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Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work
has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In
this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimumMTF value (contrast) over
the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this
criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the
appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve
scanning of the laser beam.
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1. INTRODUCTION

Laser beams are commonly used to read digital information
that has been encoded as a sequence of alternating light and
dark regions on a reflective media. One such application is
the reading of printed bar codes [1]. In this application, the
distance from the bar code reader to the bar code label is
usually variable and unknown, and in many cases it is desir-
able to read it over the largest possible distance, a feature that
greatly improves the ergonomics of the reader and reduces
operator training.

For such a system, the laser beam should have a large
depth of focus, loosely defined as the region where the beam
is “narrow enough” to resolve the fine structure of the bar
code. A proper definition of the depth of focus is crucial to
optimize such a system, and it must take into account that the
spatially encoded information can typically withstand mod-
erate distortions and still be properly decoded. In addition,
when scanning bar codes whose aspect ratio (i.e., the ratio
between the height and width of a bar code element) is high,

it is the line-spread function (LSF) of the beam, rather than
its point-spread function (PSF), that determines the overall
system performance. In such cases, a highly elliptical beam
is desirable in order to take advantage of the vertical redun-
dancy in the code, and to reduce printing or laser speckle
noise. (In the case of two-dimensional bar codes [1], a nearly
circular beam is required in order to avoid interrow interfer-
ence.)

Most previous work on synthesizing extended depth-of-
focus laser beams have been based on either approximating
the nondiffracting Bessel beam solution to the wave equation
[2, 3, 4], or applying more general 3D synthesis techniques
[5, 6]. Compared to the more general 3D synthesis tech-
niques, the technique developed in this paper uses a simpler
optimization criterion, and does not require samples of the
desired beam profile at various planes. In addition, the use
of a modal beam expansion guarantees the resulting beam
satisfies the paraxial wave equation.

The outline of this paper is as follows. First an appro-
priate definition of depth of focus based on the modulation
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Figure 1: Schematic layout of the optical system.

transfer function (MTF) is presented. Using this definition, a
Gaussian beam is optimized to achieve a maximum depth of
focus, followed by the optimization of more general beams
through the use of orthogonal beam expansions. Both circu-
lar and noncircular beams are considered by using the appro-
priate basis functions.

2. MTF-BASED OPTIMIZATION CRITERION

Consider a two-dimensional laser beam intensity profile at
a fixed distance z0 given by I(x, y, z0) with Fourier trans-
form U(u, v, z0), where v is spatial frequency and x, y, and
z are distances in the x-, y-, and z-directions, respectively, of
the beam profile. The overall setup of the system is shown
schematically in Figure 1. The line-spread function (LSF) of
the beam is defined as [7]

s
(
x, z0

) =
∫∞
−∞

I
(
x, y, z0

)
dy. (1)

The modulation transfer function (MTF) of the beam is de-
fined as the Fourier transform of the LSF and can be ex-
pressed as

F
(
u, z0

) = U
(
u, 0, z0

) =
∫∞
−∞

s
(
x, z0

)
e− juxdx. (2)

The MTF describes the spatial filtering effect of scanning the
laser beam over a one-dimensional spatial pattern extended
infinitely in the y-direction.

An important class of (approximately) such spatial pat-
terns is the ubiquitous printed bar code. These signals en-
code digital information through the use of alternating white
and dark regions (bars and spaces) of varying widths. Laser
scanning systems designed to read such patterns typically re-
quire a minimum contrast level for all spatial frequencies up
to the highest fundamental spatial frequency of the narrow-
est bar/space pair. Higher signal-to-noise ratios allow lower
contrast levels to be used.

For such applications, it is convenient to define the depth
of focus of a scanning laser beam to be the region on the z-
axis that maintains a minimum contrast level, C, for all fre-
quencies up to and including the highest fundamental fre-
quency. In what follows, all MTF curves will be normalized
so that F(u = 0, z) = 1 for all z.

Let u0 denote the fundamental spatial frequency of the
narrowest elements of a bar code (i.e., narrow bar/space
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Figure 2: Example of MTF curves.

pair). Such a spatial pattern will be considered within focus
at a distance z0 if

F
(
u, z0

) ≥ C, 0 ≤ u ≤ u0. (3)

This criterion guarantees that there will be an adequate level
of signal modulation present at the highest fundamental
bar/space frequency u0 and that no contrast reversals or loss
of modulation occurs at lower frequencies. An illustration of
MTF curves that both meet and fail the criterion is shown in
Figure 2.

This definition of depth of field will be used to design
laser beams that maximize the depth of focus given a highest
spatial frequency u0 and the minimum contrast level C.

3. GAUSSIAN BEAMOPTIMIZATION

The optimization of a simple Gaussian beam [8] will serve
both as a simple demonstration of the method, as well as
the first step required for the optimization of more general
beams. Note that the LSF of a two-dimensional Gaussian
beam is also Gaussian, thus a one-dimensional beam opti-
mization is sufficient.

The LSF of a Gaussian beam at a fixed distance z0 is given
by

s
(
x, z0

) =
√
2√

πω
(
z0
) e−2x2/ω2(z0), (4)

where ω(z0) is the beam radius at z0 given by

ω
(
z0
) = ω0

√√√√√1 +
(

λz0
πω0

2

)2

. (5)

For this case, it is assumed that the only free parameter to
optimize is the minimum beam radius ω0 occurring at z = 0.
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The optimum beam radius ω0 that maximizes the depth of
focus for a given contrast C and maximum spatial frequency
u0 is calculated to be

ω0 = 1
u0π

√
− lnC. (6)

The resulting depth of focus is

dopt = −2 lnC
u02πλ

(7)

with the distances |z| ≤ dopt/2 meeting the criterion for fo-
cus as defined by (3). Note that the depth of focus is in-
versely proportional to the square of the maximum spatial
frequency u0. This inverse relationship also applies to higher-
order modes.

In the following section, the optimization criterion will
be applied to the more general set of Hermite-Gaussian
beams.

4. OPTIMIZATION OF THE HERMITE-GAUSSIAN
EXPANSION

The Gaussian beam is the lowest-order member of the fam-
ily of Hermite-Gaussian (H-G) beams (also known as H-G
modes [8]). The H-G beams form a complete orthogonal set
of functions satisfying the paraxial wave equation in rectan-
gular coordinates, and are thereby capable of representing an
arbitrary propagating beam. These beams also have the desir-
able property that they remain H-G as they propagate, thus
providing a simple model for the propagation and optimiza-
tion of complex beams. A description of the H-G beams is
given in Appendix A.

Because the described optimization criterion is solely a
function of the LSF, and the fact that the two-dimensional H-
G functions are separable in rectangular coordinates, we only
need to consider a one-dimensional expansion. We will re-
strict the generated beam to certain desirable symmetries ap-
propriate to real-world applications. The first is that the LSF
of the beams are symmetrical about x = 0. This condition is
guaranteed by using only even-order H-Gmodes in the beam
expansion. The second symmetry is that the beam propagates
symmetrically about z = 0. This restricts the expansion co-
efficients to be real, and guarantees maximum depth of field
for a chosen u0.

The optimizing approach is based on representing the de-
sired beam as a sum of H-G beams with unknown coeffi-
cients. In general, an infinite sum is required to represent an
arbitrary beam. We will show that in practical applications,
the series needs to include only a relative small number of N
terms. This leaves N unknown parameters to be optimized.
A finite H-G expansion of a one-dimensional beam (within
a constant factor) using N even-order modes is given by

gN (x, z) = u0
(
x, z; b0

)
+

N−1∑
n=1

Anu2n
(
x, z; b0

)
, (8)
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Figure 3: Depth of focus versus number of H-G coefficients.

where the N unknown parameters to be optimized are
[b0,A1,A2, . . . ,AN−1]. The parameter b0 is the confocal pa-
rameter and is shared by all the modes (see Appendix A). It
should be noted that for Gaussian beams that correspond to
the lowest order of the H-G family of beams, this parameter
is known as the “Rayleigh distance.” The LSF of the beam at
a distance z0 is then given by the beam intensity expressed as

s
(
x, z0

) = gN
(
x, z0

) · gN∗(x, z0). (9)

As more terms of the series are included in the optimization,
the depth of focus of the beam increases.

Optimization of the beam parameters was performed
with computer search techniques using a sequential se-
ries of optimizations for increasing values of N (see Mat-
lab Optimization Toolbox at http://www.mathworks.com/
products/optimization). In particular, the multidimensional
simplex search algorithm of Nelder and Mead was used due
to the difficulty of obtaining accurate derivative information
for the calculated depth of field.

The optimization forN = 1 (Gaussian beam) was analyt-
ically derived in Section 3. ForN > 1, the critical initial guess
required to seed the numerical multidimensional optimiza-
tion of allN parameters was supplied by the previous (N−1)-
term optimization. In addition, it was found useful to refine
the initial guess by first performing a suboptimization using
only the newly added coefficient together with the confocal
parameter. This procedure greatly enhanced the convergence
to the appropriate solution. It is important to note that all
frequencies from 0 to u0 must be checked at every z to deter-
mine if the beam is within focus as defined in (3).

The depth of focus achievable as a function of the num-
ber of terms in the series is shown in Figure 3 for a maximum
spatial frequency of 3.9 lp/mm (e.g., bar code with a 5-
mil narrow element) and a minimum contrast of 10%. The
numerical values of the optimized parameters are given in
Table 1.

http://www.mathworks.com/products/optimization
http://www.mathworks.com/
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Table 1: H-G coefficients.

Number of terms N b0 A1 A2 A3 A4 A5 A6 A7

1 0.07 — — — — — — —

2 0.24 −1.19 — — — — — —

3 0.33 −1.08 0.55 — — — — —

4 0.53 −0.9 0.78 −0.49 — — — —

5 0.85 −0.87 0.78 −0.57 0.70 — — —

6 1.08 −1.03 0.91 −0.83 0.77 −0.7 — —

7 1.36 −1.0 1.0 −0.88 0.74 −0.73 0.91 —

8 1.60 −0.96 1.0 −0.96 0.78 −0.67 0.80 −0.75
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Figure 4: LSF curves (H-G).

Examining Figure 3 shows that simply adding a second
term to the series (Gaussian beam and the next lowest even-
order mode) doubles the depth of focus. As more terms are
added, the rate of improvement decreases. In particular, there
is little benefit after six terms. Figures 4 and 5 show the
resulting LSF and MTF, respectively, of a beam that uses six
terms. To physically realize the beam, diffractive optical ele-
ments can be employed [9], with higher-order beams requir-
ing more spatial resolution.

5. OPTIMIZATION OF THE LAGUERRE-GAUSSIAN
EXPANSION

In the previous section, we used the essentially one-
dimensional H-G expansion to optimize optical beams used
to read conventional bar codes. In the case of a two-
dimensional bar code, a different optimization criterion is
needed, since elongated optical beams cause severe inter-
row interference. In this case, it is advantageous to use op-
tical beams with circular symmetry. In this section, we will
analyze one example based on the Laguerre-Gaussian series
[10].
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Figure 5: MTF curves (H-G).

In spherical coordinates, the family of beams that form
a complete set of solutions to the paraxial wave equation
are the Laguerre-Gaussian (L-G) beams. A description of the
L-G beams are given in Appendix B. In this case, the LSF can
be expressed as

s
(
x, z0

) =
∫∞
−∞

I
(√

x2 + y2, z0
)
dy. (10)

In a fashion similar to the optimization of the H-G beams,
the coefficients of a six-term L-G expansion were optimized
to guarantee a contrast level of 10% at 3.94 lp/mm. The re-
sulting LSF and MTF curves are shown in Figures 6 and 7,
respectively. The optimized parameters are given in Table 2.

It should be noted that while both the circularly sym-
metric optimization (L-G) and the 1D (H-G) optimization
maintain a minimum contrast level, the circular beam’s LSF
undergoes significantly less variation over the depth of focus
compared to the 1D beam, as evidenced in the curves pre-
sented in Figure 4 compared to those of Figure 6. This is due
to the existence of a nondiffracting beam solution in spheri-
cal coordinates while no such beam exists in rectangular co-
ordinates [2].
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Table 2: L-G coefficients.

Number of terms N b0 A1 A2 A3 A4 A5

1 0.07 — — — — —

2 0.21 0.70 — — — —

3 0.64 1.58 1.29 — — —

4 0.82 1.35 1.66 1.46 — —

5 0.98 1.25 1.60 1.87 1.17 —

6 1.11 1.17 2.07 3.35 2.03 1.17
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Figure 6: LSF curves (L-G).

6. SUMMARY AND CONCLUSIONS

Extended depth-of-focus laser beams have many practical
applications. One such application is the scanning and de-
coding of printed bar codes over extended ranges. Previous
work has concentrated on synthesizing such beams by ap-
proximating the nondiffracting Bessel beam solution to the
wave equation [3, 4]. In this paper, a novel optimization
technique was presented based on orthogonal beam expan-
sions. One of the main advantages of this method is that it
can generate noncircularly symmetrical beams which offer
great advantage when scanning noisy one-dimensional pat-
terns such as bar codes. Using this expansion, we have shown
that with a relatively small number of terms, the laser beam
operational depth of focus can be readily extended by more
than threefold.

It is important to note that the overall performance of a
bar reader depends not only on the optical properties of its
optical beam, but also on the processing of the signal derived
from the reflected beam.

When applying the beams described in this paper to bar
code scanning applications, the price to be paid for the ex-
tended depth of focus is lower contrast (less optical power re-
ceived) and waveform complexity resulting from the sidelobe
structure of the beam. Higher-power lasers along with lower-

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
on

tr
as
t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Spatial frequency (lp/mm)

z = 0 m
z = ±0.23 m

Figure 7: MTF curves (L-G).

noise electronics can address the contrast issue and more ad-
vanced signal processing techniques are required to remove
the resulting distortion artifacts and to correctly reconstruct
the original spatial pattern [11, 12].

APPENDICES

A. HERMITE-GAUSSIANMODES

A Hermite-Gaussian function of order n is expressed as

ψn(ξ) = Hn(ξ)e−ξ
2/2, (A.1)

where Hn(ξ) are Hermite polynomials. Some examples of
low-order Hermite polynomials are

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2. (A.2)

The nth-order Hermite-Gaussian mode is defined as

un
(
x, z = 0, b0

) = Cnψn

(√
2x
ω0

)
(A.3)
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with

ω0 =
√

2b0
k

, (A.4)

where b0 is the confocal parameter and k is the wave number.
For Gaussian beams, the lowest order of the H-G beams, the
confocal parameter b0 is also known as the Rayleigh distance
so that ω(b0) =

√
2ω0.

Cn is the energy normalization constant given by

Cn =
( √

2
ω02nn!

√
π

)1/2

. (A.5)

For z �= 0, the propagation of the Hermite-Gaussian modes
are given by

un
(
x, z; b0

) = e j(kz−π/4)
Cn(

1 + z2/b0
2)1/4ψn

(√
2x

ω(z)

)

× e− jkx2/2R(z)e j(2n+1/2)φ(z),

(A.6)

where

ω(z) =
√√√√2b0

k

(
1 +

z2

b0
2

)
,

R(z) = z2 + b0
2

z
,

φ(z) = tan−1
(
z

b0

)
.

(A.7)

Consider an arbitrary one-dimensional beamwith input am-
plitude function h(x) at z = 0. The function h(x) can be ex-
panded as

h(x) =
∞∑
n=0

Anun
(
x, z = 0; b0

)
, (A.8)

whereAn are the expansion coefficients and b0 is the confocal
parameter shared by all the H-G modes. The propagation of
the beam for z �= 0 can then be expressed as a summation of
the individual propagating beams given by

g(x, z) =
∞∑
n=0

Anun
(
x, z; b0

)
. (A.9)

The intensity profile at a distance z0 is given by

I
(
x, z0

) = g
(
x, z0

)
g∗
(
x, z0

)
. (A.10)

B. LAGUERRE-GAUSSIANMODES

The nth-order Laguerre-Gaussian mode at z = 0 is defined
as

uk
(
r, z = 0; b0

) = 1√
π
Lk

(
2r2

ω0
2

)
e−r

2/ω0
2
, (B.1)

where ω0 is define in (A.4) and lk(ξ) are Laguerre polynomi-
als. Some examples of low-order Laguerre polynomials are

l0(ξ) = 1, l1(ξ) = −ξ + 1, l2(ξ) = ξ2 − 4ξ + 2.
(B.2)

For z �= 0, the propagation of the Laguerre-Gaussian modes
is given by

uk
(
x, z; b0

) = e j(kz)
1√
π

1(
1 + z2/b0

2)1/2 Lk
(

2r2

ω2(z)

)

× e−r
2/ω0

2
e− jkx2/2R(z)e j(2k+1)φ(z),

(B.3)

where ω(z), R(z), and φ(z) are defined in (A.7).
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