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Stochastic calculus methods are used to estimate the instantaneous frequency of a signal. The frequency is modeled as a polynomial
in time. It is assumed that the phase has a Brownian-motion component. Using stochastic calculus, one is able to develop a
stochastic differential equation that relates the observations to instantaneous frequency. Pseudo-maximum likelihood estimates are
obtained through Girsanov theory and the Radon-Nikodym derivative. Bootstrapping is used to find the bias and the confidence
interval of the estimates of the instantaneous frequency. An approximate expression for the Cramér-Rao lower bound is derived.
An example is given, and a comparison to existing methods is provided.
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1. INTRODUCTION

Over the past several years there has been a marked increase
in the application of coherent signal and image processing.
Coherent processing requires an accurate estimate of the
phase (Blackledge [1]). Examples where coherent process-
ing is required include synthetic aperture radar (SAR), syn-
thetic aperture sonar, adaptive beam forming, acoustic imag-
ing, projection and diffraction tomography, adaptive optics,
magnetic resonance imaging (MRI), and inverse synthetic
aperture radar (ISAR) (see Goldstein et al. [2], Song et al.
[3], Ghiglia and Pritt [4]). Phase estimation also has many
applications in the areas of radar (Wehner [5]) and commu-
nications (Li [6]) and others. The instantaneous frequency
(IF) is defined as the derivative of the phase.

There are mainly two approaches for the estimation of
the IF of the time-varying frequency signals; parametric and
nonparametric (Chen and Ling [7]). In the nonparametric
approach, if the signal has frequency contents that are rapidly
changing over time, one of the most popular approaches is to
use short-time Fourier transform (STFT). In this approach,
the signal is divided into overlapping segments. The fast
Fourier transform (FFT) is then applied to each segment. By
observing the evolution of the frequency components over
time, one should be able to estimate both the frequency com-
ponents and their magnitudes (Wehner [5]). This approach
suffers from the poor resolution of the FFT, and the large
amount of needed data to get reasonable results. Neverthe-
less, the STFT gives us some idea about the complexity of the
data and suggests probable models for the IF.

The Wigner-Ville distribution has proven to be the most
suitable nonparametric approach to handle instantaneous
frequency estimation (IEEE [8]). Several modifications have
been suggested, that concentrate on the choice of the window
(see Katkovnik and Stankovic [9], Barkat [10]). Still, a major
requirement of the Wigner-Ville distribution is the large size
of the data, a situation that is not available in some applica-
tions.

In the parametric approach, the phase is modeled as an
autoregressive (AR) process, moving average (MA) process,
or a polynomial (Benidir and Ouldali [11]). The coefficients
of the model are estimated adaptively using the least mean
square algorithm (LMS), the recursive least square (RLS) al-
gorithm, phase-locked loop (PLL), or others such as hidden
Markovmodels (see Goto et al. [12], IEEE [8]). For large data
sizes, however, the accuracy of the parametric methods was
shown to be less than the nonparametricmethods. Obviously
if the parametric model is accurate, then it should outper-
form any nonparametric method. The parametric methods
on the other hand work better for small-size data (Boashash
[13]).

In many applications in communications, the signal
could be modeled as higher-order polynomial phase sig-
nals with constant amplitudes. Conventional power spec-
trum methods are ineffective in handling these kinds of sig-
nals. For example, the Wigner-Ville distribution (WVD) can
handle polynomial phases with a maximum order of two.
The polynomial phase transform was introduced to tackle
this problem (see Peleg and Porat [14], Peleg and Friedlan-
der [15], Porat and Friedlander [16]). Another suboptimal
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algorithm was introduced to estimate the polynomial phase
(Golden and Friedlander [17]). The major problems with
these two algorithms are the required large number of data,
and the needed, relatively, high SNR (30 dB and above) to
obtain good estimates.

In this paper, we introduce a new parametric approach
that is based on the stochastic (Ito) calculus. Concepts from
stochastic or Ito calculus (Kloeden and Platen [18]) are used
to set up the phase estimation problem. Assuming that the
phase could bemodeled as a polynomial in time with a scaled
additive Brownian motion, which is a common model for
random media transmission, one could develop a stochas-
tic differential equation (SDE) for the observations. Other
models for the phase or the amplitude could be tackled with
the same approach. For this model of the phase, the SDE is
a linear equation in the unknown coefficients of the polyno-
mial phase but nonlinear in the other parameters. This way
a nonlinear estimation problem has been transformed into a
partially linear estimation problem. Using the Girsanov the-
ory, and assuming complete knowledge of the other param-
eters of the signal, one is able to find an exact expression
for the likelihood function of the observations. This is actu-
ally a pseudo-likelihood function. Maximizing this pseudo-
likelihood function with respect to the unknown coefficients
of the phase, one is able to find a closed form solution
for these coefficients. Simulation-based methods (McFadden
[19]) are used to estimate the other parameters of the signal.

Moreover, approximate statistical properties of the
pseudo-maximum likelihood estimates of the coefficients of
the phase were obtained in a straightforward fashion. Ap-
proximate expressions for the Cramér-Rao lower bounds
for the variances of the estimates were easily obtained; an-
other advantage of using Ito calculus. While many estima-
tion problems could be cast in a discrete time setting, there
is no equivalent in the discrete time to Ito’s lemma; a fun-
damental result in stochastic calculus. Thus, one has to use
continuous time models in order to take advantage of the Ito
calculus properties. “It should be added that in some cases it
is easier, at first, to study the continuous analog of problems
formulated for discrete time, and use the results obtained in
the solution of the latter” (Lipster and Shiryayev [20, Volume
I]). In some cases, however, using stochastic calculus would
be cumbersome and the discrete methods of time series anal-
ysis would be much easier to use.

In the given examples, the required SNR to get good esti-
mates of the phase is more than 10 dB. Using the bootstrap-
ping method, one was able to obtain good results at lower
SNR. Bootstrap is a method that handles small samples and
yields good estimates for the bias and the confidence intervals
for the estimates (see Efron and Tibshirani [21], Zaman [22],
Politis [23], Zoubir and Boashash [24]). It was not meant
to be a method to improve the accuracy of the estimates.
Using the peak of the histogram, generated from the boot-
strapping method for each estimated parameter, as the de-
sired estimate of the unknown parameter, one is able to get
good estimates at lower SNR. This was observed in this report
and in some other applications (see Souza and Neto [25],
Abutaleb [26]). Through the bootstrapping method, one is

able to generate a large number of samples from the mea-
sured small sample data. Bootstrapping amounts to treating
the observed samples as if they exactly represent the whole
population. In nonparametric bootstrapping, drawing from
this sample space, at random with replacement, will generate
as many samples as desired. In parametric bootstrapping, a
model is used to generate as many samples as desired. The
bootstrapping method found many applications in the area
of statistical signal processing (Zoubir and Boashash [24]).

This paper is divided as follows: Section 2 describes the
mathematical formulation of the phase estimation prob-
lem and an approximate maximum likelihood method is
described. We also describe in this section the method of
stochastic annealing. In Section 3, the proposed stochastic-
calculus-based approach is introduced and the statistical
properties of the estimates are given. A discussion of the
bootstrapping method is also given. In Section 4, we present
simulation results and comparison to the approximate maxi-
mum likelihood method of Section 2. In Section 5, summary
and conclusions are given.

2. PROBLEM FORMULATION

The real signal, z(t), with one phase component could be
modeled as follows:

z(t) = A(t) sin
[
φ(t)

]
+ ε(t), (1)

where

φ(t) = 2π
I∑

i=1
fit

i + γB(t), (2)

I is the order of the polynomial, A(t) is the amplitude, φ(t)
is the phase, B(t) is a Brownian motion, γ is an unknown
constant, and ε(t) is an additive white noise process of un-
known variance σ2. The one phase component could rep-
resent the radar tracking of just one target, that is, maneu-
vering. It could also represent the tracking of one target in a
sequence of images.

For constant phase component and polynomial fre-
quency we have

φ(t) = 2π
I∑

i=0
fit

i + γB(t). (3)

In this paper we will be concerned with the situation
where A(t) = 1, and the error/noise term ε(t) is imbedded
in the random part of the phase, that is, we are interested in
the model

z(t) = sin
[
φ(t)

]
. (4)

The case where the amplitude is not equal to 1 could
be treated in the same context. We basically estimate the
amplitude first by taking, for example, the average of the
max and the min of the signal. Other models for the phase
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such as the Ornstein-Uhlenbeck process, and other models
for the amplitude could also be tackled with the proposed
stochastic-calculus-based approach. This will be the subject
of other reports (Abutaleb [27]). The case where we have
more than one stochastic IF is currently under investigation
using what is called the Malliavin calculus (see Abutaleb and
Papaioannou [28], Nualart [29]).

2.1. Approximatemaximum likelihoodmethod

To estimate the unknown coefficients, fi, one could ignore
the Brownian motion term, γB(t), and use nonlinear least
square methods (Goto et al. [12]), the genetic algorithms
(Abutaleb [30]), or stochastic annealing (Kloeden and Platen
[18]). Specifically, in the least square approach, the instanta-
neous phase φLS(t) is assumed to be pure polynomial in the
frequency, that is,

z(t) = sin
[
φLS(t)

]
+ ε(t), (5)

where

φLS(t) = 2π
I∑

i=1
fit

i. (6)

One could then find the unknowns by minimizing the sum
of squared error, {z(t)−sin[φLS(t)]}2. While this approach is
approximate, it gives an indication about the estimates of the
unknown parameters that could be used later on to guide the
search area with numerical methods. The above approach is
a simplification to the true problem since the correct expres-
sion should be

z(t) = sin
[
φ(t)

] = sin
[
φLS(t)

]
cos

[
γB(t)

]
+ cos

[
φLS(t)

]
sin

[
γB(t)

]
,

(7)

and when γ → 0, we get the approximate expression

z(t) = sin
[
φ(t)

] ≈ sin
[
φLS(t)

]
+ cos

[
φLS(t)

][
γB(t)

]
, (8)

that is,

z(t) ≈ sin
[
φLS(t)

]
+ ε(t), (9)

where ε(t) ≈ cos[φLS(t)][γB(t)], that is, the error is function
of the unknown parameters.

In discrete time, one could write (8) as

z(k) = sin
[
φ(k)

]≈sin
[
φLS(k)

]
+cos

[
φLS(k)

][
γ
√
∆

k∑
j=0

w( j)

]
,

(10)

where φLS(k) = 2π
∑I

i=1 fi(k∆)i, B(t) =
√
∆
∑k

j=0w( j), ∆ is
the sampling interval, and w( j) is Gaussian with zero mean
and variance 1.

Rearranging (10) we get

{
z(k)− sin

[
φLS(k)

]}
γ
√
∆ cos

[
φLS(k)

] ≈
 k∑

j=0
w( j)

, (11)

and for time (k + 1) we get

{
z(k + 1)− sin

[
φLS(k + 1)

]}
γ
√
∆ cos

[
φLS(k + 1)

] ≈
 k+1∑

j=0
w( j)

. (12)

Subtracting the expressions at k and at (k + 1) we get

−
{
z(k)− sin

[
φLS(k)

]}
γ
√
∆ cos

[
φLS(k)

] +

{
z(k + 1)− sin

[
φLS(k + 1)

]}
γ
√
∆ cos

[
φLS(k + 1)

]
≈ w(k + 1).

(13)

Rearranging (13) we get

z(k + 1) = sin
[
φLS(k + 1)

]
+

{
z(k)− sin

[
φLS(k)

]}
γ
√
∆ cos

[
φLS(k)

] {
γ
√
∆ cos

[
φLS(k + 1)

]}
+
{
γ
√
∆ cos

[
φLS(k + 1)

]}
w(k + 1).

(14)

The conditional probability density function (pdf) f [z(k +
1)|z(k)] is thus given by

f
[
z(k + 1)|z(k)]

= exp−(1/2){z(k+1)−sin[φLS(k+1)]−({z(k)−sin[φLS(k)]}/γ√∆ cos
[
φLS(k)

]){
γ
√
∆ cos

[
φLS(k+1)

]}}2
/γ2∆ cos2

[
φLS(k+1)

]√
2πγ2∆ cos2

[
φLS(k + 1)

] .

(15)
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The likelihood function, which is the joint pdf of the obser-
vations, is thus given by

f
[
z(N), z(N − 1), . . . , z(1)

] = f
[
z(1)

] N−1∏
k=1

f
[
z(k + 1)|z(k)],

(16)

and the log likelihood function λ, ignoring the initial condi-

tions, is given by

λ = log
{
f
[
z(N), z(N − 1), . . . , z(1)

]}
=

N−1∑
k=1

log
{
f
[
z(k + 1)|z(k)]}. (17)

Substituting for the expression in (15) into (17), we get

λ = log
{
f
[
z(N), z(N − 1), . . .

]}
= −1

2

N−1∑
k=1

log
{
2πγ2∆ cos2

[
φLS(k + 1)

]}

− 1
2

N−1∑
k=1

{
z(k + 1)− sin

[
φLS(k + 1)

]− ({
z(k)− sin

[
φLS(k)

]}
/γ
√
∆ cos

[
φLS(k)

]){
γ
√
∆ cos

[
φLS(k + 1)

]}}2
γ2∆ cos2

[
φLS(k + 1)

] .

(18)

Maximizing the log likelihood function of (18) with respect
to the unknown coefficients, fi and γ, yields the desired esti-
mates.

Due to the nonlinearities in the log likelihood function,
one would expect the existence of several local minima and
we should use global optimization methods. Thus, it is pro-
posed that the frequencies and γ be estimated through the
stochastic annealing method, which is known to have good
numerical properties. Other methods such as genetic algo-
rithms could also be used.

2.2. Parameter estimation through
stochastic annealing

In the stochastic annealing method, for each unknown pa-
rameter we develop a stochastic equation. The solution of
which is the maximum likelihood estimate of the parameter.
This is explained in what is to follow.

The stochastic differential equation (SDE) of the un-
known parameters is given by

d f̂ (t) = −∇λ[ f̂ (t), γ̂(t)] + σ(t)dB f (t) (19)

which has the discrete form

f̂ (k + 1) = f̂ (k)−∇λ[ f̂ (k), γ̂(k)] + σ(k)∆B f (k), (20)

where B f (t) is a vector Brownian motion, ∆B f (k) is a vec-
tor white Gaussian noise. Each element has zero mean and
variance ∆, ∆ is the sampling interval. ∇λ( f̂ (k), γ̂(k)) is the
gradient of λ( f̂ , γ̂) with respect to f̂ .

A similar equation for γ is used:

dγ̂(t) = −∇λ[ f̂ (t), γ̂(t)] + σ(t)dBγ(t), (21)

where Bγ(t) is Brownian motion, and ∇λ[ f̂ (t), γ̂(t)] is the
gradient of λ( f , γ) with respect to γ, and is defined as

∇λ[γ̂(k)] = λ
[
f̂ (k), γ̂(k)

]− λ
[
f̂ (k), γ̂(k − 1)

]
γ̂(k)− γ̂(k − 1)

. (22)

The variance is defined as

σ(t) = c√
log(t + 2)

, c > 0. (23)

The choice above for σ(t) is shown to give quick convergence
(Kloeden and Platen [18]). Other choices for σ(t) are also
possible.

2.3. TheWigner-Ville distribution

The most common nonparametric method to estimate the
instantaneous frequency is through the Wigner-Ville distri-
bution (WVD) and its modifications. The WVD(t,ω) at in-
stant t and frequency ω of a signal z(t) and its complex con-
jugate z ∗(t) is defined as (Chen and Ling [7])

WVD(t,ω) =
∫
dt′z

(
t +

t′

2

)
z ∗

(
t − t′

2

)
exp(− jωt′) (24)

which has the discrete form (Boashash [13])

WVD(n, k) =
M∑

m=−M
z
(
n+

m

2

)
z ∗

(
n−m

2

)
exp

(
− j2πm

k

M

)
,

(25)

whereM = (N − 1)/2, and N is the number of data points.
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For a sampling interval ∆, the discrete WVD is given as
(Boashash and Black [31])

WVD(n∆, f )

= 2∆
M∑

m=−M
z(nT +m∆)z ∗(n−m∆) exp(− j4π f m∆),

(26)

where M = (N − 1)/2, and N is the number of data points.
Both formulae (25) and (26) are used in the literature.

The instantaneous frequency f (n) derived via the first
moment of the discrete WVD is given by

f (n) = M

2π

M−1∑
k=0

WVD(n, k) exp
(
j2π

k

M

)
mod2π. (27)

In Section 4, the instantaneous frequency of (27) is com-
pared to the true values. It is shown that they are far apart.
Thus, the WVD approach was not used for further compar-
isons.

2.4. The Hilbert transform and the analytic function

A given real signal z(t) can be used to construct a complex
waveform, za(t), as

za(t) = 1√
2

[
z(t) + jẑ(t)

]
, (28)

where ẑ(t) is the Hilbert transform of z(t) and is given as
(Cohen [32])

ẑ(t) = 1
π

∫∞
−∞

z(τ)
t − τ

dτ. (29)

The complex waveform, za(t), is the analytic representation
of z(t) and could be calculated either in the time domain us-
ing a finite impulse response (FIR) filter or in the frequency
domain as follows (Boashash [33]).

(1) Take the N-point discrete Fourier transform of z(n) to
get DFT[z(n)], n = 0, . . . ,N − 1.

(2) Define

DFT
[
za(k)

] =


DFT
[
z(k)

]
, k = 0,

N

2
,

2DFT
[
z(k)

]
, k = 1, . . . ,

N

2
− 1,

0, k = N

2
+ 1, . . . ,N − 1.

(30)

(3) Calculate za(n) = IDFT{DFT[za(k)]}, n = 0, . . . ,N −
1, where IDFT is the inverse Fourier transform.

The phase angle is then calculated and fitted to the as-
sumed model of the phase. The phase angle, φAnalytic, is de-
fined as

φAnalytic = arctan

{
Imaginary

[
za(t)

]
Real

[
za(t)

] }
. (31)

In Section 4, the analytic phase, φAnalytic of (31), is esti-
mated and compared to the true value. It is shown that they
are far apart. Thus, the analytic signal approach was not used.

3. ITO CALCULUS FOR PHASE ESTIMATION:
THE PROPOSED APPROACH

In this section, we introduce the stochastic-calculus-based
approach for phase estimation. It is assumed that the ran-
domness in the signal is due to the Brownian-motion com-
ponent in the phase. Other models of the signal could also be
treated in the same way.

3.1. Derivation of the SDE for the observation

As in Section 2, the received signal is modeled as

z(t) = sin

(
2π

I∑
i=1

fit
i + γB(t)

)
, (32)

where it is assumed that the additive error is imbedded in the
random component (Wiener process or Brownian motion)
B(t).

Let x(t) = B(t), thus

dx(t) = dB(t), (33)

where dx(t) is the stochastic differential for x(t), and dB(t) is
what is known as white Gaussian noise with zero mean and
variance dt. We need to find a stochastic differential equation
(SDE) for dz(t). In order to do that, we first introduce the
general form for SDE and for nonlinear transformation.

The general form for a stochastic differential equation is

dx(t) = a
(
t, x(t)

)
dt + b

(
t, x(t)

)
dB(t). (34)

In our case, (33), a(t, x(t)) = 0, and b(t, x(t)) = 1.
LetU1(t, x(t)) be a nonlinear transformation of x(t), that

is, z(t) = U1(t, x(t)), using Ito lemma (Kloeden and Platen
[18]) we obtain

dz(t) =
[
∂U1

∂t
+ a

(
t, x(t)

)∂U1

∂x
+
1
2
b2
(
t, x(t)

)∂2U1

∂x2

]
dt

+ b
(
t, x(t)

)∂U1

∂x
dB(t).

(35)
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In our case,

z(t) = U1
(
t, x(t)

) = sin

(
2π

I∑
i=1

fit
i + γx(t)

)
, (36)

x(t) = B(t), a
(
t, x(t)

) = 0, b
(
t, x(t)

) = 1,

∂U1

∂t
= 2π

[ I−1∑
i=1

(
iti−1 fi

)]
cos

(
2π

I∑
i=1

fit
i + γx(t)

)
,

∂U1

∂x
= γ cos

(
2π

I∑
i=1

fit
i + γx(t)

)
,

∂2U1

∂x2
= −γ2 sin

(
2π

I∑
i=1

fit
i + γx(t)

)
.

(37)

Substituting the expressions of (37) into (35) we get

dz(t) =
{
2π

I∑
i=1

(
iti−1 fi

)√(
1− z2(t)

)− 1
2
γ2z(t)

}
dt

+ γ
√(

1− z2(t)
)
dB(t),

(38)

where we chose cos x =
√
(1− sin2 x). Nevertheless, one has

to choose the right sign of the cos(x) depending on which
quadrant lies x.

Let

f =
[
f1 f2 · · · fI

]T
, (39)

and let

a(t) = 2π
[
1 2t · · · ItI−1

]T
. (40)

Then (38) could be written compactly as

dz(t) =
{
aT(t) f

√(
1− z2(t)

)− 1
2
γ2z(t)

}
dt

+ γ
√(

1− z2(t)
)
dB(t).

(41)

The stochastic process z(t) has the following SDE form:

dz(t) = c
(
t, z(t)

)
dt + e

(
t, z(t)

)
dB(t), (42)

where

c
(
t, z(t)

) = {
aT(t) f

√(
1− z2(t)

)− 1
2
γ2z(t)

}
,

e
(
t, z(t)

) = γ
√(

1− z2(t)
)
.

(43)

Notice that the SDE of z(t) turned out to be linear in the un-
known frequency components, f . This is one advantage of
using Ito calculus. Other forms of the phase may not yield
this nice linear property however. One could stop here and
derive an approximate expression for the likelihood func-
tion of the observations as we did in Section 2. Instead we go
through the rigorous derivation of the exact likelihood func-
tion.

3.2. Pseudo-maximum likelihood estimation

3.2.1. The pseudo-maximum likelihood estimates
of the unknown parameters

Let the unknown parameters be defined as the vector θ =
[ f Tγ]T , and then the SDE of the observations, dz(t), is
rewritten as

dz(t) = c
(
t, z(t); θ

)
dt + e

(
t, z(t); γ

)
dB(t). (44)

According to the Girsanov theory and for a known γ, the
Radon-Nikodym derivative which is the likelihood function,
L, is given by (see Lipster and Shiryayev [20], Oksendal [34],
Prakasa Rao [35])

L
(
t, z(t); θ

)
= exp

{
−1
2

∫ t

0

c2
[
s, z(s); θ

]
ds

e2
[
s, z(s); γ

] +
∫ t

0

c
[
s, z(s); θ

]
dz(s)

e2
[
s, z(s); γ

] }
,

(45)

and the log likelihood function λ = lnL becomes

λ = lnL
(
t, z(t); θ

)
= −1

2

∫ t

0

c2
[
s, z(s); θ

]
ds

e2
[
s, z(s); γ

] +
∫ t

0

c
[
s, z(s); θ

]
dz(s)

e2
[
s, z(s); γ

] .
(46)

Substituting the expressions for c[t, z(t); θ] and e[t, z(t); γ]
into (46), we get the log likelihood function as

λ = lnL
(
t, z(t); θ

)
= −1

2

∫ t

0

{
aT(s) f

√(
1− z2(s)

)− (1/2)γ2z(s)
}2
ds

γ2
[
1− z2(s)

]
+
∫ t

0

{
aT(s) f

√(
1− z2(s)

)− (1/2)γ2z(s)
}
dz(s)

γ2
[
1− z2(s)

] .

(47)

Equation (45) is a true likelihood function as long as γ is
known. And since γ will be replaced by its estimate γ̂, (45)
represents a pseudo-likelihood function. Maximizing the log
of the pseudo-likelihood function λ = lnL with respect to
the unknown vector f and assuming estimate γ̂, one could
get the pseudo-maximum likelihood estimate of f as follows:

∂λ

∂ f
= 0

=−
∫ t

0

{√(
1−z2(s))a(s)}{aT(s) f̂ √(1−z2(s))−(1/2)γ̂2z(s)}ds

γ̂2
[
1−z2(s)]

+
∫ t

0

{√(
1− z2(s)

)
a(s)

}
dz(s)

γ̂2
[
1− z2(s)

] .

(48)
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This is reduced to

1
γ̂2

{∫ t

0
a(s)aT(s)ds

}
f̂

=
∫ t

0

a(s)dz(s)

γ̂2
[√(

1− z2(s)
)] +

1
2

∫ t

0

a(s)z(s)ds[√(
1− z2(s)

)] . (49)

Finally the pseudo-maximum likelihood estimate of f is
given as

f̂ =
{∫ t

0
a(s)aT(s)ds

}−1 ∫ t

0

a(s)dz(s)[√(
1− z2(s)

)]
+
γ̂2

2

{∫ t

0
a(s)aT(s)ds

}−1 ∫ t

0

a(s)z(s)ds[√(
1− z2(s)

)] .
(50a)

Substituting for dz(s) in (50) we get

f̂ = f +
γ̂
∫ t

0
a(s)dB(s){∫ t

0
a(s)aT(s)ds

}−1 . (50b)

To estimate the unknown parameter γ, one has to go through
another route. This is explained in Section 3.2.3.

3.2.2. Another derivation for the pseudo-maximum
likelihood estimates

In the previous subsection, the pseudo-maximum likelihood
estimates were obtained using the observed data sequence,
z(t). If one is able to find an initial guess for γ, using, for ex-
ample, the approximated method of Section 2, one could ap-
ply a transformation to the data and derive an easier method
to find the pseudo-maximum likelihood estimate of the vec-
tor f . This approach, however, is tricky. It is always better to
work with the original data. The simulations showed the ac-
curacy of the approach presented in Section 2.2 compared to
the one presented here. We present the derivation any way
because we will need some of its results when calculating the
Cramér-Rao lower bound.

To find the pseudo-maximum likelihood estimates of the
unknown parameters, it will be easier if the coefficient of the
Brownian motion is unity. Thus, we need to find another
transformation y(t) = U2(t, z(t)) such that

dy(t) = g
(
t, y(t)

)
dt + dB(t). (51)

We pick U2(t, z(t)) such that

∂U2

∂z
= 1

e
(
t, z(t)

) = 1

γ
√(

1− z2(t)
) = 1

γ

[
1− z2(t)

]−1/2
,

∂U2

∂t
= 0,

(52)

and thus,

∂2U2

∂z2
=
[
1
γ
z(t)

][
1− z2(t)

]−3/2
. (53)

Integrating ∂U2/∂z with respect to z(t) we get

y(t) = U2
(
t, z(t)

) = 1
γ
sin−1

(
z(t)

)
, (54)

that is,

z(t) = sin
(
γy(t)

)
, (55)

where we have chosen to set the constant of integration to
zero.

The expression for g(t, y(t)) is given as follows:

g
(
t, y(t)

)|z(t)=sin(γy(t)) = ∂U2

∂t
+ c

(
t, z(t)

)∂U2

∂z

+
1
2
e2
(
t, z(t)

)∂2U2

∂z2
.

(56)

Substituting (52) and (53) into (56) we get

g
(
t, z(t)

)
=
{
aT(t) f

√[
1−z2(t)]− 1

2
γ2z(t)

}{
1
γ

[
1−z2(t)]−1/2}

+
1
2
γ2
[
1− z2(t)

][1
γ
z(t)

][
1− z2(t)

]−3/2
(57)

which is reduced to

g
(
t, z(t)

) = 1
γ

[
aT(t) f

]
. (58)

Substituting (58) into (51), we get the SDE for dy(t) as fol-
lows:

dy(t) = 1
γ

[
aT(t) f

]
dt + dB(t). (59)

This form of dy(t) has the coefficients of dB(t) unity. This
will make the derivation of the Cramér-Rao lower bound
easier and tractable (Oksendal [34]). Remember that f =
[ f1 f2 · · · fI]T and a(t) = 2π[1 2t · · · ItI−1]T .

According to the Girsanov theory and for a given γ, the
Radon-Nikodym derivative, which is the pseudo-likelihood
function, L, is given by (Oksendal [34])

L = exp

−12
∫ t

0

[
1
γ
aT(s) f

]2

ds +
∫ t

0

[
1
γ
aT(s) f

]
dy(s)

,
(60)
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and the log of the pseudo-likelihood function λ = logL is
given as

λ = logL = −1
2

∫ t

0

[
1
γ
aT(s) f

]2

ds +
∫ t

0

[
1
γ
aT(s) f

]
dy(s).

(61)

Maximizing the log of the pseudo-likelihood function λ =
logL with respect to the unknowns f , one could get the
pseudo-maximum likelihood estimate of the unknowns. Re-
member that in this expression, however, we use the sequence
of transformed data y(t), not the observed data z(t). Thus, an
initial guess for γ must be available.

3.2.3. Simulation-based estimation of γ

Equation (45) is a true likelihood function as long as the dif-
fusion term, e(t, z(t); γ), is completely known, that is, γ is
known. In practice, we do not know γ. As a matter of fact
it is one of the unknowns that we need to estimate. There
are many methods to estimate γ. A popular, yet not accurate,
method to estimate γ (Yoshida [36]) is through the observa-
tion that

[
dz(t)

]2 = γ2
[
1− z2(t)

]
dt. (62)

One could use this equation or its modifications to find an
estimate for γ. Instead we use the more accurate simulation-
based method of McFadden [19] to find γ̂. The following

steps describe the algorithm. (1) For a given estimate f̂ , we
simulate a sequence of data points through (4) and we cal-
culate the sum of the squared differences between the sim-
ulated and the observed data; this is the error criterion. (2)
We change γ; using the method of stochastic annealing of
Section 2.2, till the sum of squared error is minimized. (3)
Use the maximum likelihood method of Section 3.1 with the
estimated γ̂ to find a new estimate for f̂ . (4) Go to step (1).
(5) Stop when there is no more reduction in the sum of the

squared error. Specifically for an estimated f̂ , and for a given

γ̂, simulate the phase φ̂(t) given by

φ̂(t) = 2π
I∑

i=0
f̂it

i + γ̂B(t). (63)

Thus, the simulated signal ẑ(t) is given by

ẑ(t) = sin
[
φ̂(t)

]
. (64)

The error criterion is defined as

optimization criterion for γ =
∑
t

[
z(t)− ẑ(t)

]2
. (65)

3.2.4. Pseudo-maximum likelihood estimate for f

The pseudo-maximum likelihood estimates of the coeffi-
cients of the polynomial phase are obtained as

λ = logL = −1
2

∫ t

0

[
1
γ
aT(s) f

]2

ds +
∫ t

0

[
1
γ
aT(s) f

]
dy(s),

∂λ

∂ f
|γ=γ̂, f= f̂ = 0 =−

∫ t

0

1
γ
a(s)

[
1
γ
aT(s) f

]
ds+

1
γ

∫ t

0
a(s)dy(s).

(66)

Rearranging we get

[∫ t

0
a(s)aT(s)ds

]
f̂ = γ̂

∫ t

0
a(s)dy(s), (67)

that is,

f̂ = γ̂
[∫ t

0
a(s)aT(s)ds

]−1 ∫ t

0
a(s)dy(s) (68)

which is a closed form solution for estimates of the coef-
ficients of the polynomial phase. Remember that a(t) =
2π[1 (2t) · · · (ItI−1)]T , z(t) = sin[γy(t)], and it is z(t)
that we observe. Thus, in (68) we substitute for y(t) =
{sin−1[z(t)]}/γ̂.

While (68) seems to be easier to evaluate than (50), we
recommend not using it due to the discontinuities that might
appear in calculating y(t) = {sin−1[z(t)]}/γ̂. The source of
the discontinuities is the expression sin−1[z(t)].

3.3. Statistical properties of the frequency estimates
and Cramér-Rao lower bound

To find the expected value, the bias, and the Cramér-Rao

lower bound on the variance of the estimates f̂ , we assume
that γ is known and deterministic. This way a closed form
expression could be found. Otherwise the expressions would
be complicated and no insight would be gained.

3.3.1. Themean of f̂

The following is a derivation of an approximate expression

for the mean of f̂ . Substitute for the expression of dy(s), of
(59), into (68). This yields

f̂ =
[∫ t

0
a(s)aT(s)ds

]−1{[∫ t

0
a(s)aT(s)ds

]
f +γ

∫ t

0
a(s)dB(s)

}
,

(69)

that is,

f̂ (t) = f + γA−1(t)
∫ t

0
a(s)dB(s), (70)
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where A(t) = [
∫ t
0 a(s)a

T(s)ds] and as before a(t) =
2π[1 (2t) · · · (ItI−1)]T . Notice that we got the same ex-

pression for f̂ (t) in (50b).
Taking the expected value of both sides of (70), and keep-

ing in mind that under mild conditions E{∫ t0 a(s)dB(s)} = 0,
we get

E{ f̂ } = f , (71)

that is, the estimate is unbiased. This is true given that the
value of γ is known and deterministic. In reality, one has to

estimate γ. In this case, the asymptotic properties of f̂ will
be complex to derive and one might end up with a biased
estimate.

3.3.2. The variance of f̂

The following is a derivation of an approximate expression

for the variance of f̂ . Since

f̂ (t) = f + γA−1(t)
∫ t

0
a(s)dB(s), (72)

then the variance of f̂ is given as

E
{[

f̂ (t)− f
][[

f̂ (t)− f
]T]}

= γ2E

{[
A−1(t)

∫ t

0
a(s)dB(s)

][∫ t

0
aT(s)dB(s)A−T(t)

]}
,

(73)

where A−T = (A−1)T . The variance is reduced to

E
{[

f̂ (t)− f
][[

f̂ (t)− f
]T]}

= γ2A−1(t)E
{∫ t

0

∫ t

0
a(s)aT(u)dB(s)dB(u)

}
A−T(t),

(74)

and since dB(s)dB(u) = dsδ(s− u), then

E
{[

f̂ (t)− f
][[

f̂ (t)− f
]T]}

= γ2A−1(t)
[∫ t

0
a(s)aT(s)ds

]
A−T(t)

= γ2A−1(t)A(t)A−T(t),

(75)

that is,

E
{[

f̂ (t)− f
][[

f̂ (t)− f
]T]} = γ2A−T(t). (76)

This is true given that the value of γ is known and determin-
istic. In reality, one has to estimate γ. In this case, the variance

of f̂ will be complex to derive.

3.3.3. An approximate Cramér-Rao lower bound
on the variance of the frequency estimates

It is always useful to compare the variance of the estimates to
the best possible minimum variance. This is the Cramér-Rao
lower bound which is derived in the next part. Again, one
is able to get a closed form expression given that γ is known
and deterministic. Otherwise the expressions would be much
more complicated and no closed form solutions could be ob-
tained.

Since as before,

dy(t) = g
(
t, y(t)

)
dt + dB(t), (77)

where g(t, y(t)) = {(1/γ)aT(t) f }, then according to Lipster
and Shiryayev [20, Chapter 7], the Cramér-Rao lower bound

for the unbiased estimate of f̂ given γ is

E
{
( f − f̂ )( f − f̂ )T

} ≥
E


∫ t

0

[
∂g

∂ f

][
∂g

∂ f

]T

ds


−1

=
[
E

{
1
γ2

∫ t

0
a(s)aT(s)ds

}]−1
.

(78)

And since as beforeA(t) = AT(t) = [
∫ t
0 a(s)a

T(s)ds], and a(t)
= 2π[1 (2t) · · · (ItI−1)]T , substituting A(t) in the above
equation we get

E
{
( f − f̂ )( f − f̂ )T

} ≥ {
γ2A−1(t)

}
, (79)

that is, the approximate Cramér-Rao lower bound is equal to
{γ2A−1(t)}.

Comparing (79) and (76), one concludes that, given γ,
the variance of the frequency estimate is exactly the Cramér-
Rao lower bound; a nice result indeed. This result is expected
since the frequency estimate is the maximum likelihood esti-
mate.

3.3.4. Sensitivity of the estimate with respect to γ

We can find the derivative of f̂ with respect to γ̂, ∂ f̂ /∂γ̂, as-
suming that z(t) is completely known deterministic quantity.
The other approach is to find the derivative of the expected

value of f̂ with respect to γ̂, ∂E{ f̂ }/∂γ̂, and replace z(t) with
its stochastic solution, that is, z(t) = z(t,W(t)). Fortunately,

for a given γ̂, f̂ is unbiased (see (50b) and (71)). Thus, E[ f̂ ]
is independent of the estimate of γ̂. The variance, however,
is dependent on the estimated values of γ̂ as shown in (79).
Thus, an accurate estimate of γ̂ is needed.

3.4. Numerical solution of themaximization problem

The log likelihood function, λ of (47), is a true log likelihood
as long as γ is known. λ has to be maximized with respect
to the unknowns, f . Since λ has many integral expressions,
one has to use numerical solutions to the integral equation.
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(1) Discretize the form of the pseudo-log-likelihood
function λ of (47) using the formulae in (80) and (81).

(2) For a given γ, use (50) to find f̂ .

(3) For a given estimated f̂ , use the simulation-based
method and the stochastic annealing method to find an
estimate γ̂.

(4) Repeat until there is no change in the estimates.

Algorithm 1: Pseudo-maximum likelihood estimate of the param-
eters.

The pseudo-log-likelihood function is discretized using, for
example, Euler approximation and the following formulae:

∫ t

0
h
(
s, z(s)

)
ds =

N−1∑
i=0

h
(
i, z(i)

)
∆i, (80)

where z(i) is the value of z(t) at instant i, h(i, z(i)) is the value
of h(s, z(s)) at instant i, and ∆i is the sampling interval be-
tween the ith sample and the (i + 1)th sample. ∆i is usually
constant. Moreover∫ t

0
h
(
s, z(s)

)
dz(s) =

N−1∑
i=0

h
(
i, z(i)

)
∆z(i), (81)

where∆z(i) = z(i+1)−z(i). Othermore accurate but compu-
tationally intensive discretization methods are also available
(Kloeden and Platen [18]).

3.5. Algorithm 1

3.5.1. Proposed Algorithm 1

The steps described in the previous section are enough to
yield the pseudo-maximum likelihood estimates of the un-
known parameters. We now put these steps in a form of al-
gorithm as shown in Algorithm 1.

Algorithm 1 yields accurate estimates of the parameters
as long as the signal-to-noise ratio is more than 10 dB. It was
observed that using the method of bootstrapping and using
the peak of the histogram generated by this method, one is
able to get reasonable results for SNR values as low as 0 db.
While the method of bootstrapping is used to find an esti-
mate for the bias and an estimate for the confidence interval
around each estimated parameter, our observation is that it
could also be used to improve the accuracy of the estimated
parameters. This is explained in the bootstrapping subsec-
tion.

3.5.2. Convergence of the proposed Algorithm 1
One is always interested in using an algorithm that will yield
an estimate that converges to the true unknown parame-
ter. Algorithm 1 has this property. In essence, under mild
regularity conditions and assuming that the observed pro-
cess, z(t), is ergodic, and assuming that we have good initial

guesses of γ̂ and f̂ , then the proposed steps will yield esti-
mates that are consistent as the number of data points in-
creases to infinity. For more mathematical details and proofs,
for a similar problem, and for more on the necessary condi-
tions for consistency see [36].

3.6. Bootstrapping and parameter estimation

The bootstrapping methods depend on the notion of a boot-
strap sample. The samples are drawn or generated, at ran-
dom, from the data. Each set of samples has the same size
as the original data size. For each set, the model parameters
are estimated. From these estimates, a histogram is obtained.
If the samples are drawn at random, we have nonparametric
bootstrapping. If the samples are generated at random, from
a model for the data, we have what is called parametric boot-
strapping (see Zaman [22], Efron and Tibshirani [21]). We
will be more concerned with the parametric bootstrap.

3.6.1. Parametric bootstrap

In this approach, by maximizing the pseudo-log-likelihood
function, and using the simulation-based method, the es-

timates of the parameters, f̂1, f̂2, . . . , f̂I , and γ̂ are obtained
from the original data. These estimates are called plug-in es-
timates. The estimates of the Brownian-motion component,
B̂(t), are obtained as follows:

z(t) = sin

[
2π

I∑
i=1

f̂it
i + γ̂B̂(t)

]

= sin

[
2π

I∑
i=1

f̂it
i

]
cos

[
γ̂B̂(t)

]

+ cos

[
2π

I∑
i=1

f̂it
i

]
sin

[
γ̂B̂(t)

]
,

(82)

and since cos x = √
1− (sin x)2, then the equation for z(t)

could be changed to

z(t) = sin

[
2π

I∑
i=1

f̂it
i

]√
1− {

sin
[
γ̂B̂(t)

]}2

+ cos

[
2π

I∑
i=1

f̂it
i

]
sin

[
γ̂B̂(t)

] (83)

which is an equation in the unknown B̂(t). Solving, we get
two values for B̂(t). Any one of them could be used for study-
ing the statistical properties of B̂(t). We should expect B̂(t) to
be Brownian motion if the signal model is correct and if the
pseudo-maximum likelihood estimates are close to the true
values. Otherwise, one has to reconsider the signal model. If
it is Brownian motion as expected, we use random number
generator to simulate the jth Brownian motion B( j)(t). We
then generate the random samples for bootstrapping using
the plug-in estimates and according to the equation

z( j)(t) = sin

(
2π

I∑
i=1

f̂it
i + γ̂B( j)(t)

)
, (84)

where z( j)(t) is the jth set of observations that were
generated by the jth simulated Brownian motion B( j)(t).
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The set of the new observations, z( j)(t), represents the data
set that will be used in the pseudo-maximum likelihood (47)
to obtain the jth estimate of the parameters as explained in
Section 3.2. This results in an estimate for each of the un-
known parameters. We then use random number generator
to simulate the ( j + 1)th Brownian motion B( j+1)(t). An-
other set of observations, z( j+1)(t), is generated according
to (84), and another bootstrap estimate is obtained and so
forth for as many times as we want. After we stop, a his-
togram is calculated for each parameter from the bootstrap
estimates. From this histogram, the final parameter estimate
is the value at the peak of the histogram. One could use the
average values of the bootstrap estimates as the final esti-
mate of the parameters. In our case, the peak of the his-
togram proved to be amore reliable estimate than the plug-in
estimate.

3.6.2. Model selection and computational complexity

In some applications one is not able to determine the order
of the polynomial that represents the phase. In more compli-
cated scenarios, one is faced with several models for the sig-
nal, and we have to determine whichmodel is more represen-
tative of the data. For a given model, order selection could be
based on something like Akaike information criterion (AIC)
or another criterion (Zaman [22]). Model selection should
be based on physical understanding of the source of the sig-
nal. There are, however, several tests to differentiate between
one model and another (Zaman [22]).

It is clear that the proposed approach is computation-
ally intensive. The numerical integration and the simulation-
based method are time consuming. The bootstrapping
method is known to require many iterations. The CPU time
needed for the proposed approach is more than 100 times
more than the approximate maximum likelihood method.
The CPU time is mainly needed by the bootstrapping
method. Parallel processing will drastically reduce the re-
quired time.

4. SIMULATIONS

The proposed stochastic-calculus-based approach was tested
against the approximate maximum likelihood method of
Section 2. In the example, a third-order polynomial with
SNR gradually decreased from SNR = 20dB to reach SNR =
0dB. The SNR is defined as

SNR = 10 log
(
SP
NP

)
, (85)

where SP is signal power and NP is noise power defined as
follows:

SP =
(
sin

(
2π

I∑
i=0

fit
i

))2

, (86)

and the noise is defined as

NP =
[
sin

(
2π

I∑
i=0

fit
i

)
− sin

(
2π

I∑
i=0

fit
i + γB(t)

)]2

. (87)

The stochastic-calculus-based approach had good perfor-
mance for SNR as low as 10 dB. Adding the bootstrap ap-
proach, one is able to obtain good results even at values of
the SNR close to 0 dB. The quality of the results are measured
by comparing the variances of the estimates using stochastic
calculus to the approximate maximum likelihood estimates
and to their corresponding approximate Cramér-Rao lower
bounds.

Example 1 (third-order polynomial). In this example, 128
points of the noisy measured signal, z(0), z(1), . . . , z(127),
were simulated according to the equation

z(t) =
[
sin

(
2π

3∑
i=1

fit
i + γB(t)

)]
. (88)

The coefficients were taken as f1 = 2, f2 = −1, f3 = −0.5,
that is, I = 3. The sampling interval ∆ = 0.01. The variance
is set to have SNR values 20 dB (γ = 0.1), 10 dB (γ = 0.3),
and 0 dB (γ = 1.8). The values of the parameter γ were
changed till we got the desired SNR. The reported SNR is ac-
tually the average value of many simulations. A typical set of
data is shown in Figure 1a where we plot the phase without
Brownian motion [2π

∑3
i=1 fiti], and the phase with Brown-

ian motion [2π
∑3

i=1 fiti + γB(t)], with γ ≈ 1.8. This yields
SNR = 0dB, where SNR is as defined in (85), (86), and
(87).

In Figure 1b, we show the instantaneous frequency (IF)
as estimated usingWVD, as described in Section 2, for a sam-
ple of a simulated signal with SNR = 0dB. The simulated
signal is as given above. We also show the true noise free IF
and the IF estimated through the stochastic-calculus-based
method and bootstrapping. Notice the poor performance of
the WVD. Obviously, this performance could be improved if
we use a proper window or other modifications to the WVD.
Thus, we will not pursue the comparison to the WVD in
this paper. Instead, the comparison will be limited to the ap-
proximatedmaximum likelihoodmethod and the stochastic-
calculus-based method.

Similarly, in Figure 1c we show the phase angle as esti-
mated using Hilbert transform, as described in Section 2, for
a sample of a simulated signal with SNR = 0dB. We also
show the true noise free phase. Notice the poor performance
of the Hilbert-transform-based method. Obviously, this per-
formance could be improved if we use a proper window or
other modifications to the Hilbert transform. Thus, we will
not pursue the comparison to the Hilbert-transform-based
method in this paper. Instead, the comparison will be lim-
ited to the approximated maximum likelihood method and
the stochastic-calculus-based method.
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Figure 1: (a) Third-order polynomial phase without and with
Brownian motion, and their sines, SNR = 0dB. (b) Third-order
polynomial phase true IF estimate using Wigner-Ville distribution,
and IF estimate using stochastic-calculus-based method with boot-
strapping, SNR = 0dB. (c) Third-order polynomial phase and the
estimated phase using Hilbert transform (adjusted between 0 and
2π), SNR = 0dB.

(1) Discretize the form of the log likelihood function λ of
(47) using the formulae (80) and (81).

(2) For a given γ, use (50) to find f̂ .

(3) For a given estimated f̂ , use the simulation-based
method and the stochastic annealing method to find an
estimate γ̂.

(4) Repeat until there is no change in the estimates.
(5) Generate a bootstrap sample of observations using (84).
(6) Repeat steps (1)–(5) a large number of times, say 100.
(7) Find the histogram of the estimates and take the desired

estimate of the parameter as the value where the
histogram is maximum.

(8) Generate, through bootstrapping, a new set of
observations and repeat steps 1–7 and stop after, say
M = 100 iterations.

Algorithm 2: Pseudo-maximum likelihood estimate of the param-
eters with bootstrapping.

4.1. Proposed Algorithm 2

In Section 3.4 we gave an outline of how to find the
pseudo-maximum likelihood estimates of the parameters.
This did not include the bootstrapping segment. The pro-
posed Algorithm 2 covers this gap.

One could use the average values of the bootstrap esti-
mates as the final estimate of the unknown parameters. The
peak, however, seems to yield a more accurate estimate of
the unknown parameter. As the number of simulations in-
creases, we get more accurate results. In our case, however,
100 simulations seems to be enough to get good results.

The histograms of the bootstrap estimates of the three
parameters, using the stochastic-calculus-based method, are
shown in Figure 2. The approximate Cramér-Rao lower
bound for the variances, the variances of the estimates of
the coefficients of the polynomial phase using stochastic-
calculus-based method, and the approximated maximum
likelihood method are shown in Figure 3.

The mean square error (MSE) between the estimated pa-
rameters and the true parameters is taken as a measure of
performance. The MSE for the ith coefficient is defined as

MSEi = 1
M

M∑
m=1

(
âmi − ai

)2
, (89)

whereM is the total number of the bootstrap simulations and
is equal to 100, âmi is the mth estimate of the ith coefficient
which is the peak of the histogram of this coefficient.

In Table 1, we present the log value of the approximated
Cramér-Rao lower bound (CRB) and the log of the MSE val-
ues for the stochastic-calculus-basedmethod with bootstrap-
ping for SNR value of 20 dB, 10 dB, and 0 dB. Notice how
close they are.

4.2. Effect of bootstrapping

In Table 2, we present the MSE values for SNR = 0dB.
Both methods, approximate maximum likelihood method
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Figure 2: (a) Histogram of estimated f̂1 using stochastic-calculus-based method, the maximum value of the histogram at 1.6, SNR =
0dB. (b) Histogram of estimated f̂2 using stochastic-calculus-based method, the maximum value of the histogram at −1, SNR = 0dB. (c)

Histogram of estimated f̂3 using stochastic-calculus-based method, the maximum value of the histogram at −0.4, SNR = 0dB.

with bootstrap and the proposed stochastic-calculus-based
method with bootstrap, are compared. Notice that using
the bootstrapping, as expected, lowers the MSE of the esti-
mates.

Notice that the accuracy of the proposed bootstrap-
ping and stochastic-calculus-based method is much higher
than the approximate maximum likelihood method. The
measure of accuracy is the mean square error of the esti-
mate.

4.3. Could we use bootstrapping to improve
the performance?

Bootstrap is a method that handles small samples and yields
good estimates for the bias and the confidence intervals for
the plug-in estimates (see Efron and Tibshirani [21], Za-
man [22], Politis [23], Zoubir and Boashash [24]). It is not
meant to be a method to improve the accuracy of the esti-
mates. Using the peak of the histogram, generated from the
bootstrapping method for each estimated parameter, as the
desired estimate of the unknown parameter, however, one
is able to get good estimates at lower SNR. This was ob-
served in this report and in some other applications (see
Souza andNeto [25], Abutaleb [26]). This could be explained
from the fact that the bootstrapping samples are almost the
same as Monte Carlo simulations. Thus, instead of having
just one data set for the estimation, one has as many sam-
ples as needed. More important, bootstrapping provides a
reasonably good approximation to the density of the param-
eter estimator. This is apparent from the histogram of each
parameter of Figure 2. If the distribution of each parameter
was Gaussian, then one should take the mean of the his-
togram to be the best estimate of the unknown parame-

ter. But as we notice from (71) and Section 3.3, the dis-
tribution of the estimates, f̂ , is not Gaussian. This is true
since the estimate of γ̂ comes into this equation. Thus, one

might expect the density of f̂ to be skewed. This is ex-
actly what we observe in the histograms of Figure 2. Choos-
ing the peak of the histogram, as an estimate for the un-
known parameter, is the reason for the improved accuracy
and the lowering of the MSE. More discussion on this sub-
ject could be found in [22, Chapters 12 and 14]. Again
this is not a mathematical explanation for this observa-
tion. More theoretical analysis is needed to explain why
the peak yielded better estimates. This is currently under
investigation.

Table 3 lists, for SNR = 0dB and for a typical group of
bootstrapping estimates, the true value of the unknown pa-
rameter, the plug-in estimate, the bias, the average, the vari-
ance, and the peak of the histogram for each parameter. An
estimate of the bias is obtained from the bootstrap estimates.
It is defined as follows (Efron and Tibshirani [21, Chapter
10]): bias is equal to the average of the bootstrap estimates
of the unknown parameter—the plug-in estimate of the un-
known parameter.

5. SUMMARY

In this paper, the formulation of the instantaneous frequency
estimation problem using concepts in stochastic calculus was
introduced, and applied to the estimation of a single time-
varying phase represented by a polynomial with additive
Brownian motion. A stochastic differential equation was de-
veloped for the observed signal. This resulted in a linear
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Figure 3: (a) Approximate CRB and MSE of the stochastic-calculus-based estimate of f̂1. (b) Approximate CRB and MSE of the stochastic-

calculus-based estimate of f̂2. (c) Approximate CRB and MSE of the stochastic-calculus-based estimate of f̂3.

Table 1: Log of the approximate CRB and the MSE of the stochastic-calculus-based method with bootstrapping. SNR values vary from
20 dB down to 0 dB.

Coefficient
CRB

(SNR =
20dB)

CRB
(SNR =
10dB)

CRB
(SNR =
0dB)

MSE of stochastic calculus
with bootstrapping
(SNR = 20dB)

MSE of stochastic calculus
with bootstrapping
(SNR = 10dB)

MSE of stochastic calculus
with bootstrapping

(SNR = 0dB)

f1 −3.2 −2.4 −1.9 −2.9 −2.4 −1.6
f2 −1.9 −1.3 −0.8 −1.9 −1.2 −0.8
f3 −2.3 −1.7 −1.4 −1.9 −1.5 −1.3

equation in some of the unknown parameters of the phase;
an advantage of using Ito calculus. A pseudo-likelihood func-
tion was obtained using the Girsanov theory. It was shown
that the pseudo-likelihood function is quadratic in some of
the unknown coefficients of the phase. This made it possi-
ble to find an exact expression for the estimates of the pa-
rameters of the polynomial phase; another advantage of the
Ito calculus. The statistical properties of the estimates were
also derived in a straightforward manner and an approxi-
mate expression for the Cramér-Rao lower bound was ob-

tained. A simulation-based method was used to, numeri-
cally, obtain estimates of the rest of the unknown param-
eters. Bootstrapping method was introduced and was used
with stochastic annealing. This way, good estimates were
obtained; the mean square error of each estimate is close
to the approximate Cramér-Rao lower bound. Simulations
proved the superior performance of the proposed approach,
and a comparison was given with the performance of the
Wigner-Ville distribution and the Hilbert-transform-based
results.
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Table 2: Mean square error of the estimates using the proposed stochastic-calculus-based method with bootstrapping, the approximate
maximum likelihood method with bootstrapping, and the approximate Cramér-Rao lower bound, SNR = 0dB. All values are in log scale.

Coefficient
MSE (proposed

bootstrapping and
stochastic-calculus-
based method)

MSE (stochastic-
calculus-based

method)

MSE (bootstrapping
and approximate

maximum likelihood
method)

MSE (approximate
maximum likelihood

method)

Approximate
Cramér-Rao lower

bound

f1 −1.6 −1.1 −1.2 −0.9 −1.9
f2 −0.8 −0.6 −0.2 0 −0.8
f3 −1.3 −0.9 −0.8 −0.2 −1.4

Table 3: Some statistics for the histogram of Figure 2, SNR = 0 dB.

Coefficient True value Plug-in estimate Peak of the histogram Average of the histogram Bias of the average Variance of the average

f1 2 2.3 1.6 2.2 0 0.007

f2 −1 −1.5 −1.0 −1.3 0.195 0.052

f3 −0.5 −0.5 −0.4 −0.6 −0.1 0.013

A more general model for the received signal, where we
have more than one component each with random phase or
random amplitude, is currently under investigation.
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