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We present compact integrable architectures to perform the discrete wavelet transform (DWT) and the wavelet packet (WP) de-
composition of an optical digital signal, and we show that the combined use of planar lightwave circuits (PLC) technology and
multiresolution analysis (MRA) can add flexibility to current multiple access optical networks. We furnish the design guidelines
to synthesize wavelet filters as two-port lattice-form planar devices, and we give some examples of optical signal denoising and
compression/decompression techniques in the wavelet domain. Finally, we present a fully optical wavelet packet division multi-
plexing (WPDM) scheme where data signals are waveform-coded onto wavelet atom functions for transmission, and numerically
evaluate its performances.
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1. INTRODUCTION

Global communication networks infrastructure has been ex-
panded thanks to recent advances in optical technology, such
as transparent photonic switches and ultra-long-haul trans-
mission systems, and the increase of multimedia data traf-
fic is strengthening the demand for ultra-high-capacity pho-
tonic networks. The key feature of ultrafast optical networks
is that the electrical conversion is avoided until data signals
reach the most external edge node. Optical signal processing
is not only faster than the electrical one, but it can also sup-
port a larger throughput, and current optical networks are
evolving toward solutions where photonic routers are replac-
ing electronic routers in the intermediate nodes [1].

In the present paper, we show that the use of wavelet
functions in optical communications can provide an overall
capacity improvement thanks to the two-dimensional pro-
cessing capability of multiresolution analysis (MRA), and we
present different architectures in standard planar lightwave
circuits (PLC) technology that perform the wavelet analysis
and multiplexing of data signals directly in the optical do-
main.

The wavelet transform involves joint time-frequency rep-
resentation of nonstationary signals using compactly sup-
ported basis functions, and MRA has been extensively used
to solve a large variety of problems in different research ar-
eas. The enormous flexibility in the choice of the wavelet al-
lows the use of optimal wavelets for specifical applications,
such as image compression, signal denoising, human vision,
radar, earthquake prediction, and computer vision problems,
such as range detection or motion estimation [2, 3, 4]. In
optics communications, wavelets have been used for time-
frequency multiplexing [5, 6] and ultrafast image transmis-
sion [7]. In general, wavelet signal analysis is associated with
an effective computational algorithm, even faster and simpler
than the fast Fourier transform (FFT) algorithm [8].

The aim of the present paper is to present a complete
overview of the capabilities of wavelet signal processing and
multiplexing in optical communications. In Section 2, we
give a brief description of the MRA, illustrating the ba-
sic properties of the subband filtering process of both dis-
crete wavelet transform (DWT) and the wavelet packet (WP)
decomposition. In Section 3, we present the guidelines to
synthesize optical wavelet filters using PLC technology, and
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describe some optical implementations for the DWT andWP
decomposition. Some numerical examples for optical signal
denoising and compression are given in Section 4; in partic-
ular, we show that the SNR of an optical signal can be en-
hanced by performing the DWT of the optical signal and
thresholding the detail coefficients. In addition, we evidence
the correspondence of the wavelet analysis and the optical
packets compression/decompressionmethod using delay line
lattice structures [9]. Finally, in Section 5 we present an in-
novative full optical wavelet packets division multiplexing
(WPDM) scheme and numerically test its performance.

The huge bandwidth provided by optical fibers and the
capability of signal processing directly in the optical layer
make an attractive combination for future multiple access
networks. The feasibility of optical code division multiple ac-
cess (O-CDMA) systems has been demonstrated where the
spectral [10] or the temporal [11] encoding results in spread-
ing the optical pulse in the frequency or the time domain.
However, a more efficient use of the time-frequency plane
has the potential of proving flexible access to a larger num-
ber of multiple end users. WPDM is an emerging technique,
used in wireless communications, that transmits message sig-
nals overlapped in time and frequency domains, and recovers
them with very lowmultiple access interference (MAI) noise,
thanks to the orthogonal properties of the wavelet packet
functions [12, 13, 14, 15]. Data signals from different users
are waveform-coded onto wavelet atom functions and trans-
mitted in a multiple access network. Wavelet atom functions
are self-orthogonal against integer translations and mutual-
orthogonal due to different subbands occupancy; these prop-
erties ensure a better use of time-frequency plane, with re-
spect to standard time division multiplexing (TDM), wave-
length division multiplexing (WDM), and CDMA systems
[12]. In its standard form, WPDM requires N waveform
shapers to code each user bit sequence with a different wave-
form, and its optical implementation is impracticable [5].
We present a compact, full optical WPDM scheme, where
the transmitter is a single encoder that multiplies N optical
data signals from N simultaneous users. The encoder gives
the equivalent sequence at the root of the WP decomposi-
tion tree, and it is followed by a single modulator that com-
pletes the waveform coding, shaping the optical pulses of the
composite signal with the scaling function profile. The re-
ceiver is a reversal version of the transmitter, and the same
optical devices are used for both encoding and decoding the
binary sequences. In addition, we show that both the WP
encoder/decoder and the waveform modulator can be fabri-
cated using PLC technology and integrated on a single de-
vice: the WP encoder/decoder can be realized as a tree of
lattice-form optical delay line filters [16], whereas the modu-
lator as a weight/phase-programmable tapped delay line filter
[17].

2. MULTIRESOLUTION ANALYSIS

The analysis of nonstationary signals involves a compromise
between how well transitions or discontinuities are located,

and how finely long-term behavior can be identified. For in-
stance, standard Fourier transform decomposes a continu-
ous time-signal s(t) into individual frequency components,
using complex sinusoidal basis functions exp(iωt), that are
infinite in extent. As these basis functions are periodic, any
short duration signal spreads over the whole basis. In con-
trast, the MRA decomposes a signal at different scales or res-
olutions, using a basis whose elements are localized in both
time and frequency domains, and the representation of short
duration and nonstationary signals focuses on a few compo-
nents, that immediately enlighten the predominant frequen-
cies and the time occurrence of abrupt changes.

Specifically, the continuous wavelet transform (CWT)
performs correlations between the signal s(t) and scaled ver-
sions of themother wavelet ψ(t):

CWTs(a, τ) = 1
|a|

∫
s(t)ψ∗

(
t − τ

a

)
dt, (1)

where a is a real nonzero scale parameter, and τ the transla-
tion factor. If ψ(t) satisfies the admissibility condition

cψ =
∫ ∣∣ψ̃( f )∣∣2

| f | df <∞, (2)

where ψ̃( f ) is the Fourier transform of the mother wavelet
ψ(t), the signal s(t) can be reconstructed by means of the in-
verse wavelet transform

s(t) = 1
cψ

∫∫
CWTs(a, τ)

1√|a|ψ
(
t − τ

a

)
dadτ

a2
. (3)

Usuallyψ(t) is localized both in time and frequency domains,
and the CWT displays the time evolution of the frequency
components of a signal. In fact, by applying the Fourier Par-
seval formula [18], (1) can be rewritten as

CWTs(a, τ) =
√
|a|
∫
s̃( f )ψ̃∗(−a f )e− j2π f τdf , (4)

where s̃( f ) is the Fourier transform of the signal. There-
fore, the CWT can be seen as the output from a bank of fil-
ters which are constructed by dilatations/compressions of the
mother wavelet. Filters obtained by dilatations of ψ(t) pro-
cess the low-frequency information of the signal s(t), whereas
the filters related to the compressed version of ψ(t) analyze
the high-frequency content.

More useful in digital signal processing and multiplex-
ing are the orthogonal wavelet series expansions, derived
from the CWT when scale and translation factors are con-
strained to discrete values. Let φ(t) be a (smooth) scaling
function such that the discrete set of functions {2−�/2φ(2−�t−
k∆τ) (�, k ∈ Z)} forms an orthonormal basis for a subspace
V� ∈ L2(R); here ∆τ is a time interval that will coincide
with the inverse of the free spectral range (FSR). Let ψ(t) be
an admissible mother wavelet such that (a) the discrete set
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of functions {2−�/2ψ(2−�t − k∆τ) (�, k ∈ Z)} forms an or-
thonormal basis for a subspace W� ∈ L2(R); (b) the sub-
spaces V� and W� are mutually orthogonal, that is, W�⊥V� ;
(c) the subspace V�−1 can be expressed as direct sum of V�

andW� , namely

V�−1 = V� ⊕W� . (5)

Then, a signal s(t) ∈ V0 is represented by a smoothed ap-
proximation at resolution 2M , obtained by combining trans-
lated versions of the basic scaling function φ(t), andM details
at the dyadic scales a = 2� (� = 1, 2, . . . ,M − 1) obtained by
combining shifted and dilated versions of the mother wavelet
ψ(t):

s(t) =
∑
k

2−M/2cM[k]φ
(
2−Mt − k∆τ

)

+
M∑
�=1

∑
k

2−�/2d�[k]ψ
(
2−�t − k∆τ

)
.

(6)

The wavelet and the scaling function satisfy the dilation equa-
tions

φ(t) = √2
∑
k

h[k]φ(2t − k∆τ),

ψ(t) = √2
∑
k

g[k]φ(2t − k∆τ),
(7)

where g[k] and h[k] are the coefficients of two quadrature
mirror filters (QMFs)

H(ω) = 1√
2

∑
k

h[k]e− jωk∆τ ,

G(ω) = 1√
2

∑
k

g[k]e− jωk∆τ ,
(8)

and ∆τ is the inverse of their FSR [19, 20].
The DWT is computed by using Mallat’s pyramidal algo-

rithm [8]. Let c0[n] be the expansion coefficients of the signal
s(t) ∈ V0, with respect to the orthonormal basis φ(t−∆nτ):

c0[n] =
〈
s(t),φ(t − n∆τ)

〉 = ∫ s(t)φ∗(t − n∆τ)dt, (9)

where angular brackets indicate inner product. Then the co-
efficients c0[n] can be decomposed into the scaling coeffi-
cients c1[n] and detail coefficients d1[n], via recursive dis-
crete convolutions with the lowpass h[n] and highpass g[n]
filters, respectively, followed by subsampling of factor 2:

c1[n] =
∑
k

c0[k]h[2n− k],

d1[n] =
∑
k

c0[k]g[2n− k].
(10)

c0[n]

h[n]

c1[n]

h[n]

c2[n]

h[n] g[n]

23 23

c3[n] d3[n]

g[n]

22

d2[n]

g[n]

2

d1[n]

Figure 1: Pyramidal decomposition scheme for the DWT: an opti-
cal signal is driven into the device input and the optical wavelet de-
tail and scaling coefficients are obtained at the device outputs. The
output signals have to be subsampled according to their decompo-
sition level.

The DWT decomposition halves the time resolution and
doubles the frequency resolution, because the frequency
band of the output signals spans only half of the frequency
band of the original signal; therefore, half of the samples can
be discarded by subsampling, without any information loss.
On the other hand, the reconstruction process yields the in-
put sequence by the inverse filtering and upsampling:

c0[n] =
∑
k

c1[k]h[2k − n] + d1[k]g[2k − n]. (11)

The decomposition procedure can be further repeated, and,
at each decomposition level �, the filtering and subsampling
halves both the number of the samples and the frequency
band:

c�[n] =
∑
k

c�−1[k]h[2n− k],

d�[n] =
∑
k

c�−1[k]g[2n− k].
(12)

Here, c�[k] and d�[k] are the scaling and the details coeffi-
cients, respectively, at resolution 2� . This approach reduces
the computational load, with respect to the standard FFT,
since at each decomposition level a reduced number of sam-
ples are processed, and, at the same time, improves both the
time and frequency resolution. In fact, high frequencies are
resolved better in the time domain and low frequencies better
in the frequency domain. The pyramidal scheme for DWT is
depicted in Figure 1 and we observe that only the scaling co-
efficients c�[n] are recursively filtered, whereas the detail co-
efficients d�[n] are never reanalyzed. In addition, the decima-
tion of the wavelet coefficients is performed by subsampling
according to the decomposition level, so that the number of
bits in the input signal coincides with the total number of bits
in all the DWT coefficients.



Optical Wavelet Signals Processing and Multiplexing 1577

w0,0[n]

h[n]

w1,0[n]

h[n]

w2,0[n]

h[n] g[n]

23

w3,0[n]

23

w3,1[n]

g[n]

w2,1[n]

h[n] g[n]

23

w3,2[n]

23

w3,3[n]

g[n]

w1,1[n]

h[n]

w2,2[n]

h[n] g[n]

23

w3,4[n]

23

w3,5[n]

g[n]

w2,3[n]

h[n] g[n]

23

w3,6[n]

23

w3,7[n]

Figure 2: Pyramidal scheme for the WP decomposition: an optical signal is driven into the device input and the optical wavelet packet
coefficients are obtained at the device input. The decomposition level is � = 3, and all the output signals have to be subsampled at 2� = 8.

The WP decomposition offers a richer signal analysis,
with respect to DWT, as both the scaling c�[n] and the detail
coefficients d�[n] are recursively decomposed, following the
same filtering and subsampling scheme [3]. The decomposi-
tion tree corresponding to a full WP analysis is illustrated in
Figure 2: in this case, all the outputs have the same number
of samples and span over the same frequency bandwidth, be-
cause they correspond to the same decomposition level. The
WP decomposition is performed by computing the convolu-
tion of the input signal c0[n] with the wavelet atom functions
that are a set of functions defined in the following recursive
manner:

w�+1,2m(t) =
∑
k

h[k]w�,m
(
t − 2�k∆τ

)
,

w�+1,2m+1(t) =
∑
k

g[k]w�,m
(
t − 2�k∆τ

)
.

(13)

Here � is the decomposition level, m (0 ≤ m ≤ 2� − 1) the
wavelet atom position in the tree [4]; in addition, the func-
tion w0,0(t) coincides with the scaling function φ(t). By ex-
ploiting the recursive structure of (13), a wavelet atom func-
tion can be expressed as

w�,m(t) =
∑
k

f�,m[k]φ(t − k∆τ), (14)

with f�,m[n] being the equivalent filter from the root to
the (�,m)th terminal, that can be recursively evaluated us-
ing (13). The WP atoms are self- and mutual-orthogonal
functions at integer multiples of dyadic intervals [21]:

〈
w�,m

(
t − 2�nτ

)
wλ,µ

(
t − 2λkτ

)〉=δ[� − λ]δ[m− µ]δ[n− k],

�, λ ∈ Z, 0 ≤ m ≤ 2� − 1, 0 ≤ µ ≤ 2λ − 1, n, k ∈ Z.
(15)

This property, that is, the waveform orthogonality is used
in the WPDM to transmit multiple message signals over-
lapped in time and frequency domains.

3. SYNTHESIS OF OPTICALWAVELET FILTERS

To implement the DWT or the WP decomposition of an op-
tical signal, we consider the tree structures of Figures 1 and 2,
where each pair H(ω) and G(ω) of QMFs is synthesized as a
two-port lattice-form planar filter. If an optical digital signal,
with bit rate B is driven into the device input, at the device
outputs we obtain the DWT or the WP decomposition, up
to the �th level. In the standard MRA, the outputs have to be
subsampled at a factor 2� , so that the total number of the bits
in the input signal coincides with the total number of bits in
all the wavelet coefficient signals.

In [22], we presented the design guidelines to synthesize
optical wavelet filters, following the algorithm proposed by
Jinguji and Oguma [23] and using the power half-band (HB)
property of wavelet filters:

∣∣H(ω)
∣∣2 + ∣∣G(ω)∣∣2 = 1,

G(ω) = e− jω∆τH∗
(
ω +

π

∆τ

)
.

(16)

Jinguji and Oguma showed that an optical HB filter of length
M can be fabricated using a Mach-Zehnder interferometer
(MZI) with a path delay difference ∆τ, and M/2 − 1 MZIs
with a path delay difference of 2∆τ [23]. The first MZI has
an input 3 dB coupler and no phase shifter inserted in its
arms; the remaining circuit parameters can be calculated by
applying a recursive algorithm. The synthesis procedure of
QMFs is quite immediate, as the circuit parameters are di-
rectly related to the filter coefficients [22]. For instance, the
Daubechies wavelet filters of lengthM = 2, also known as the
Haar wavelet, are

(
HdB1

GdB1

)
= 1√

2

(
1 1
1 −1

)
. (17)

In this case, the optical architecture for the DWT is depicted
in Figure 3: each wavelet filter is synthesized as a single MZI



1578 EURASIP Journal on Applied Signal Processing

d1[n]

∆τ

π/4 π/4
c1[n]

d2[n]

2∆τ

π/4 π/4 c2[n]

d3[n]

4∆τ

π/4 π/4 c3[n]

Figure 3: Optical architecture for the DWT with Daubechies
wavelet of length M = 2. Each optical wavelet filter is an MZI with
input/output 3 dB couplers, and FSR that decreases from the root
to the leaves in a logarithmic way.

with input/output 3 dB couplers; furthermore, the FSRs in
the decomposition tree decrease from the root to the leaves
in a logarithmic way, since at each decomposition level �, the
subsampling halves the signal frequency band.

The QMFs of Daubechies wavelet of lengthM = 4 are(
HdB2

GdB2

)
= 1

4
√
2

(
1−√3 3−√3 3 +

√
3 1 +

√
3

1+
√
3 −(3+√3) 3−√3 −(1−√3)

)
,

(18)

and the WP decomposition corresponds to the circuital
scheme of Figure 4.

4. OPTICALWAVELET SIGNAL PROCESSING

Wavelets are a powerful tool to denoise signal corrupted by
white Gaussian noise [24, 25, 26]. The denoising scheme is
based on the principle of selective wavelet reconstruction:
in fact an inhomogeneous signal compacts into just a few
wavelet coefficients, whereas white noise is distributed over a
large number of coefficients, and, therefore, it can be reduced
by thresholding the detail wavelet coefficients. The denoised
signal is then obtained by inverse wavelet transforming the
thresholded coefficients.

The time and frequency localization properties of the
wavelet transform can also take the chromatic dispersion into
account, since dispersion affects only the detail coefficients
that represent highpass-filtered versions of the original sig-
nal. In this case it is necessary to perform a selective recon-
struction of the wavelet coefficients that will be the subject of
a next paper.

To give a numerical example of the proposed denois-
ing method, we consider a 128-bit-long pseudorandom bit
sequence (PSRS) at B = 10Gbps modulated by an external
Mach-Zehnder modulator with 30 dB extinction ratio; the
signal SNR ratio is 24 dB. The device of Figure 3 performs
the DWT of the optical signal at λ = 1550 nm, composed of
Gaussian pulses of δt = 20 ps width; the FSR is chosen equal
to 16/δt. At the device outputs we obtain the scaling coeffi-
cients c3[n] at the third level of decomposition (� = 3), and
all the detail coefficients d�[n](� = 1, 2, 3), that are plotted
in Figure 5. It is evident that all the detail coefficients are the
highpass-filtered version of the signal, and they can be sup-
pressed to eliminate the noise; therefore, the denoised signal
is reconstructed using only the scaling coefficients c3[n]. The
eye diagram of the original and the denoised signals are re-
ported in Figure 6 and we observe a significative improve-

ment in the eye opening. We also remark that the efficiency
of the denoising method depends on the wavelet choice, and
the threshold selection rules. In the previous example, we
consider a very simple case, where all the detail coefficients
have been completely eliminated, but better performances
can be achieved with optimal thresholding methods.

To quantify the SNR improvement, in Figure 7 we plot
both the SNR and the BER of the denoised signal, as func-
tions of the SNR of the input signal, and we observe that the
SNR is increased by more than 10 dB.

The device of Figure 3 can be also used to com-
press/decompress optical data in ultrafast packet-switched
networks. In fact the delay lattice scheme proposed by To-
liver et al. in [9] is an incomplete DWT scheme that evalu-
ates only the scaling coefficients c�[n]. In this case, the unit
delay ∆τ equates the difference between the pulse periods in
the uncompressed and compressed signals. It is evident that
a standard DWT or a full WP decomposition allows a larger
variety of compression/decompression methods.

5. OPTICALWAVELET PACKET DIVISION
MULTIPLEXING

The success and widespread use of code division multiple
access (CDMA) in the wireless domain has renewed inter-
est in exploring its use in the optical domain, which, how-
ever, presents a different set of challenges [27]. In an optical
CDMA (O-CDMA) network, the information sequences are
codified in time, using temporal codes, or in frequency do-
main with standard diffraction-based spread-spectrum tech-
niques. Recently, hybrid techniques have been proposed to
manage burst changes of data traffic or increasing requests of
new data services [28]. O-CDMA can support high-capacity
services, broadband signals processing, and multiplexing of
a large number of users; in addition, many approaches have
been proposed to avoid the optical-electrical-optical con-
version, that severely limits the transmission system perfor-
mances.

We present an all-optical WPDM system that makes a
very efficient use of time-frequency plane. The digital se-
quences from each user are encoded by a set of orthogo-
nal waveforms [12]: the orthogonal properties of the wavelet
atoms and their overlapping nature in time and frequency
yield an overall system capacity improvement [5].

The TDM sequence σ�,m[n] from the mth user at bit rate
B = 1/T is waveform-coded by the wavelet atom function
w�,m(t):

s�,m(t) =
∑
n

σ�,m[n]w�,m
(
t − 2�n∆τ

)
, (19)

and summed together with the waveform-coded signals from
the other 2� − 1 users:

sc(t) =
2�−1∑
m=0

∑
n

σ�,m[n]w�,m
(
t − 2�n∆τ

)
. (20)
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Figure 4: Optical architecture for the WP decomposition with Daubechies wavelet filter of length M = 4. Each optical wavelet filter is a
chain of two MZIs, with FSR that decreases from the root to the leaves in a logarithmic way.

The processing gain of the WPDM system is equivalent to
the O-CDMA parameter and is expressed as the ratio of the
time duration of the waveform and the input signal width δt
[29]:

F = 2�∆τ
δt

. (21)

For a correct waveform shaping, it is necessary that the
input bit duration δt equates the inverse of the FSR, that is,
δt = ∆τ: in this way, each optical pulse is transformed into
the corresponding wavelet atom function at the device out-
put. Therefore, the processing gain F = 2� equates the num-
ber of simultaneous users.

A standard WPDM transmission system consists of a
bank of waveform modulators, one for each user, and its op-
tical implementation is really complex [5]. A more compact
WPDM architecture, with a single WP encoder and only one
waveform modulator, can be designed by “reversing” the ex-
pression of (20) for the composite signal sc(t). In fact, if we
substitute (14) into (20), we obtain

sc(t) =
2�−1∑
m=0

∑
n

σ�,m[n]
∑
k

f�,m[k]φ
[
t − (2�n + k

)
∆τ
]

=
∑
i

σ[i]φ(t − i∆τ),

(22)

where

σ[i] =
2�−1∑
m=0

∑
n

f�,m
[
i− 2�n

]
σ�,m[n] (23)

is the equivalent sequence from all the users obtained at the
root of theWP tree [12]. From an inspection of this equation,

it is evident that the composite signal sc(t) can be gener-
ated by first encoding all the input sequence σ�,m[n] from
each user with a WP encoder, thus obtaining σ[i], and then
waveform shaping all the composite bits by the scaling func-
tion φ(t) [6]. This WPDM architecture is schematically il-
lustrated in Figure 8: the WPDM transmission system is im-
plemented by the WP encoder of Figure 2, followed by a
single modulator that shapes the multiplexed optical pulses
σ[i] with the scaling function profile φ(t). The receiver is
a time reversal version of the transmitter, and the WP de-
coder follows the pulse shaper; therefore, the same device
can be used for both encoding and decoding the binary se-
quences.

The time gating opens a time window to extract the au-
tocorrelation peak and it is somewhat equivalent to narrow-
bandpass filtering in the wireless CDMA. The use of a time
gating before detection significantly relaxes the requirements
for the detector bandwidth to the bit rate of 2�∆t. The syn-
chronization from the time gating can be derived from the
recovered clock.

The optical architecture for a WP encoder/decoder is
identical to an optical WP decomposition scheme, so that the
scheme of Figure 4 can be thought of as optical E/D for the
Daubechies wavelets of lengthM = 4.

In aWPDM system, each bit from each user is waveform-
coded by wavelet atom functions, and all the data streams
from the users are transmitted simultaneously. On the other
hand, in a code-based O-CDMA system, a different code
is assigned to each user; therefore, if we remove the pulse
shapers in the transmission scheme of Figure 8, we obtain
a standard O-CDMA system, where the input data signals
are coded by optical orthogonal codes (OOCs) sequences
[30]. In fact, the device of Figure 4 is a full optical E/D
that codes/decodes binary sequences from 2� users simul-
taneously [31, 32]; of course, for an O-CDMA system, it is
δt < ∆τ.
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Figure 5: Input optical signal at B = 10Gbps, λ = 1550 nm, and
SNR = 24 dB; the Gaussian optical pulses have 20 ps width. Scaling
coefficients c3 that coincide with the denoised signal and thresh-
olded detail coefficients at levels 1, 2, 3 are obtained. The DWT is
performed with the device of Figure 3, with no subsampling.

To complete the waveform coding in aWPDM system, an
optical pulse shaper is necessary. We consider two different
devices; the first one is a diffractive pulse shaper, identical
to an O-CDMA spread-spectrum encoder, composed of two
diffraction gratings and an amplitude/phase filter [33]. The
incoming pulses are spatially decomposed in their spectral
components by the first grating, and an amplitude/phase
mask gives the scaling function spectral profile to the radi-
ation; the second grating reassembles the waveform-coded
pulses. Otherwise, an optical pulse shaper can be fabri-
cated as a weight/phase-programmable optical-tapped de-
lay line filter [17]. In this case, both the WP E/D and the
waveform shaper can be integrated on a single silica sub-
strate.

To evaluate the detection capabilities of a full optical
WPDM system, we generate N independent data signals at
B = 10Gbps modulated by 27 − 1 word length PRBSs, using
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Figure 6: Eye pattern diagrams of the input signal and the denoised
signal of Figure 5.

external Mach-Zehnder modulators with 30 dB extinction
ratio. Each user bit sequence is forwarded to the N inputs of
the encoder of Figure 4 and the encoder output is waveform-
modulated by the pulse shaper corresponding to the scal-
ing wavelet of the Daubechies filters of length M = 4, as
illustrated in Figure 8. Figure 9 shows the signal-to-MAI ra-
tio as a function of the number of the simultaneous users
N , that is evaluated as the ratio between the signal cor-
responding to a “1” from the ith user and the signal de-
tected at the same output when the ith user is transmit-
ting a “0” and all the other N − 1 users are transmitting
a “1.”

We finally observe that the system performances can be
enhanced by a suitable choice of the wavelet decomposition
[12].
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Figure 7: (a) SNR of the denoised signal (that coincides with the scaling coefficients c3 from the device of Figure 3) versus the SNR of the
input optical signal. (b) Bit error rate of the input signal (solid line) and the denoised signal (dotted line) versus the SNR of the input signal.
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quences from N users are WP-encoded by a single optical device;
the composite signal is then waveform-modulated by a pulse shaper.
The receiver is a reverse version of the transmitter.

6. CONCLUSION

We present a complete overview of the wavelet signal pro-
cessing andmultiplexing in the optical domain, using passive
PLC devices.

We describe the PLC architectures to perform the DWT
and the WP decomposition of an optical digital signal, and
furnish the design guidelines to synthesize a wavelet filter
as a two-port lattice-form planar device. We demonstrate
that within the MRA it is possible to both denoise and
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Figure 9: Signal-to-multiple-access-interference ratio (dB) versus
the number N of simultaneous users.

compress/decompress data streams directly in the optical do-
main; in addition we evidence the large flexibility of the pro-
posed approaches, thanks to the possibility to choose the op-
timal wavelet.

Furthermore, we present an innovative full optical
WPDM scheme that transmits multiple signals by waveform
coding, yielding an overall capacity improvement and amore
efficient use of the common shared resources, with respect to
standard TDM and WDM [12]. We show that the encoded
sequences are recovered with very low MAI noise, since mul-
tiple signals transmitted, overlapped in both time and fre-
quency domains.
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The WP encoder/decoder and the pulse shaper are low-
loss compact devices that can be fabricated using standard
PLC technology and integrated together on a single common
mechanically rigid substrate, avoiding undesirable variations
of optical path lengths over time, temperature, and exposure
tomechanical vibrations. The possibility of growing or prun-
ing the wavelet decomposition tree allows to adapt the multi-
ple access system to different traffic requirements, adding or
dropping data streams.

The optical signal processing fully exploits the fibre band-
width, and it is suitable for broadband multiple access net-
works. The proposed devices can be employed in ultrafast
and highly-robust multiple access networks and their low
cost, compactness, and fabrication simplicity, make them at-
tractive for an ever-increasing number of different applica-
tions.
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