 +

( n∑
i=1

cixi

)
z−1 +

( n∑
i, j=1,i< j

ci jxix j

)
z−2

+ · · · + c12···nx1x2 · · · xnz−n.
(12)

If we determine x1, x2, . . . , xn then we know G1,G2, . . . ,Gn.
We first consider a two-stage filter and return to the general
case later.

4. TWO-STAGE EXAMPLE

In the case of a two-stage active lattice filter, (12) becomes

1 +
(
c1x1 + c2x1

)
z−1 + c12x1x2z

−2, (13)

where the c’s are fixed and only the xi can vary. If a desired
denominator polynomial is

1 + a1z
−1 + a2z

−2, (14)

then the equations to determine the gains as function of the
polynomial coefficients are

c1x1 + c2x1 = a1,

c12x1x2 = a2.
(15)

Geometrically, these equations represent a straight line and a
hyperbola in the closed first quadrant in (x1, x2) space. With
c1, c2, c12 determined and a1, a2 given, a solution is a point
(x1, x2) where the line and the hyperbola intersect. These
equations can also be thought of as a map from the gains (ac-
tually gains squared) space (x1, x2) to the desired polynomial
coefficient space(a1, a2).

For example, if we set r0 = 1, r1 = 1/4, and r2 = 1/4, (3)
for the transfer function denominator becomes

1 +
(
5
16

)
z−1 +

(
1
4

)
z−2. (16)

This discussion could have begun from the point of view
of choosing coefficients a1 = 5/16, a2 = 1/4, and r0 = 1,
and using the Dowling-MacFarlane layer-peeling algorithm
to find r1 = 1/4 and r2 = 1/4. We have stable systems in
transmission and reflection since both poles are inside the
unit circle. Equations (15) now becomes

(
1
4

)
x1 +

(
1
16

)
x2 = a1,

(
1
4

)
x1x2 = a2.

(17)

With a1 = 5/16 and a2 = 1/4 we have two solutions
(1, 1) and (1/4, 4) for (x1, x2). The solution of interest to us
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Figure 4: Intersection in (x1, x2) space for a1 = 5/16 and a2 = 1/4.

is (1, 1). Considering (17) as a map from (x1, x2) space to
(a1, a2) space, the Jacobian matrix is

[ 1/4 1/16
(1/4)x2 (1/4)x1

]
. We note

that this matrix, evaluated at (x1, x2) = (1, 1), is nonsin-
gular. Thus by the inverse function theorem [9] there is an
open set U containing (1, 1) in (x1, x2) space and open set V
containing (5/16, 1/4) in (a1, a2) space. Hence for each co-
efficient pair (a1, a2) in V there is exactly one set of gains
(squared) (x1, x2) in U that solves (17). Geometrically, for
a1 = 5/16 and a2 = 1/4 the line and the hyperbola inter-
sect transversally (nontangentially) at (1, 1) in (x1,x2) space.
If we change a1 and a2 slightly we still have a transverse in-
tersection near (1, 1). This intersection is shown graphically
in Figure 4.

We now show that it is not possible to find the gains in
(17) to do arbitrary pole placement for the same values of r0,
r1, and r2. If we let a1 = 5/16 and a2 = 1 in (17), then(

1
4

)
x1 +

(
1
16

)
x2 = 5

16
,

(
1
4

)
x1x2 = 1

(18)

have only complex solutions for x1 and x2. Of course the
straight line and hyperbola in (17) do not intersect in (x1, x2)
space. Hence arbitrary denominator polynomials cannot be
realized for the transmission and reflection transfer func-
tions if the reflection coefficients are held fixed and the gains
varied, for given order (number of lattice stages).

There is one more case of interest. If a1 = 1/2 and a2 =
1/4 in (17), then (

1
4

)
x1 +

(
1
16

)
x2 = 1

2
,(

1
4

)
x1x2 = 1

(19)

have only the solution x1 = 1 and x2 = 4. Hence the straight
line and the hyperbola from (17) intersect at only one point,
a point of tangency. Slight changes in a1 from 1/2 can result
in either no points of intersection or two points of intersec-
tion. It is very important to note that the Jacobian matrix[ 1/4 1/16
(1/4)x2 (1/4)x1

]
of (17) is singular at the point (x1, x2) = (1, 4).

5. MAIN RESULTS

We return to the general case for n stages with gains in
Section 3. Equation (12) of interest is

1 +

( n∑
i=1

cixi

)
z−1 +

( n∑
i, j=1,i< j

ci jxix j

)
z−2

+ · · · + c12···nx1x2 · · · xnz−n.
(20)

Here the c’s (through the r’s) have been chosen by
using layer peeling to deliver a specified transmission
transfer function denominator without using the gains
(or equivalently, when all the xi= 1). If another desired de-
nominator polynomial to be achieved by computing only the
gains is

1 + a1z
−1 + a2z

−2 + · · · + anz
−n, (21)

then the equations to determine the gains as functions of the
polynomial coefficients are( n∑

i=1
cixi

)
= a1,( n∑

i, j=1,i< j
ci jxix j

)
= a2,

...

c12···nx1x2 · · · xn = an.

(22)

The n by n Jacobian matrix of the gains (or gains squared) to
polynomial coefficient map is

J =



c1 c2 · · · cn
n∑
j=2

c1 jx j c12x1 +
n∑
j=3

c2 jx j · · ·
n−1∑
i=1

cinxi

...
...

. . .
...

c12···nx2x3 · · · xn c12···nx1x3 · · · xn · · · c12···nx1x2 · · · xn−1


(23)
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which is easily computed by taking partial derivatives in (22).
When all gains (squared) xi in (22) are unity, we denote the
corresponding polynomial coefficients by â1, â2, . . . , ân. By
the inverse function theorem [9], these are the coefficients
of the transfer function denominator polynomial for which
the reflection coefficients are fixed.

If we move the ai from the right-hand side to the left-
hand side in (22), we have a system of equations of the form

f1
(
x1, x2, . . . , xn

) = 0,

f2
(
x1, x2, . . . , xn

) = 0,

...

fn
(
x1, x2, . . . , xn

) = 0.

(24)

Equations (24) may be solved by the Newton-Raphson al-
gorithm to find the (x1, x2, . . . , xn) as a function of the
(a1, a2, . . . , an), so long as the Jacobian matrix of this system
is nonsingular.

As an example, we now return to the two-stage exam-
ple in Section 4 and apply the Newton-Raphson algorithm to
compute the correct gains as we vary the desired polynomial
coefficients. We use Matlab to implement Newton-Raphson
[13]. Equations (17) of interest are

(
1
4

)
x1 +

(
1
16

)
x2 = a1,

(
1
4

)
x1x2 = a2.

(25)

The starting values are a1 = 5/16 and a2 = 1/4 for which
the solutions are x1 = 1 and x2 = 1. Of course this implies
that G1 = 1 and G2 = 1. To make the changes in a1 and a2
somewhat random we choose

a1 = 5
16
± 0.05× (rand−0.5),

a2 = 1
4
± 0.05× (rand−0.5),

(26)

where rand is a Matlab command for a uniformly distributed
random variable with values between 0 and 1. Then we solve
for x1, x2, G1, and G2. Our computations yield the results in
Table 1.

The Newton-Raphson algorithm actually provides two
solutions (x1, x2) for each a1, a2, but we take only that so-
lution which is on the same side of the straight line x2 = 4x1
as the point (1, 1) (recall that we work in an open neighbor-
hood of (1, 1)). The line x2 = 4x1 represents the set of points
where the Jacobin matrix

[ 1/4 1/16
(1/4)x2 (1/4)x1

]
is singular.

These results follow from the point of view that given
the desired second-degree denominator polynomial, we pro-
gram the gains to achieve that polynomial. We next merge

Table 1: Filter coefficients and gains.

a1 a2 x1 x2 G1 G2

5/16 1/4 1 1 1 1

0.3350 0.2366 1.13 0.83 1.063 0.910

0.31780 0.2493 1.028 0.969 1.013 0.984

0.3321 0.2631 1.086 0.968 1.042 0.983

0.3103 0.2259 1.019 0.886 1.009 0.9412

0.3286 0.2472 1.08 0.909 1.039 0.953

0.3067 0.2646 0.947 1.116 0.973 1.056

0.2914 0.2619 0.861 1.215 0.9279 1.1022

0.3172 0.2338 1.045 0.894 1.022 0.945

0.2907 0.2708 0.840 1.28 0.916 1.131

0.3170 0.2697 0.997 1.081 0.998 1.039

0.3346 0.2574 1.10 0.931 1.048 0.964

0.2968 0.2245 0.872 1.25 0.933 1.118

0.3306 0.2649 1.076 0.984 1.037 0.991

0.3276 0.2448 1.084 0.902 1.041 0.949

0.3239 0.2651 1.04 1.018 1.019 1.008

0.3152 0.2623 0.998 1.051 0.998 1.025

0.2909 0.2483 0.882 1.125 0.939 1.06

0.3166 0.2673 0.998 1.07 0.998 1.034

0.3112 0.2351 1.01 0.928 1.004 0.963

our gain computation procedure with an adaptive process so
that we start with data, identify the AR transfer function, and
compute the appropriate gains.

We generate data according to the linear time-varying
difference equation

y(n) +
(
13
24

)
y(n− 1) +

(
5
8

)
y(n− 2)

+
[
8
27

+
1
27

cos(n− 3)
]
y(n− 3) = u(n)

(27)

with zero initial conditions y(−1) = y(−2) = y(−3) = 0
and input u(n) = δ(n), the discrete delta function. We as-
sume that the data is associated with the time-invariant lin-
ear system

y(n) + a1y(n− 1) + a2y(n− 2) + a3y(n− 3) = u(n) (28)

and we identify a1, a2, a3 from the data as n moves. These
a1, a2, a3 are the coefficients of the desired AR denominator
polynomial 1 + a1z−1 + a2z−2 + a3z−3. Then we compute the
x1, x2, x3 (and hence the gainsG1,G2,G3) from the equations

c1x1 + c2x2 + c3x3 = a1,

c12x1x2 + c13x1x3 + c23x2x3 = a2,

c123x1x2x3 = a3.

(29)
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For the starting point we take the difference equation

y(n) +
(
13
24

)
y(n− 1) +

(
5
8

)
y(n− 2) +

(
1
3

)
y(n− 3)

= u(n)
(30)

and thus the polynomial 1+(13/24)z−1 +(5/8)z−2 +(1/3)z−3

results. This difference equation can be found by substituting
u(n) = δ(n) into (27) with zero initial conditions, evaluating
y(0), y(1), y(2), y(3), and computing a1, a2, a3 from (28)
using 3 linear equations (for y(n) = y(1), y(2), y(3)) in 3
unknowns. Choosing r0 = 1 we compute the reflection coef-

ficients r1 = 1/4, r2 = 1/2, r3 = 1/3 by layer peeling. Thus
(29) becomes (see (7) and (10))

(
1
4

)
x1 +

(
1
8

)
x2 +

(
1
6

)
x3 = a1,(

1
2

)
x1x2 +

(
1
24

)
x1x3 +

(
1
12

)
x2x3 = a2,(

1
3

)
x1x2x3 = a3.

(31)

The Jacobian matrix is



(
1
4

) (
1
8

) (
1
6

)
(
1
2

)
x2 +

(
1
24

)
x3

(
1
2

)
x1 +

(
1
12

)
x3

(
1
24

)
x1 +

(
1
12

)
x2(

1
3

)
x2x3

(
1
3

)
x1x3

(
1
3

)
x1x2

 . (32)

As discussed above, this matrix is nonsingular when x1, x2,
x3 are all unity. We then substitute in the varying values for
a1, a2, a3 and compute the corresponding x1, x2, x3 (from
(31)) andG1,G2,G3. The first computation is for a1 = 13/24,
a2 = 5/8, and a3 = 1/3, and the solution is x1 = 1, x2 = 1,
and x3 = 1.

The second computation involves a1, a2, a3 calculated by
substituting u(n) = δ(n) into (27) with zero initial condi-
tions, evaluating y(0), y(1), y(2), y(3), y(4), and comput-
ing a1, a2, a3 from (28) using 3 linear equations (for y(n) =
y(2), y(3), y(4)) in 3 unknowns. The third and higher com-
putations proceed in the obvious way. We record our results
in Table 2

For this example we could have driven the system by
noise, computed the autocorrelations, arrived at the poly-
nomial coefficients through standard algorithms, and then
computed the gains using our technique. Moreover, we also
could have estimated the polynomial coefficients using a re-
cursive least squares method based on the Kalman filter.
However, we decided to keep things simple and work straight
with the data from the difference equation, using sets of 3
equations in 3 unknowns.With noisy data we also could have
used more linear equations in the 3 unknowns and found
pseudoinverse solutions.

6. PARAMETER SENSITIVITY ANALYSIS

The goal is to quantify the variation of denominator coef-
ficients as the gains vary. Since the gains are physically re-
alized their numerical value is prone to change. This might
result in a significantly different transfer function. Hence the

perturbation of the coefficients ai’s due to error in the real-
ization of the gains Gj ’s is worth analyzing. We quantify the
perturbation relations by a measurable parameter called sen-
sitivity. For ease of notation we analyze the sensitivity of the
coefficients ai with respect to the gains squared xj .

The traditional definition of sensitivity of a parameter a
with respect to a parameter x is given by

S = da/a

dx/x
. (33)

This can be viewed as the relative change of a with respect to
change in x. Low values of Smeans the coefficients are some-
what insensitive to gain changes. The next step is to see how
S fits into the nonlinear gains squared-coefficients relations.

The general gain squared-coefficients relation according
to (22) can be expressed in the form

f1
(
x1, x2, . . . , xn

) = a1,

f2
(
x1, x2, . . . , xn

) = a2,

...

fn
(
x1, x2, . . . , xn

) = an.

(34)

The above set of equations can be represented in a vector
form as

f (x) = a, (35)

where x = [x1, . . . , xn]T and a = [a1, . . . , an]T and T is the
matrix-transpose operator.
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Table 2: Filter coefficients and gains.

a1 a2 a3 x1 x2 x3 G1 G2 G3

13/24 5/8 1/3 1 1 1 1 1 1

13/24 5/8 0.3163 1.06948 0.95293 0.93108 1.0342 0.9762 0.9649

13/24 5/8 0.2809 1.19 0.883 0.8006 1.0909 0.9397 0.8948

13/24 5/8 0.2596 1.255 0.852 0.7275 1.1203 0.9230 0.8529

13/24 5/8 0.2721 1.2182 0.8702 0.7699 1.1037 0.9328 0.8774

13/24 5/8 0.3068 1.1045 0.93142 0.89466 1.0509 0.9651 0.9459

13/24 5/8 0.3319 1.00627 0.9954 0.9938 1.0031 0.9977 0.9969

13/24 5/8 0.3242 1.03851 0.9731 0.96238 1.0191 0.9865 0.981

13/24 5/8 0.2909 1.1589 0.90059 0.83612 1.0765 0.94899 0.91439

13/24 5/8 0.2626 1.24651 0.85683 0.73761 1.1130 0.9276 0.8639

13/24 5/8 0.2652 1.23887 0.86039 0.74641 1.0678 0.9544 0.9254

13/24 5/8 0.2965 1.0.1487 0.98940 0.98565 1.0074 0.9946 0.9928

13/24 5/8 0.3299 1.12353 0.92031 0.87447 1.0599 0.9607 0.93513

13/24 5/8 0.3014 1.22996 0.8646 0.75661 1.1090 0.9298 0.8698

13/24 5/8 0.2682 1.25177 0.85441 0.73155 1.1188 0.9243 0.8553

13/24 5/8 0.2608 1.17455 0.89230 0.81895 1.0838 0.9446 0.9049

13/24 5/8 0.2861 1.05207 0.96415 0.94878 1.0257 0.9819 0.9924

13/24 5/8 0.3329 1.08782 0.94150 0.91214 1.0429 0.9703 0.955

13/24 5/8 0.3114 1.20631 0.8761 0.78347 1.0983 0.9360 0.8851

13/24 5/8 0.2760 1.25612 0.85242 0.72651 1.1207 0.9233 0.8523

Writing (35) in differential form we get

Jdx = da, (36)

where dx = [dx1, . . . ,dxn]T , da = [da1, . . . ,dan]T , and

J =



∂ f1(x)
∂x1

∂ f1(x)
∂x2

· · · ∂ f1(x)
∂xn

∂ f2(x)
∂x1

∂ f2(x)
∂x2

· · · ∂ f2(x)
∂xn

· · · ·
· · · ·
· · · ·

∂ fn(x)
∂x1

∂ fn(x)
∂x2

· · · ∂ fn(x)
∂xn



, (37)

where J is the Jacobian matrix. The entries of the matrix J are
Ji, j . It is easy to see from (36) that if only xj changes, then

Ji, jdx j = dai . (38)

Plugging (38) into (33) and a little manipulation gives

Si, j =
Ji, jx j

ai
, (39)

where Si, j relates the sensitivity of ai to changes in x j . Thus
we can find a sensitivity matrix S with Si, j as its elements. S
gives the one-to-one sensitivity relations between the square
of the gains and the coefficients.

An upper bound on the sensitivity matrix, when one or
more gains vary, is estimated using the 2-norm as follows.
Equation (36) can be written as

Jdx = da. (40)

Applying norm to both sides of the equation we get

∥∥Jdx∥∥ = ∥∥da∥∥ =⇒ ∥∥da∥∥ ≤ ‖J‖∥∥dx∥∥. (41)

Here ‖·‖ denotes
√
max(eigenvalues of JTJ) for matrices and

2-norm for vectors. Thus we get∥∥da∥∥∥∥dx∥∥ ≤ ‖J‖ (42)

or equivalently,

∥∥da∥∥/‖a‖∥∥dx∥∥/‖x‖ = s ≤ ‖J‖‖x‖
‖a‖ . (43)

Here s is sensitivity with respect to gain squared. Thus (43)
gives an upper bound on sensitivity. The sensitivity bound
(s) is tabulated in Table 3 for different gains squared.
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Table 3: Sensitivity of filter parameters respective to gains.

a1 a2 a3 x1 x2 x3 s

13/24 5/8 1/3 1 1 1 1.9702
13/24 5/8 0.3163 1.06948 0.95293 0.93108 1.9359
13/24 5/8 0.2809 1.19 0.883 0.8006 1.9109
13/24 5/8 0.2596 1.255 0.852 0.7275 1.9139
13/24 5/8 0.2721 1.2182 0.8702 0.7699 1.9109
13/24 5/8 0.3068 1.1045 0.93142 0.89466 1.9243
13/24 5/8 0.3319 1.00627 0.9954 0.9938 1.9664
13/24 5/8 0.3242 1.03851 0.9731 0.96238 1.9492
13/24 5/8 0.2909 1.1589 0.90059 0.83612 1.9135
13/24 5/8 0.2626 1.24651 0.85683 0.73761 1.9129
13/24 5/8 0.2652 1.23887 0.86039 0.74641 1.9121
13/24 5/8 0.2965 1.0.1487 0.9894 0.98565 1.9162
13/24 5/8 0.3299 1.12353 0.92031 0.87447 1.9615
13/24 5/8 0.3014 1.22996 0.8646 0.75661 1.9196
13/24 5/8 0.2682 1.25177 0.85441 0.73155 1.9115
13/24 5/8 0.2608 1.17455 0.8923 0.81895 1.9135
13/24 5/8 0.2861 1.05207 0.96415 0.94878 1.9119
13/24 5/8 0.3329 1.08782 0.9415 0.91214 1.969
13/24 5/8 0.3114 1.20631 0.8761 0.78347 1.9294
13/24 5/8 0.276 1.25612 0.85242 0.72651 1.9106

The results in Table 3 show that the active lattice is rea-
sonably robust with respect to gain tolerances. That is to
say that the filter response does not appreciably change with
small injection current uncertainties. This advantageous re-
sult is somewhat expected given the traditional lattice filter’s
robustness with respect to round off error or the reflection
coefficient variations [2, 4, 13].

7. CONCLUSIONS AND FUTURE RESEARCH

We have added gains to the optical lattice filters [1, 2, 3] in or-
der to make the response functions programmable. To deter-
mine the denominator polynomials achievable by gains only
we set up a map from the gains (squared) to the polynomial
coefficients. Applying the inverse function theorem we pro-
vide a result giving sufficient conditions that all polynomials
in an open set can be generated by appropriated choices of
gains. This result naturally leads to a method for computing
the gains using the Newton-Raphson algorithm. Two inter-
esting examples are given, one of which stressed the adaptive
signal processing point of view. We also performed a sensi-
tivity analysis, measuring how the denominator coefficients
vary as the gains vary.

We have shown that the presence of gains in the lattice
filter can provide additional flexibility in the filter response.
These gains may be implemented in a semiconductor laser
amplifier, and hence these will be adjustable at GHz rates.
In accompanying experimental work, we will be building
and testing these devices, and exploring their range of op-
eration both theoretically and empirically. This range will be
bounded on one end by the noise figure and stability on the
other. In addition, theoretical and experimental work is also
underway in two-dimensional active lattice filters based on
four-directional couplers [14].
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