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The widely-used LMS algorithm for coefficient updates in adaptive (feedforward/decision-feedback) equalizers is found to be
suboptimal for ASE-dominant systems but various coefficient-dithering approaches suffer from slow adaptation rate without
guarantee of convergence. In view of the non-Gaussian nature of optical noise after the square-law optoelectronic conversion, we
propose to apply the higher-order least-mean 2Nth-order (LMN) algorithms resulting inOSNR penalty which is 1.5–2 dB less than
that of LMS. Furthermore, combined with adjustable slicer threshold control, the proposed equalizer structures are demonstrated
through extensive Monte Carlo simulations to achieve better performance.
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1. INTRODUCTION

Optical communication forms the backbone of modern tele-
com and Internet networks around the globe. Due to its
enormous inherent channel capacity [1], it is anticipated
that this trend will continue or even accelerate. In this on-
going evolution, adaptive electronic equalization for combat-
ing impairments in fiber-optic communication may play an
important role in pushing from the core of networks all the
way to the edge by providing cost-effective solution. Twoma-
jor impairments commonly encountered in modern fiber-
optic systems are chromatic dispersion (group velocity dis-
persion or GVD) and polarization-mode dispersion (PMD).
Chromatic dispersion can be compensated effectively by an
optical dispersion compensation module (DCM) due to its
static nature. However, at substantially high data rates (10
or even 40 Gbps), especially in long-haul networks, residual
chromatic dispersion amount remains problematic and thus
electronic equalization against residual chromatic dispersion
is still important [2]. In cost-sensitive metro networks, elec-
tronic solution is considered a viable option to replace the
expensive optical solution. On the other hand, PMD is dy-
namic in nature and substantial unpredictable PMD is accu-
mulated over a long distance of old fibers, enough to cause
network outage [3]. Currently it is extremely expensive to be
compensated optically by bulky optical PMD compensators
(OPMDCs) and thus electronic solution is vigorously sought
in recent years.

Adaptive electronic equalizers for impairment compen-
sation in fiber-optic networks have been studied for decades.
In early work [4], the dominant noise was quantum, shot,
or electronic thermal noise, which can be modeled effec-
tively as additive Gaussian noise. After the advent of effi-
cient and low-noise fiber amplifiers in 1987 [5], optical am-
plifiers (EDFA or Raman) were used extensively to increase
the transmission distance without O-E-O conversion. Since
then, a number of studies were undertaken to explore a
variety of equalizer structures for adaptive optical-channel
impairment compensation ranging from feedforward-type
equalizers to maximum-likelihood estimators [6, 7, 8, 9,
10, 11]. Among many studies in electronic PMD compen-
sation in recent years, [12, 13, 14, 15, 16, 17, 18, 19], the
first decision-feedback loop and tapped-delay-line equalizer
at 10Gbps were implemented in [20] and [21] respectively.
The maximum-likelihood estimation for PMD compensa-
tion was also investigated in [22, 23].

In a fiber-optic link, a number of optical amplifiers, ei-
ther erbium-doped fiber amplifiers (EDFAs) or Raman am-
plifiers (RAs), are employed to strengthen the optical sig-
nal, but at the same time add in the incoherent amplified
spontaneous emission (ASE) noise (commonly called optical
noise) [5]. In the quantum regime, the ASE noise follows the
Bose-Einstein distribution [24] and the optically amplified
coherent light exhibits a noncentral-negative-binomial dis-
tribution [25]. However, in the classical limit when the signal
and noise involve many photons, this optical noise can be
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Figure 1: (a) and (b) Eye diagrams when OSNR = 16 dB and (c), (d), (e), (f), (g), and (h) histograms of noise distribution of bits 1 and 0
at the decision point for NRZ when OSNR is equal to (c), (d) 10 dB; (e), (f) 16 dB; and (g), (h) 22 dB. (Left column: DGB=0 picoseconds;
Right column: DGB = 75 picoseconds; both are at 10 Gbps NRZ.)

modeled as complex additive white Gaussian noise (AWGN)
in the optical field of each orthogonal polarization mode of
the optically amplified signal based on the central limit the-
orem [26, 27]. An optical filter Ho( f ) is usually placed be-
fore a photodetector to limit the optical noise reaching the
receiver and also to filter out other unselected channels in a
wavelength-division multiplexing (WDM) system.

At the receiver side, after square-law detection using a
photodiode, the noise becomes non-Gaussian. As a result,
the noisy input signal u(t) contains a signal-dependent non-
symmetric Gaussian term having a variance determined by
the signal levels of bits (0 and 1), and a nonzero-mean non-
central χ2 term. It should be noted that the mean of u(t)
is nonzero and varies at different optical signal-to-noise ra-
tio levels (OSNR), as depicted in Figures 1a and 1b without

PMD (i.e. differential group delay or DGD = 0 picosecond)
and with substantial amount of PMD (DGD = 75 picosec-
onds), respectively, where the eye diagram and noise distri-
butions of bits 0 and 1 at the decision point for NRZ at dif-
ferent OSNR levels are plotted to demonstrate the varying
nonzero mean values. This noise property is very different
from electronic thermal noise or even optical noise after the
combination of an interferometer and a balanced receiver
[28].

Because of this non-Gaussian noise property, the well-
studied least-mean-square (LMS) algorithm becomes subop-
timal for optical noise in the sense that OSNR penalty is ob-
served even without the presence of PMD-induced intersym-
bol interference (ISI), though it is optimal for additive Gaus-
sian noise [29]. Various coefficient-dithering approaches
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were devised to replace LMS but generally suffer from slow
adaptation rate and no guarantee of convergence. Typically,
tap coefficients are adjusted in a trial-and-error manner with
feedback from various types of error monitors such as min-
imization of eye-monitoring pseudoerror count [30], max-
imization of eye-opening [31], Q-factor optimization [32],
bit-pattern-dependent threshold control [9], or FEC-error-
count minimization [33].

The higher-order statistic techniques, the least-mean
2N th-order (LMN) family, were first proposed in [34] as an
extension to the LMS and were found better suited than the
LMS for non-Gaussian noise [34, 35]. In this paper, we pro-
pose to apply these higher-order statistic algorithms to coef-
ficient update for combating the non-Gaussian optical noise
after photodetection. Through Monte Carlo simulation, we
demonstrate that 1.5–2 dB better OSNR penalty can be at-
tained for the LMN than the LMS [36]. Furthermore, due
to the nonsymmetric nature of optical noise, we also pro-
pose to combine these higher-order algorithms with auto-
matic slicer threshold control (ATC-8LICER) and show that
the threshold-optimized LMN still achieves better results
than the conventional LMS with optimized thresholds. In
Section 2, we briefly introduce the higher-order algorithms
(LMN) in comparison to the LMS algorithm for feedforward
(FFE) and decision-feedback (DFE) equalizers. In Section 3,
the results through extensive Monte Carlo simulation are
presented to evaluate the performance of the LMN algo-
rithms combined with automatic threshold control com-
pared against the LMS. Finally, the conclusion is drawn in
Section 4.

2. ARCHITECTURES AND ALGORITHMS OF
ELECTRONIC PMD COMPENSATORS

In a digital receiver architecture, an analog-to-digital con-
verter (ADC) is required to digitize the incoming bandlim-
ited analog signal for further processing in the digital adap-
tive equalizer. Though more complex functionality can be
achieved in low-power CMOS digital circuitry coupled with
pipelined/parallel data flows after digitization, the ADC is
considered one of the bottlenecks for digital implementation
of advanced equalizers. The current state-of-the-art ADC can
provide about 6-bit accuracy at 10Gbps but it becomes chal-
lenging at 40Gbps. Furthermore, the ADC power consump-
tion at such a high speed may offset the low-power benefit of
digital CMOS circuits. On the other hand, the analog equal-
izer, particularly the simple analog tapped-delay-line equal-
izer, is an attractive alternative in the absence of ADC for
providing a practical electronic dispersion compensation so-
lution. No matter what implementation (digital or analog)
is adopted, the operations of an equalizer can be described
in the discrete-time or z-domain. In this paper, we express
equalizer algorithms in the discrete-time domain without ex-
plicitly referring to a digital or analog implementation.

A number of electronic equalizer structures, such as feed-
forward equalizer (FFE), decision-feedback equalizer (DFE),
and maximum-likelihood sequence estimator (MLSE), have

been considered over the years. Though MLSE achieves the
best performance, substantial complexity and compromises
are often associated with practical implementation. Specifi-
cially, MLSE has exponential complexityO(eN ) but FFE/DFE
requires only linear complexity O(N). However, the best rea-
son for using relatively simple architectures (FFE/DFE) in
most wireless/wireline electronic systems instead of MLSE is
that they usually offer entirely adequate performance [37].
In this paper, we examine two basic equalizer architectures:
feedforward equalizers (FFEs) and decision-feedback equal-
izers (DFEs) with FFE, as shown in Figures 2a and 2b, respec-
tively.

2.1. Least-mean 2Nth-order algorithms

It has been shown that the LMS algorithm is H∞-optimal
under the assumption of temporal whiteness and Gaussian
disturbances [38], providing theoretical justification for the
excellent robustness of LMS. However, after square-law detec-
tion by a photodiode, optical noise becomes nonzero-mean
signal-dependent χ2. As a result, the conventional LMS al-
gorithm becomes suboptimal for optical noise in the sense
that equalization introduces OSNR penalty even without any
ISI [29], though it is optimal for additive Gaussian noise
(e.g. thermal noise). The higher-order statistic techniques,
the least-mean 2Nth-order (LMN) family, were proposed in
[34] as a higher-order extension of LMS and found to be bet-
ter suited for non-Gaussian noise than LMS [35]. Due to the
non-Gaussian nature of optical noise, we propose to employ
the higher-order counterparts of LMS which are found to
yield better results than LMS.

After equalization, a slicer makes a hard decision to deter-

mine the estimated symbol d̂(k) (or bit in the OOK case)
from the compensated slicer input s(k) in reference to a
slicer threshold. For the case of only two signal levels, the
slicer is simply a high-speed comparator as used in a con-
ventional CDR. The LMS minimizes the cost function of
the square of the slicer error e(k): JLMS(k) = E{e2(k)},
where e(k) = a(k) − s(k) is the difference between the tar-
get signal a(k) and the equalized signal s(k) before deci-

sion. In the normal mode, a(k) = d̂(k) but, in the train-
ing mode, a(k) = d(k), the transmitter input bit. Usually a
training sequence is required at the startup stage of equal-
ization and then the equalizer is switched to the normal
mode. However, it is possible to start the equalizer with-
out any training sequence through blind startup which is
out of the scope of this paper. In fiber-optic communica-
tion, fixed bytes such as SONET A1/A2 bytes are sent in ev-
ery frame and can be utilized as the training sequence. As
an extension of the LMS, the LMN is a class of adaptive al-
gorithms to minimize the cost function of the 2Nth order
of e(k) J(k) = E{e2N (k)}. For N = 1, the LMN algorithm
becomes LMS. For N = 2, it is called the least-mean fourth-
order (LMF) algorithm. When N = 3, it is the least-mean
sixth-order (LM6) algorithm. Since the LMS belongs to the
LMN family, the extensive knowledge of the LMS in both
theory and implementation can also be applied to the LMN
family.
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Figure 2: Different equalizer architectures are considered. The fil-
ter response of FFE is C(z) while the response of DFE is B(z). The
decision level is fixed to the midpoint of the bit values {0, 1}. (a)
Feedforward equalizer (FFE). (b)Decision feedback equalizer (DFE)
coupled with an FFE.

Because the first and second moments (equivalently
mean and variance) are sufficient to describe Gaussian dis-
tributions, it is not necessary to account for higher moments
in the cost function and the second-order cost function in the
LMS is enough for Gaussian noise. For non-Gaussian noise,
higher moments are required. Intuitively, the higher-order
cost function wages a large penalty for a large slicer error to
account for higher moments and causes the noise distribu-
tion to be more compact for non-Gaussian noise, as will be
seen in Section 3.

2.2. Feedforward equalizers

Consider the case of FFE depicted in Figure 2a where the
(2L+1)-tap FFE coefficients are {c−L(k), . . . , cL(k)} at t = kTs

in the discrete-time domain. Here Ts = 1/ fs is the sample pe-
riod. If the oversampling ratio R = T/Ts > 1, then the FFE
is called a fractionally-spaced equalizer. In vector form, these

weights can be denoted as �cT(k) = [c−L(k), . . . , cL(k)]. The
receiver input data sequence is �uT(k) = [u(k + L), . . . ,u(k −
L)]. Therefore, the slicer input is s(k) = x(k) = �cT(k)�u(k).
The weight updating unit of C(z) (WUD[C]) adapts �c(k)
based on an adaptive algorithm, among which the LMS is
the most widely used. As in Figure 2a, the weight updating
unit C(z) adopts the LMN ofNth order. It can be shown that

�c(k + 1) =�c(k)− β

2
∇C

{[
e(k)

]2N}

=�c(k) + βN
[
e(k)

]2N−1�u(k),
(1)

where β is the preset step size.

2.3. Decision-feedback equalizers with FFE

For the case of a decision-feedback equalizer (DFE) coupled
with an FFE, as in Figure 2b, where s(k) = x(k) − y(k) =
�cT(k)�u(k) − �bT(k)�a(k) with the DFE coefficients defined as
�bT(k) = [b1(k), . . . , bM(k)]. Here�aT(k) = [a(k−1), . . . , a(k−
M)]. The weight updating units for FFE and DFE are de-
noted as WUD(C) and WUD(B), respectively and can em-
ploy a variety of adaptive algorithms including the LMN. In

Figure 2b, s(k) = x(k)− y(k) =�cT(k)�u(k)−�bT(k)�a(k). De-
fine �wT(k) = [�c(k),−�b(k)] and�rT(k) = [�u(k),−�a(k)], where
�cT(k) = [c−L(k), . . . , cL(k)], �uT(k) = [u(k+L), . . . ,u(k−L)],
�bT(k) = [b1(k), . . . , bM(k)],�aT(k) = [a(k−1), . . . , a(k−M)].
We can rewrite e(k) = a(k) − �wT(k)�r(k). Therefore, the co-
efficients of the FFE and DFE can be updated as follows to
minimize the cost function, J(k) = E{[e(k)]2N}:

�w(k + 1) = �w(k)− β

2
∇w

{[
e(k)

]2N}

= �w(k) + βN
[
e(k)

]2N−1�r(k).
(2)

For the first-order PMD channel impulse response h(t) =
γδ(t) + (1− γ)δ(t − τDGD), it is easy to show that there exist
dips in the frequency response at locations inversely propor-
tional to τDGD, especially for γ = 0.5 [19]. It has been known
that an FFE amplifies the noise in the spectral dips whereas a
DFE does not [37]. Thus, the performance of FFE for PMD
compensation in the high-DGD region is anticipated to be
less than that of DFE.

2.4. Slicer with automatic threshold control

In the uncompensated OOK case, the two noiseless signal
levels for bits 0 and 1 are normalized to 0 and 1 with the
midpoint defined at 0.5 (or equivalently to {−1, 1} with the
midpoint at 0). In view of the nonsymmetric distributions
for bits 0 and 1 (having different variances) reflected in the
signal-dependent term after square-law detection, the opti-
mal threshold point is usually not the midpoint. Therefore,
an automatic threshold control algorithm (ATC) is designed
to track the incoming signal profile and automatically ad-
just the threshold in the CDR for the minimum bit error rate
[39]. In this paper, the ideal ATC algorithm is employed by
searching the entire simulation sequence for the best thresh-
old value to obtain the least number of errored bits. In a prac-
tical system, the ATC algorithm usually accumulates signal
distribution information within a window of finite duration
for optimal threshold calculation to allow tracking of slowly
varying nonstationary channels [40].

In the conventional equalizer structures illustrated in Fig-
ures 2a and 2b, the decision point (slicer threshold θ) is fixed
at the midpoint of two noiseless signal levels. Similar to the
uncompensated case, the slicer input distributions for bits
0 and 1 are also nonsymmetric and thus result in the opti-
mal threshold point being away from the midpoint. There-
fore, we propose alternative architectures for FFE/DFE with
adjustable threshold control in the slicer (ATC-SLICER) as
shown in Figures 3a and 3b. The ATC-SLICER’s function is to



1588 EURASIP Journal on Applied Signal Processing

u(l)

WUD[C]

C(z)
x(k)

s(k)
−

+
a(k)

e(k)

d̂(k)

d(k)

ATC[T]

(a)

u(l)

WUD[C] WUD[B]

ATC[T]

C(z)

B(z)

x(k) s(k)

− +
a(k)

e(k)

y(k)

−
+ d̂(k)

d(k)

(b)

Figure 3: Equalizers with automatic threshold adjustment (ATC-
SLICER). The decision threshold is controlled adaptively by an au-
tomatic threshold control (ATC) algorithm instead of being fixed
at the midpoint of two noiseless signal levels. (a) FFE with ATC-
SLICER. (b) DFE with FFE and ATC-SLICER.

track the slicer input histogram and adjust the slicer thresh-
old accordingly. In the steady state of equalization, the ATC-
SLICER can start to build up a slicer input profile to deter-
mine the best threshold for the slicer, and then dynamically
track and adjust the optimal slicer threshold.

There are many ways readily available in the literature
to implement the automatic threshold control technique
(ATC). In our case of adaptive equalization, the input to the
ATC-SLICER control block is the slicer input s(k). In one of
many possible implementations, a histogram is established in
two arrays of memory, bin1(i) and bin0(i), for i = 0, . . . ,B+1
corresponding to the intervals {(−∞, vL), [vL, vL + d), [vL +
d, vL+2d), . . . , [vL+(i−1)d, vL+id), . . . , [vH−d, vH], (vH ,∞)},
where d = (vH −vL)/B and B is the number of bins that form
the range from vL to vH . The value of B dictates the accuracy
of the final threshold determination but a large B value re-
quires more memory space. In general, B could be 128, 256,
or even 1024. If s(k) is in the interval of [vL+(i−1)d, vL+ id),
then the count in the memory bin1(i) is incremented by one
for the slicer output being 1 and bin0(i) is incremented for
the slicer output being 0. The bit error can be estimated
as follows: error[0] = bin1[0] − bin0[0], and error[i] =
error[i − 1] + bin1[i] − bin0[i] for i = 1, . . . ,B + 1. The op-
timal threshold is determined by finding the minimum of
error[i]. To avoid the detrimental memory effect for a chang-
ing optical channel, a reset signal is sent periodically to clear
the memory arrays and a histogram is rebuilt fresh in accor-
dance with the above rule. Since PMD drifts very slowly, it
is possible to refresh this profile once one or few minutes

without encountering significant change in channel response
while the number of bits collected in that time frame is large
enough for meaningful profiling. For an analog implemen-
tation of the equalizer, the compensated signal can be sam-
pled at a low speed to build the profile of s(k) over time. The
optimal threshold can be determined externally through the
method described above.

3. RESULTS ANDDISCUSSION

An extensive Monte Carlo simulation is conducted in NRZ
and RZ formats at 10Gbps to compare the performance
of the LMN algorithms with/without automatic threshold
control against the common LMS algorithm. The full-width
half-maximum (FWHM) of the RZ pulse is 50%. The simu-
lation length is chosen dynamically at each OSNR level with
a given amount of DGD to provide sufficient samples for re-
liable BER estimation. It usually requires a longer simula-
tion for an expected low BER value in a given OSNR-DGD
condition, but a shorter one for an expected high BER. The
ATC algorithm finds the optimum threshold value on the
uncompensated electronic signal over the entire simulation
sequence. Its performance curves provide the benchmark,
against which the performance charts of all the equalizer
structures are compared. In order to isolate the effect of com-
pensation on other impairments such as poor extinction ra-
tio (ER), we deliberately set ER = 30 dB and use a wideband
optical bandpass filter for the simulation. The electronic low-
pass filter is set to be a third-order Bessel filter of bandwidth
7GHz for 10Gbps, whereas the optical filter is modeled as a
tenth-order Gaussian filter with a bandwidth of 150GHz to
weakly filter any receiving signal without causing any distor-
tion. The peak optical power of the transmitter laser is con-
trolled at 19.95mW to avoid any nonlinear distortion dur-
ing transmission, though no fiber nonlinearity is modeled
in the interest of fast simulation. Only the first-order PMD
and GVD are considered in the simulation. The first-order
PMD is commonly characterized by the amount of DGD
in picoseconds and the first-order GVD is characterized by
the amount of dispersion in picoseconds per a nanometer of
wavelength (ps/nm) without explicitly specifying the actual
fiber type and length.

For the sake of brevity, we pick a fractionally spaced FFE
of 9 taps at an oversampling ratio 2 coupled with a DFE of
2 feedback taps as the typical equalizer architecture (desig-
nated as FFE9 + DFE2) to illustrate the advantage of the
higher-order LMN algorithms over the LMS, even though
we have simulated a large variety of equalizer structures.
The OSNR penalty curves of this equalizer are plotted in
Figure 4 with and without ATC-SLICER (for optimized and
fixed thresholds). The dash lines represents the use of the
LMS, and the solid lines for the LMF. These OSNR penalty
curves are aggregated from the OSNR-BER plots, of which
two examples are shown in Figures 5a and 5b for the uncom-
pensated and the FFE9 + DFE2 with ATC-SLICER and LMF
respectively in 10Gbps NRZ. In Figure 4a with GVD only,
the LMF is 1.5 dB better than the LMS for fixed thresholds,
whereas with ATC-SLICER, it is 0.5 dB better than the LMS.



Adaptive EDC for GVD/PMD 1589

LMS w/o ATC
LMS with ATC
Uncompensated

LMF w/o ATC
LMF with ATC

0 200 400 600 800 1000 1200 1400 1600
GVD (ps/nm)

12

12.5

13

13.5

14

14.5

15

15.5

O
SN

R
(d
B
)

(a)

LM6 w/o ATC
LM6 with ATC
LMS w/o ATC
LMS with ATC

Uncompensated
LMF w/o ATC
LMF with ATC

0 10 20 30 40 50 60 70
DGD (ps)

12

12.5

13

13.5

14

14.5

15

15.5

O
SN

R
(d
B
)

(b)

LMS with ATC (800ps/nm)
LMF with ATC (800ps/nm)
LMS with ATC (1200ps/nm)

LMF with ATC (1200ps/nm)
Uncompensated (800 ps/nm)
Uncompensated (1200ps/nm)

0 10 20 30 40 50 60 70
DGD (ps)

12

12.5

13

13.5

14

14.5

15

15.5

O
SN

R
(d
B
)

(c)

Figure 4: OSNR penalty when BER is set at 6 × 10−5 (FEC-correctable error-rate level) for 10Gbps NRZ under single and combined
impairment conditions. The equalizer has a 9-tap fractionally spaced FFE and a 2-tap DFE with/without ATC-SLICER. (a) GVD only.
(b) PMD only. (c) PMD combined with GVD (800 ps/nm).

It should be noted that a 3 dB gain means the possibility of
doubling the transmission distance. In Figure 4b with PMD
only, the LMF and LM6 are 1.5–2 dB better than the LMS
for fixed thresholds, whereas the LM6 is almost 1 dB better
than the LMS with ATC-SLICER. In addition, the LM6 with
fixed thresholds has comparable performance to the LMS
with optimized thresholds. In both cases, the LMF and LM6
with ATC-SLICER show less penalty than the uncompen-
sated under no or mild dispersion condition while the LMS
has higher penalty than the uncompensated. This implies
that the LMS is potentially not penalty-free in a distortion-
free environment, no matter how we optimize the thresh-
old points. For the combined effect of PMD and GVD (800
or 1200 ps/nm) depicted in Figure 4c, the LMF/LM6 are al-
most 0.5 dB better than the LMS with ATC. The trend in-
dicates that the advantage of the LMN algorithms is more
obvious in an environment of less distortion. Another im-
plication is that the implementation of an ATC-SLICER can

be simplified or avoided by employing the LMF or LM6 with
minor increase in complexity of one or two multiplications
as indicated in (1) and (2).

The advantage of the LMN algorithms over LMS is fur-
ther illustrated in Figure 6, of which (a) and (b) demonstrate
that the LMN can achieve much lower BER than the LMS.
Note that the symbols such as “FFE9:0-3” in Figures 6a and
6b mean the FFE equalizer type with 9 feedforward taps,
no feedback taps, and the LM6 (N = 3). Figure 6c depicts
the slicer input histograms for a 9-tap fractionally spaced
FFE and shows how the LMN (LMF or LM8) can compact
the distribution more effectively than the LMS. At DGD = 0
picoseconds, LMS actually spreads the noise, causing lower
BER and higher OSNR penalty, but the LMF maintains the
noise variance.

Similar plots can be obtained for the 10Gbps RZ case in
Figure 7 where the performance of an FFE9 + DFE2 is shown
to further demonstrate the advantage of the higher-order
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Figure 5: OSNR-BER plots with 1st-order PMD for NRZ format at 10Gbps inMonte Carlo simulation. The equalizer has a 9-tap fractionally
spaced FFE and a 2-tap DFE with ATC-SLICER optimized via the LMF. (a) Uncompensated with ATC. (b) FFE with DFE, ATC-SLICER, and
LMF.
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Figure 6: BER and slicer input histograms at DGD = 0 picosecond of the first-order PMD for NRZ at 10Gbps. The numbers in the equalizer
type represent the following: number of FFE taps (NFFE), oversampling rate (R > 1: fractionally-spaced), number of DFE taps (NDFE),
LMN order (N = 1: LMS; N = 2: LMF; N = 3: LM6). (a) BER without ATC-SLICER. (b) BER with ATC-SLICER. (c) Slicer histogram for
T/2-spaced 9-tap FFE.
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Figure 7: OSNR penalty when BER is set at 6× 10−5 (FEC-correctable error-rate level) for 10Gbps RZ under single and combined impair-
ment conditions. (a) GVD only. (b) PMD only.

LMN algorithms over the conventional LMS for two different
cases: only GVD and only PMD.With GVDonly in Figure 7a,
the LMN is 1.5 dB better without ATC-SLICER and 0.5 dB
better with ATC-SLICER than the LMS. A similar trend can
be found in Figure 7b affected by PMD alone.

4. CONCLUSION

LMS is well studied over the past several decades and consid-
ered optimal for a linear systemwith additive Gaussian noise.
In a fiber-optic communication system, the dominant noise
is optical noise (ASE). Due to the non-Gaussian nature of op-
tical noise after nonlinear quadratic detection, the LMS is no
longer optimal in ASE-dominant systems. The usual adap-
tive equalization techniques, so successful in electronic sys-
tems, cannot be directly applied to ASE-dominant fiber-optic
systems in view of nonlinear square-law detection. In this pa-
per, we demonstrate that its higher-order cousins in the LMN
family are 1.5–2 dB better without ATC-SLICER and 0.5–
1 dB better with ATC-SLICER than the LMS. In certain cases,
the LMN with fixed thresholds even has comparable perfor-
mance to the LMS with optimized thresholds. It suggests that
the ATC-SLICER control unit may be eliminated in use of
the LMN for the sake of less complexity. On the other hand,
with a demanding performance criterion, the LMN with
ATC-SLICER can be used to provide no back-to-back penalty
(i.e. in absence of ISI-induced impairments). In comparison,
the LMS is potentially penalized in a distortion-free envi-
ronment, no matter how we optimize the threshold points,
which is usually not acceptable in most receiver design goals.
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