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It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output
plane of an appropriate number of separable first-order optical systems (generally anamorphic ones). The minimum number of
such systems that are needed for the determination of these moments is derived.
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1. INTRODUCTION

After the introduction of the Wigner distribution (WD) [1]
for the description of coherent and partially coherent opti-
cal fields [2], it became an important tool for optical sig-
nal/image analysis and beam characterization [3, 4, 5]. The
WD completely describes the complex amplitude of a coher-
ent optical field (up to a constant phase factor) or the mu-
tual coherence function of a partially coherent field. As the
WD of a two-dimensional optical field is a function of four
variables, it is difficult to analyze. Therefore, the optical field
is often represented not by the WD itself, but by its global
moments. Beam characterization based on the second-order
moments of the WD thus became the basis of an Interna-
tional Organization for Standardization standard [6].

Some of the WD moments can directly be determined
from measurements of the intensity distributions in the im-
age plane or the Fourier plane, but most of the moments can-
not be determined in such an easy way. In order to calcu-
late such moments, additional information is required. Since
first-order optical systems [7]—also called ABCD systems—
produce affine transformations of the WD in phase space, the
intensity distributions measured at the output of such sys-
tems can provide such additional information. The applica-
tion of ABCD systems for the measurements of the second-
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order WD moments has been reported in several publica-
tions [8, 9, 10, 11, 12, 13].

It is the aim of this paper to show how all global WD mo-
ments can be measured as intensity moments only. We show
that not only the second-order moments, but also all other
moments of the four-dimensional WD can be obtained from
measurements of only intensity distributions in an appropri-
ate number of (generally anamorphic) separable first-order
optical systems.

2. WIGNER DISTRIBUTION

Let partially coherent light be described by a temporally sta-
tionary stochastic process f(x, y;t); as far as the time de-
pendence is concerned, the ensemble average of the product
f(x1, y1511) f*(x2, ¥25 t2), where the asterisk denotes complex
conjugation, is then only a function of the time difference
t — b

E{f(xi,pyi5t1) f* (22, y2302) } = (o1, %05 y1, yos t — 1) (1)

The function y(xi1,x2; y1, ¥2; 7) is known as the mutual co-
herence function [14, 15, 16, 17] of the stochastic process
f(x, y;t). The mutual power spectrum [16, 17] or cross-
spectral density function [18] I'(xi,x2; y1, y2; w) is defined
as the temporal Fourier transform of the mutual coherence
function:

T (21, %25 Y1, Y25 @)

® 2
=J y(x1,%2; y1, 25 7) exp(jwt)dT. (2)
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For x; = x = x, y1 = y» = y, the cross-spectral
density function reduces to the (auto) power spectrum
['(x,x; y, y; w), which represents the intensity distribution of
the light for the temporal frequency w. Since in the present
discussion the explicit temporal-frequency dependence is of
no importance, we will, for the sake of convenience, omit the
temporal-frequency variable w from the formulas in the re-
mainder of the paper.

The Wigner distribution of partially coherent light is de-
fined in terms of the cross-spectral density function by

W (x,u; y,v)

T e b e b )
Xexp[—err(ux +vy)]dx dy'.

A distribution function according to definition (3) was first
introduced in optics by Walther [19, 20], who called it the

generalized radiance. The WD W (x, u; y, v) represents par-
tially coherent light in a combined space/spatial-frequency
domain, the so-called phase space, where u is the spatial-
frequency variable associated to the space variable x, and v
the spatial-frequency variable associated to the space vari-
able y.

In this paper we consider the normalized moments of the
WD, where the normalization is with respect to the total en-
ergy E of the signal:

E= J J J J W (x,u; y,v)dxdudy dv
o (4)
= J J T(x, x5y, y)dxdy.

These normalized moments s of the WD are thus defined
by

UpgrsE = Jﬁm ,[700 J—m Lm W, us y,v) XPulyvdxdudydv  (p,q,r,s = 0)

(471])‘1+S J J d (8_361 a %)q(

Note that for ¢ = s = 0 we have intensity moments, which
can easily be measured:

pporoE

=[] weswpm

x xPy"dxdudy dv

— J_Oo J_oo xPy'T(x,x; v, y)dxdy.

6
(p,r=0) ©

The WD moments p,4rs provide valuable tools for the
characterization of optical beams, see, for instance [21].
First-order moments yield the position of the beam (1000
and poo10) and its direction (po100 and pogo1). Second-order
moments give information about the spatial width of the
beam (the shape p000 and pooz0 of the spatial ellipse and its
orientation yo10) and the angular width in which the beam is
radiating (the shape poa00 and popo2 of the spatial-frequency
ellipse and its orientation poio1); moreover, they provide in-
formation about its curvature (y1100 and poor1) and its twist
(p1001 and por10). Many important beam characterizers, like
the overall beam quality [12]

([42000[40200 - H%]OO) + (Hoozo[/loooz - ,11(2)011)

(7)
+ 2(/«!1010#0101 - ,UIOOI,UOIIO))

a—yl - —) (xl)x2;}’1)y2)

(5)
J J dxdy.

9y> ==X =p=y

are based on second-order moments. Higher-order moments
are used, for instance, to characterize the beam’s symmetry
and its sharpness [21].

3. SEPARABLE FIRST-ORDER OPTICAL SYSTEMS

It is well known that the input-output relationship be-
tween the WD Wi, (x, u; y, v) at the input plane and the WD
Wout(x, 45 ¥, v) at the output plane of a separable first-order
optical system reads [3, 4, 5]

Wou(x, 15 y,v)
= Win(dex — bt —cex + axus dyy — byv, —cyy +ayv).

(8)

The coefficients ay, by, cx, dy and a,, by, c,, d, are the matrix
entries of the symplectic ray transformation matrix [7] that
relates the position x, y and direction u, v of an optical ray
in the input and the output plane of the first-order optical
system:

Xout a, 0 by 0 Xin

Yout | 0 a y 0 b y Yin (9)
Uout | |cx 0 de O Uin |

Vout 0 ¢ 0 dy| |V
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For separable systems, symplecticity simply reads a.d,
bxcx = land a,d, — byc, = 1. Note that in a first-order opti-
cal system, with such a symplectic ray transformation matrix,
the total energy E, see (4), is invariant.

As examples of first-order optical systems we mention the
following in particular:

(i) a section of free space in the paraxial approximation,
or “parabolic” system [22] (witha=d =1,c = 0,and
b proportional to the propagation distance z),

(ii) afractional Fourier transform system [23], or “elliptic”

system [22] (witha =d = coswand b = —¢ = sina),
(iii) a “hyperbolic” system [22] (with a = d = cosha and
b = ¢ =sinha).

These three systems are characterized by one parameter.
Other one-parameter first-order optical systems are

(i) a thin lens (witha = d = 1, b = 0, and ¢ inverse pro-
portional to the focal distance),
(ii) an ideal magnifier (witha = m,d = 1/m, b = ¢ = 0).

The latter systems however—Ilike all systems for which the in-
put and output planes are conjugate planes—cannot be used
to determine the moments, as we will see later, because they
have the property b = 0.

The normalized moments pyy.; of the output WD
Wout(x, 4; y,v) are related to the normalized moments
y};‘q” = Upqrs Of the input WD Wi, (x, u; y,v) as

t
HogrsE

=I J J I Wout(x, 13 ¥, v)

x xPuly"v dxdudy dv

= J J J I Win (dex — bytt, —CeX + ayus

dyy —byv,—cyy +a,v)

x xPuly"v dx dudy dv
=J J J I Win(x, 15 y,v) (axx + beu)”

X (cxx +deu)(ayy + byv)

(10)

X (cyy +dyv) dxdudydv

25 5 50 (1)) ()« e

9=l r—mpm n 35—n
X dc al, "bycyd,

X Up—k+l,q—I+k,r—m+ns—n+m>

and for the intensity moments in particular (i.e., g = s = 0)
we have

P r
r -k —-mpm
#;’7350 = Z Z (i) (m) aﬁ bﬁa; by Up—kk;r—m,m- (11)

The remainder of this paper is based on (11), in which
the output intensity moments ‘u‘;‘éﬁo are expressed in terms of
the input moments g4, and the system parameters ay, a,,
by, and b,. Note that only the parameters a and b enter this
equation; the parameters ¢ and d can be chosen freely, as long
as the symplecticity condition a,dy — bycy = ayd, —byc, = 1
is satisfied.

4. RELATIONS BETWEEN INPUT AND OUTPUT
MOMENTS

4.1. First-order moments

For the first-order moments, the following two equations are
relevant:

Y3660 = Axtirooo + bxthoroos (12)

Hooto = aytooro + bytooor (13)
which correspond to (11) with pgrs = 1000 and pgrs =
0010, respectively, and the four input moments 1000, #0100
Hoo10> and pooo1 can be determined by measuring the intensity
moments 345, and s, in the output planes of two systems
with different values of a and b, see (12) and (13), respec-
tively.

In the case of a fractional Fourier transform system we
can choose, for instance, [24, 25], the fractional angles o, =
&y = 0 (leading to a, = a, = 1l and by = b, = 0) and
oy = &y = 11/2 (leading to a, = a, = 0 and b, = b, = 1), but
any other choice could be made as well, as long as it leads to
four independent equations. In the case of free space propa-
gation, we simply choose two different values of the propa-
gation distance z, corresponding to two different values of by
and b, (with a, = a, = 1, of course).

Note that the two first-order optical systems can always
be chosen such that they are isotropic, ax = a, = a;, by =
by = bj, and so forth (i = 1,2), with identical behavior in the
x and the y direction.

4.2. Second-order moments

For the 3 + 4 + 3 = 10 second-order moments, the following
equations are relevant:

2

U300 = Axpa000 + 2axbxpiiioo + bito2005 (14)

.“(1)3{0 = axaylioio t+ axbyMIOOI + bxayﬂouo + bxby#mm, (15)

1650 = ai#oozo +2a,bypoon + bi#oooz» (16)

which equations correspond to (11) with pgrs = 2000,
pqrs = 1010, and pqrs = 0020, respectively.

The three input moments 2000, #1100, and gozo0 can be
determined by measuring the intensity moment p3jj, in the
output planes of three systems with different values of a, and
by, see (14). Likewise, with the transversal coordinate x re-
placed by y, the three input moments goo20, Hoo11> and Hooo2
can be determined by measuring the intensity moment g3
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in the output planes of three systems with different values of
a, and by, see (15). Note that we can choose a, = a, = a;
and b, = b, = b; (i = 1,2,3) for these three systems, in
which case we are obviously using isotropic systems.

The other four input moments yigi0, H1001> Hoi10, and
por01 follow from measuring the intensity moment g}, in
the output planes of four different systems, see (15). How-
ever, if we would use only isotropic systems, like we could do
for (14) and (16), (15) would reduce to

out

Uit = a*uiono + ab (o1 + totio) + b2 ool (17)

and we can only determine the combination pigo1 + Hoi1o-
Hence, while three systems may be isotropic again—and, for
instance, be identical to the ones that we used when we were
dealing with (14) and (16)—at least one system should be
anamorphic.

We conclude that all ten second-order moments can be
determined from the knowledge of the output intensities of
four first-order optical systems, where one of them has to be
anamorphic. In the case of fractional Fourier transform sys-
tems we could choose, for instance [24, 25], the fractional an-
gles ay = &y = 0 (leading to a, = a, = 1and b, = b, = 0),
ay = ay = n/4 (leading to a, = a, = by = b, = /2/2),
oy = a, = /2 (leading to a, = a, = 0O and b, = b, = 1),
and the anamorphic combination &, = 7/27 and &, = 0
(leading to a, = b, = 0 and a, = b, = 1). If we decide
to determine the moments using free space propagation, we
should be aware of the fact that an anamorphic free space
system cannot be realized by mere free space, but can only
be simulated by using a proper arrangement of cylindrical
lenses.

Of course, optical schemes to determine all ten second-
order moments have been described before, see, for instance
(8,9, 11, 12, 13], but the way to determine these moments as
presented in this paper is based on a general scheme that can
also be used for the determination of arbitrary higher-order
moments.

4.3. Higher-order moments

For higher-order moments we can proceed analogously. For
the 4 + 6 + 6 + 4 = 20 third-order moments, the following
equations are relevant:

U388 = @sptz000 + 3aZbytiaioo + 3axbiuin + biuosoo,  (18)
15010 = aiayl/lzolo + aﬁbyyzom + 2acbaypnino
+2a,bibyprior + b)zgayﬂOZIO + b,zcby#mm,

¢ 2 2
Hlo20 = @xa@ypi020 + 2axaybypion + axbypion

(19)

(20)
+ bxai#ouo +2bya,bypoin + bxbf,,umoz,

s = a;l/looso + 311?,17%“0021 + 3ayb)2//40012 + b;[loooy (21)

Note again that these equations correspond to (11) with
pqrs = 3000, pqrs = 2010, pgrs = 1020, and pgrs = 0030,
respectively. The 20 third-order moments can be determined
from the knowledge of the output intensities of six first-order
optical systems, where two of them have to be anamorphic.

We consider in more detail how the third-order moments
could be determined.

(i) The four input moments 3000, #2100> 1200, and Hozoo
can be determined by measuring the intensity moment
#3000, (i = 1,2,3,4) in the output planes of four sys-
tems with different values of a, and by, see (18). Like-
wise, with the transversal coordinate x replaced by y,
the four input moments poo30, Hoo21> Hoo12> and Hooo3
can be determined by measuring the intensity moment
Hooso; (i = 1,2,3,4) in the output planes of four sys-
tems with different values of a, and b,, see (21). Note
that we can choose a, = a, = a;and by = b, = b;
(i = 1,2,3,4) for these four different systems, in which
case we are obviously using isotropic systems. This
then leads to the set of four equations

a; pzo00 + 3a7 bipha100 + 3a:b7 1200 + b3 posoo

22
= #g(l)l(t)O,i (l = 1)2> 3)4) ( )

based on (18) and a similar set of four equations
a; tooso + 3a? biptoon1 + 3a:b?poorz + b3 pooos (23)

= #88%0,1’ (1 = 172? 3)4)’
based on (21). Possible system choices are, for instance,
four sections of free space, with a; = 1 and b; pro-
portional to the four different propagation distances
zi (i = 1,2,3,4); or four isotropic fractional Fourier
transform systems with a; = cos@; and b; = sin«;, and
a; (i =1,2,3,4) four different fractional angles.

(ii) Using the same four isotropic systems as above, the two
input moments y010 and poo1, together with the two
moment combinations g001 +2¢1110 and 21101 +Ho210,
follow from measuring the intensity moment u3g},;
(i = 1,2,3,4) in the output planes of these four sys-
tems, see (19), while the two input moments 920 and
Uoi02, together with the two moment combinations
2u1011 +Hor20 and piooz + 20111, follow from measuring
the intensity moment ufg,; (i = 1,2,3,4), see (20).
This leads to the set of four equations

al w00 + azbi (o001 + 2p1110) + aib? (2u1101 + Hoz10)

3 out . (24)
+ b7 po2or = 5010, (i =1,2,3,4)
based on (19) and a similar set of four equations
a?I/lIOZO + a%bi(2M1011 + ,M0120) + ﬂibiz (#1002 + 2[40111) (25)

+ b poron = pitso;  (i=1,2,3,4)
based on (20).

(iii) Twelve of the 20 input moments (together with four
moment combinations) can thus be determined by us-
ing four isotropic systems. To determine the remaining
eight moments, we need four more equations based
on (19) and (20), for which we have to use two more
systems (labeled i = 5 and i = 6), which should now
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TaBLE 1: The number of nth-order moments N, and the required
number of first-order optical systems to determine these N mo-
ments, given as a function of n.

n Number of nth-order moments N N, N,
0 1 1 1 0
1 242 4 2 0
2 3+4+3 10 4 1
3 44+6+6+4 20 6 2
4 5+8+9+8+5 35 9 4
5 6+10+12+12+10+6 56 12 6
6 7+12+154+16+15+12+7 84 16 9

be anamorphic. Among the many possibilities, an easy
choice would be a system with a, = b, = 0, by # 0,
a, # 0, leading to

2 __ ,out
biaypo2io = U105

(26)
by o120 = Hi030,5:

and a system with by = a, = 0, ax # 0, b, # 0, leading
to

atbypoor = HSbioe: 27

axb oo = Uit e
The former system may be an anamorphic fractional
Fourier transform system with fractional angles o, =
n/2 and &, = 0 (and hence a, = b, = 0 and b = a, =
1), while the latter may be an anamorphic fractional
Fourier transform system with «y = 0 and «, = 7/2
(and hence by = a, =0and b, = a, = 1).

Altogether we have thus constructed 20 equations for the
20 third-order moments, using a total of six first-order sys-
tems: four isotropic systems where we measure the 16 out-
put intensity moments p3o00,i> H0030,i> H2010,i>» and Hioao,i (i =
1,2,3,4), and two anamorphic systems where we measure
the four output intensity moments uSgiy; and uSgsy; (i =
5,6).

For the 5+ 8 + 9 + 8 + 5 = 35 fourth-order moments,
the relevant equations follow from (11) with pgrs = 4000,
pgrs = 3010, pgrs = 2020, pgrs = 1030, and pgqrs = 0040,
respectively. The 35 fourth-order moments can be deter-
mined from the knowledge of the output intensities of nine
first-order optical systems spectra, where four of them have
to be anamorphic. Constructing a measuring scheme along
the lines described above for the second-order case and the
third-order case, is rather straightforward.

To find the number of nth-order moments N, and the
total number of first-order optical systems N; (with N, the
number of anamorphic ones) that we need to determine
these N moments, use can be made of the triangle presented
in Table 1, which can easily be extended to higher order.

Note that N (the number of nth-order moments) is equal
to the sum of the values in the nth row of the triangle, N =
(n+1)(n+2)(n+3)/6; that N, (the total number of first-order

optical systems) is equal to the highest value that appears in
the nth row of the triangle, N; = (n+2)%/4 for n = even, and
N; = (n+3)(n+1)/4 for n = odd; that the number of isotropic
systems is n + 1; and that N, (the number of anamorphic
systems) follows from N, = N; — (n+1).

5. CONCLUSIONS

We have shown how all global WD moments of arbitrary
order can be measured as intensity moments in the output
planes of an appropriate number of first-order optical sys-
tems (separable, but generally anamorphic ones), and we
have derived the minimum number of such systems that are
needed for the determination of these moments. The results
followed directly from the general relationship (11) that ex-
presses the intensity moments in the output plane of a sep-
arable first-order optical system in terms of the moments in
the input plane and the system parameters ay, by, ¢y, dy and
ay, by, ¢y, d,.
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