EURASIP Journal on Applied Signal Processing 2005:13, 1969—-1983
(© 2005 Hindawi Publishing Corporation

Iterative Approximation of Empirical Grey-Level
Distributions for Precise Segmentation

of Multimodal Images

Ayman El-Baz

CVIP Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA

Email: elbaz@cairo.spd.louisville.edu

Aly A. Farag

CVIP Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA

Email: farag@cvip.uofl.edu

Georgy Gimel'farb

Centre for Image Technology and Robotics (CITR), Department of Computer Science, University of Auckland, Tamaki Campus,

Auckland 1000, New Zealand
Email: g.gimelfarb@auckland.ac.nz

Received 29 December 2003; Revised 5 December 2004

A new algorithm for segmenting a multimodal grey-scale image is proposed. The image is described as a sample of a joint Gibbs
random field of region labels and grey levels. To initialize the model, a mixed multimodal empirical grey-level distribution is
approximated with linear combinations of Gaussians, one combination per region. Bayesian decisions involving expectation max-
imization and genetic optimization techniques are used to sequentially estimate and refine parameters of the model, including
the number of Gaussians for each region. The final estimates are more accurate than with conventional normal mixture mod-
els and result in more adequate region borders in the image. Experiments show that the proposed technique segments complex
multimodal medical images of different types more accurately than several other known algorithms.
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1. INTRODUCTION

A large number of image segmentation methods based on
estimating marginal probability densities of signals and sepa-
rating their dominant modes have been developed and tested
for the last three decades (see [1, 2, 3, 4, 5] to cite a few).
However many important applications such as medical im-
age analysis or industrial vision still encounter difficulties
in separating practically meaningful continuous or disjoint
objects, even when signal densities are distinct to the point
where their mixture becomes strongly multimodal. The ba-
sic issue is the accuracy of region borders, which are usually
essential for correct interpretation of the objects. Typically,
the fine separation of the signal modes to specify the region
borders is obtained by intersecting tails of the signal distri-
butions for the adjacent objects. Therefore, it is the tails that
have to be precisely estimated in order to separate, for exam-
ple, a darker object from a brighter background. One of the
practical problems that inspired our approach is to accurately

detect lungs in a spiral CT chest slice so that their borders
closely match those outlined by a radiologist.

Because there always exists an overlap between the sig-
nal ranges for the different objects, the precise segmenta-
tion has to account for spatial distributions of the signals,
too. Markov-Gibbs random field models show considerable
promise in spatial image analysis [6, 7, 8, 9, 10, 11, 12, 13].
Thus we consider images to be segmented as samples of a
two-level Gibbs random field of more or less continuous re-
gions (the higher level) and grey levels in each region (the
lower level) [7, 9, 10, 11]. We choose for each level the sim-
plest probability models ensuring the necessary precision of
the segmentation. At the lower level, the signals are described
by a conditionally independent random field of grey levels
having different marginal probability distributions in the re-
gions. In practice, these latter distributions are quite intri-
cate. Hence we approximate the probability density function
for each region with a linear combination of both positive
and negative Gaussians [14, 15, 16] which is more accurate
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than a conventional normal mixture with only the positive
components. Then a mixed empirical signal distribution over
the image is approximated with a mixture of several lin-
ear combinations of Gaussians. Such a lower-level segmen-
tation on the basis of the estimated probability densities is
refined further at the higher level using the Bayesian max-
imum a posteriori (MAP) estimation of the segmentation
map based on the joint Gibbs model of the maps and im-
ages.

We propose a new sequential EM-based algorithm that
closely approximates a given multimodal empirical probabil-
ity distribution of signals by estimating parameters of the lin-
ear combination of Gaussians for each region. Below for sim-
plicity, we restrict our consideration to only a bimodal signal
density describing a dark object and its bright background.
But the extension of the proposed segmentation scheme onto
the multimodal case is straightforward. In the bimodal case,
the empirical mixed density is split first into two dominant
positive Gaussians and a set of secondary alternating Gaus-
sians. These latter describe deviations of the empirical distri-
bution from the dominant components. The number of the
dominant modes (i.e., the number of different types of re-
gions to detect) is assumed to be known, but the number of
the secondary terms is found on the basis of the approxima-
tion error.

The parameters of both the dominant and secondary
terms are sequentially estimated using the EM-algorithm
(17, 18, 19, 20, 21], or more specific, its early variant for
the normal mixtures [22] (see also [21]). To initially segment
the image, the approximated mixed density is divided further
into two linear combinations of Gaussians (for the darker
object and the brighter background, resp.) which yield the
minimum classification error on the intersecting tails of the
distributions.

At the higher level, the label intra- and interregion co-
occurrences are specified by an auto-binomial Gibbs model
with the nearest 8-neighborhood [11, 13]. The region map
after an initial low-level classification is refined iteratively by
repeating the following steps: (i) updating the higher-level
map, given the low-level image model, and (ii) updating this
latter, given the region map.

The paper is organized as follows. Section 2 introduces
the Gibbs image model and describes the low-level and
high-level stages of the proposed segmentation algorithm.
Section 3 describes experiments with different types of med-
ical images to show that the proposed technique produces
region borders close to the “ground truth” given by the
experts—radiologists—and is more accurate than several
other segmentation algorithms.

2. TWO-LEVEL GIBBS IMAGE MODEL

LetR = {(x,y): 1 <x <X, 1<y < Y} be a finite grid
supporting images ¢ : R — Q and their region maps/: R —
K. Here Q = {0,...,255} and K = {1,...,K} are the sets of
grey levels ¢ € Q and region labels k € K, respectively (for
the bimodal case, K = {1,2}).

The two-level Gibbs image model is specified by a joint
probability distribution P(g,1) = P(g|l)P(I), where P(l) is
a prior higher-level Gibbs distribution of maps and P(g|l)
is a lower-level conditional distribution of images, given the
map. Both the distributions are strictly positive. The MAP
estimate [* = argmax; L(g, ) of the map, given the image g,
maximizes the joint log-likelihood function:

L(g,1) = log P(gl|l) +log P(I). (1)

To make the choice computationally feasible, a local maxi-
mum of the log likelihood of (1) is usually searched for it-
eratively by estimating or reestimating first the lower-level
model and then using it to update the higher-level one. The
process terminates when parameters of the current and per-
vious estimated models become equal to a value within a
given accuracy range 7, 9, 10, 16].

Such an iterative maximization using the lower-level
model in an explicit form and the higher-level model with
numerically approximated components having no closed-
form representation is implemented below.

2.1. Low-level density model

To most accurately specify the lower-level model, we approx-
imate the marginal grey-level probability density function in
each region k = 1,2,...,K with a linear combination of Cj
Gaussians [14, 15]: for each g € Q,

Cr

p(qlk) = > wiip(ql6k:);

[ ptamdg=1 @
i=1 -
Here, in contrast to the more conventional normal mixture
models, the weights wy; may be both positive and nega-
tive and have only one obvious restriction in line with (2):
>% wi; = 1. The weights now are not prior probabilities,
and the combination in (2) is simply an approximation of the
probability density function depending on parameters wy;,
Ok,; denoting the weight and the mean and variance of each
component, respectively.

In the general case, the probability densities form only
a proper subset of the set of all linear combinations in (2).
The weights in the subset are limited as to keep nonneg-
ative values of the combined densities to within the ac-
tual signal range, for example, [0,255] for the grey levels.
This restriction leads to strongly interdependent parame-
ters, but in our particular case, their interdependence may
be ignored. We use the model to only approximate the in-
tersecting tails of the empirical distributions, so its behav-
ior outside the domain of close approximation (and the as-
sociated restrictions on the parameters) is of no concern.
Moreover, the maximization of the likelihood function is
also directed towards keeping the positive density values
that approximate the empirical ones. The mixture of the K
distributions p(gl1), p(ql2),..., p(qlK) in (2) has just the
same form but with the larger number of the components
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(C=Cy+Cy+ -+ + Ck if all the values 6; differ for both
distributions):

C
p(q) = > wep(ql6.), (3)

c=1

where all the mixed elements do not relate to the regions and
thus have only one subscript c. In principle, all the parame-
tersw= {wic=1,...,Cland 0 = {6, : c = 1,...,C}, given
the number of the components C, can be sequentially found
using an EM algorithm modified to account for the alternat-
ing signs of the weights. This modification will be consid-
ered elsewhere. Here an alternative EM-based approach for
describing the multimodal density of (3) is used. The EM al-
gorithm is quite natural in this MAP framework because it
maximizes the first term, log P(g|!), in the log likelihood of
(1).

We assume that the number of objects (types of regions)
to be separated, or what is the same, the number of the dom-
inant modes, is known for all the images to be segmented.
For simplicity, let the empirical distribution have two sepa-
rate dominant modes that represent the object and the back-
ground, respectively, and each can be roughly approximated
with a single Gaussian. Deviations of the empirical distri-
bution from the two-component dominant Gaussian mix-
ture are described by other components of (3). Therefore
there are two dominant positive weights, say, w; and w;, such
that w; + w, = 1, and the “subordinate” weights with much
smaller absolute values such that w3 + - - - + we = 0.

To estimate parameters of this latter model (both the
weight and the parameters of each individual Gaussian) and
get the initial region map, we propose the following sequen-
tial algorithm (with obvious modifications, it can be used
also to approximate either a unimodal empirical distribution
or a distribution with three and more dominant modes).

(1) Form the empirical mixed density function from the
relative frequencies f(qlg) of grey levels in all the pixels
(x,y) € R, its integral over the —co < g < oo range being
equal to the sum of all the frequencies:

F(g)z{f(qg)rqEQ;Zf(qlg)=1}. (4)
q€Q

(2) Use the conventional EM-algorithm to approximate
F(g) with a dominant mixture P, of two Gaussians:

P2(q) = wi9(ql61) + wap(ql6,). (5)

(3) Find the deviation A of F(g) from P,:

A=1{8(q) = f(qlg) — p2(q): g € Q} (6)

and split it into the positive and negative parts:

Ay =1{6,(q):q € Q},

An = {6n(q) :q € Q} @)

1971
such that
6(q) = p(q) — dn(q);
d(q) ifd(q) >0,
5.(g) =
p(@) {0 otherwise; (8)
0 if 6(gq) <0,
5a(4) = -
—38(q) otherwise.
(4) Compute the scaling factor for the deviations:
s=| _a@da=| e@da 9)

(5) If s < 7 (a given accuracy threshold), terminate the
process and output the model P = P,.

(6) Otherwise, consider the scaled-up absolute deviation
Aabs = 1/25(Ap + Ap) as an “empirical density” and use itera-
tively the EM-algorithm to find the number Cs.. of Gaussians
such that their mixture approximates best the scaled-up ab-
solute deviation; this search for the number of the secondary
components is detailed below.

(7) Scale down the obtained mixture model P5_ ¢, that
is, scale down its weights: w; — s - wg; ¢ = 3,...,C = Cec +
2, and change the signs of the individual weights in accord
with the corresponding deviations to obtain the alternating
scaled-down model sP5 ¢, where each Gaussian is assigned
with the sign of the deviation closest to the mean value for
that component.

(8) Center the model Ps_ ¢ in order to guarantee zero
sum of its weights and output the model P = P, + sP3,_c.

Instead of the last three steps, the scaled-up absolute de-
viations (1/s)A, and (1/s)A, can be separately approximated
with the two normal mixtures having C, and C, compo-
nents, respectively. Then the scaled-down submodels Pc, and
P, are added to and subtracted from the model P;, respec-
tively, in order to output the desired model P. Both variants
have produced almost the same final models in our experi-
ments. While the latter variant is more theoretically justified,
the former one is twice as fast.

Since the EM algorithm converges to a local maximum of
the likelihood function, it may be repeated several times with
different initial parameter values as to choose the model P
yielding the best approximation. In principle, the process can
be continued iteratively in order to approximate more and
more closely the residual absolute deviations between F(g)
and P. But because each Gaussian in the model P impacts all
the density values p(q), the iterations should be terminated
when the approximation quality begins to decrease.

We specify the approximation quality by the Kullback-
Leibler divergence between the empirical and estimated den-
sities in the points g € Q:

f(qg))
D(F(g),P) = log [ 1~4'8)). 10
(F(g),P) q%f(qlg) Og( (@) (10)
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The above divergence is zero if f(qlg) = p(q) for all g €
Q, that is, for the exact approximation, otherwise it specifies
how far is the log likelihood of the current model from its
maximum value for the exact one. Let &; denote the relative
approximation error such that p(q) = (1+¢,) f(qlg). Then

D(F(g),P) = — > f(qlg)log (1 +¢,)

q<Q

1
5 2. flalg)e;
9€Q

(11)

14

so that 0 < D(F(g),P) =< (1/2) maxgeq sfl. The sequential
process has to be terminated when the divergence of (10) is
closest to zero or, what is almost the same, when the weighted
sum of the squared relative errors has the minimum value.

The search for a number ¢ of the Gaussians in the model
is based on the integral absolute error E(Aaps, P3,. c) between
the scaled-up absolute deviation A, acting as the density
function and its mixture model P; _¢. The number ¢ of the
components is increasing sequentially by unit step until the
error E(-) begins to increase. Once again, due to the multi-
ple local maxima, the search has to be repeated several times
with different initial parameter values as to select the best ap-
proximation.

Now the final mixed model P has to be split into the two
parts by relating the subordinate components to either the
object or the background so as to minimize the expected er-
ror of classification. Let the two dominant Gaussians with
the means y; and pp, 0 < p1 < Y2 < Gmax> correspond to
the background and the object, respectively. Then the subor-
dinate components having the mean values greater than
and lesser than y; belong to the object and the background,
respectively. Other components having the means in the in-
terval [y, 4] are compared to a threshold ¢ in that interval
as to get the minimum classification error

ew=| pa2dg+ | pade  a2)

2.2. High-level region model

We describe the region maps as samples of a simple auto-
binomial Gibbs model [13] such that a region label I(x, y) in
the pixel (x, ) € R depends on only its four nearest neigh-
bors [(x+&, y+n:); (&, 1) € N = {[1,0];[1,1]; [0, 1];[1,1]};
i =1,...,4. The model is specified with the Gibbs probability
distribution:

4
P(l) = % exp (Ul(l) +> Uz,i(l)), (13)

i=1

where Z is a normalizing factor (the partition function)
and U;(I) and U,;(I) denote partial energies of pixelwise
and pairwise interactions of region labels. The energies are
the sums of Gibbs potentials {Vi(kla) : k € K} and
{V2,i(j,kIAi) : (j,k) € K x K} depending, respectively, on
the labels k = I(x, y) in the individual pixels and on the label

cooccurrences (j = I(x, y),k = l(x+ &, y + 1)), (&, n:) €N,
in the pairs of similarly oriented neighbors:

U= > Vi(l(x, ),
(x,y)€R

Uni(D) = > Vaillte, p), lx+ &,y +11)).
(x,y)€R

(14)

Each partial energy can be represented in terms of the po-
tentials and relative frequency distributions of the labels
Fnap() = {f(kll) : k € K} and their cooccurrences
Fimap(D) = 1f(j, klD) : (j, k) € Kx K} over the region map [.
These distributions are sufficient statistics of the model and
allow for obtaining rough analytical first approximations of
the potentials. The derivation scheme in [11] modified to
better fit our model results in the following first approxima-
tions of the initial potential values:

Vi(k) = —log f(klD),

Vo,i(j k) = y(fi(G, k1D = fGID - f(kID)). 1)
The scaling factor y can be also computed using the distribu-
tions Frqp(I) and Fimap(1), i = 1,..., 4.
Under the assumed continuity of and symmetric rela-
tionships between the two regions, all the potentials are bi-
valued:

/\'i) ] = k)

16
_Ai) ] 7é k) ( )

Vik) = a - k; Va,ij, k) = ‘|

witha>0andA; >0,i=1,...,4.

To find the region map which maximizes the likelihood
in (1), the potential estimates are refined using the genetic
algorithm (GA) [23]. Because the partition function Z is un-
known, it is approximated as proposed in [6]:

4
Z~ > Dexp (Vl(k)+z > Vz,i(k,j))- (17)

(x,y)€R keK i=1 jeK

To implement the GA optimization, the parameters « and A;,
i =1,...,4, in (16) are coded into a GA 20-bit “chromo-
some” using four bits per value. While the approximate log
likelihood of (1) continues to increase, the following steps
are repeated iteratively.

(1) Form a randomized population of N = 30 chromo-
somes from the top-ranked chromosomes for the previous
iteration.

(2) Refine the initial region map using the Metropolis
stochastic relaxation [13] with the potentials coded in each
chromosome.

(3) Compute the log likelihood value for each chromo-
some using the refined map.

Therefore, the whole segmentation process is as follows.

Initialization: find an initial map by the Bayesian MAP
classification of a given grey-scale image as shown in
Section 2.1.
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FIGURE 2: Typical slice from a chest spiral CT scan.

Iterative refinement: refine the initial map by repeating it-
eratively the following two steps:

(1) estimate the higher-level model which gives the maxi-
mum increase of the approximate log likelihood of the
current region map, given the lower-level image model;

(2) recollect the empirical grey-level densities for the cur-
rent regions, reapproximate these densities, and update
the map using the pixelwise Bayesian classification.

Because at each step the approximate log-likelihood is greater
than or equal to its previous value, the proposed algorithm
converges to a locally optimum solution. Typical changes of
the log-likelihood values in (1) at each iteration of the pro-
posed algorithm are shown in Figure 1.

3. EXPERIMENTAL RESULTS

To assess robustness and computational performance, the
proposed segmentation technique has been tested on three
different medical imaging modalities. The images include
axial human chest slices obtained by spiral-scan low-dose
computer tomography (LDCT), axial human head slices ob-
tained by time-of-flight magnetic resonance angiography
(TOF-MRA), and axial human head slices obtained by
magnetic resonance imaging (MRI). The two latter types
were acquired with the Picker 1.5T Edge MRI scanner.

FiGure 3: Empirical density F(g) = (f(q) : g € Q) versus the dom-
inant mixture P, = (p,(q) : q € Q).

TaBLE I: Initial (the upper row) and final (the bottom row) param-
eter estimates for the dominant Gaussians.

wy W o? Wy W o7
0.219 36.2 210.6 0.781 166.4 315.9
0.242 39.9 225.7 0.758 170.8 303.6

The TOF-MRA 512 x 512 and MRI 256 x 256 slices were
1 mm thick. The 8 mm thick LDCT slices were reconstructed
every 4 mm with the scanning pitch of 1.5 mm.

In all the cases, the number of classes (i.e., domi-
nant modes in the model) is specified by the user, and all
other parameters are estimated by the proposed techniques.
Section 3.1 discusses experiments with bimodal LDCT im-
ages. Experiments with three-modal MRA images and four-
modal MRI images are described in Sections 3.2 and 3.3, re-
spectively.

3.1. Lungs segmentation in LDCT images

We applied the proposed algorithm to a medical screening
problem of separating lung tissues from the surrounding
anatomical structures (e.g., chest, ribs, liver) in computer to-
mography (CT) images. The segmentation assumes that each
CT slice has only two regions: the darker one (the lungs) and
their brighter background. Because some lung tissues such
as arteries, veins, bronchi, and bronchioles have grey levels
close to those of the chest, the segmentation based on only
the grey levels may lose some of these tissues. To obtain more
accurate segmentation, our model accounts also for spatial
relationships between the pixels.

Figure 2 shows a spiral CT slice for the chest, and its em-
pirical grey-level density together with the dominant Gaus-
sian mixture are presented in Figure 3. Parameters of the ini-
tial mixture are given in Table 1. The Levy distance [24] of
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FIGURE 4: Deviations A(q) = f(q) — p.(q) and the absolute devia-
tions |A(g)| between the densities in Figure 3.

0.015
0.5
h"*——4———*———&———0———4\__*
0.45 \ 0.01
\
0.4 \ g
\ w
\ [=}
\ a
. 035 !
IS \
g \ 0.005 |
=03t \ |
1
\
0.25 \
\\
02} \ ‘ : ) . .
L 0 50 100 150 200 250
0.15 : - : ' !
2 4 6 8 10

Number of components

FiGure 7: Empirical and estimated densities for the CT slice in
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ation in Figure 4.
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0.09 between these two distributions indicates a large mis-

match. Figure 4 shows the scaled deviation of the dominant

mixture from the empirical density. Our estimation of the
number of components giving the minimum approximation
error returns the ten Gaussians shown in Figure 5. Figure 6

presents the final result of this approximation.

Figure 7 shows the estimated density after the subordi-
nate linear combination of Gaussians is added to the domi-
nant mixture according to the deviation signs. The Levy dis-

10

LCG components
o

. AN

tance between the empirical and final estimated distributions ) ) ) \/ ) \/ )

is now much smaller (0.02) than before (0.09). 0 50 100 150 200 250
Figure 8 shows the 12 components of the model. The

Bayesian pixelwise classification is repeated for different
partitions of the ten subordinate components. The minimum

FiGure 8: Components of the final density model Py,.
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FiGure 10: Approximation of the signal distribution for the CT slice
in Figure 2 by the conventional mixture of 12 Gaussians.

classification error of 0.0045 on the intersecting distribu-
tion tails is obtained for the threshold + = 108 when
the components 1-3 and 4-10 correspond to the first
class (the lung tissues) and the second class (the chest
tissues), respectively (see the estimates for each class in
Figure 9).

To highlight advantages of using the linear combination
of Gaussians, the same empirical density was approximated
with a conventional mixture of 12 Gaussians. The results are
shown in Figures 10 and 11. The classification error is al-
most three times higher (0.013) because one of the compo-
nents combines the former tails of both classes and cannot

FiGure 11: Densities for the lung and chest tissues in Figure 2 esti-
mated with the mixture of 12 Gaussians (the minimum error 0.013
for the threshold ¢t = 88).

TaBLE 2: The initial and final potentials for the map model for the
LDCT image in Figure 2.

Parameters a A A As Ay
Initial 1 0.81 0.71 0.49 0.51
Final 1 0.89 0.80 0.78 0.69

be related to only the object or the background. Therefore it
comes as no surprise that our segmentation algorithm pro-
duces more accurate lung borders.

The potential estimates for the higher-level Gibbs model
are obtained by maximizing the log likelihood in (1) using
the genetic algorithm and the approximated partition func-
tion described in Section 2.2. The initial and final potentials
are shown in Table 2. Table 1 shows the initial and final pa-
rameters for the dominant components. The final binary
region map produced with these parameters is shown in
Figure 12 together with the initial segmentation using the
low-level model only, and the final region map obtained
with both higher- and lower-level processing. For compar-
ison, we show also the map refined by the Metropolis re-
laxation algorithm with the randomly selected parameters,
the best segmentation of the same grey-level image obtained
with the MRS algorithm [26] having the potential values 0.3
and three levels of resolution resulting in a notably larger
error of 2.3%, the best segmentation obtained by the ICM
algorithm proposed in [6] using the same potential values
0.3 resulting in even larger error of 2.9%, and the “ground
truth,” that is, the segmentation done by a radiologist. With
respect to this latter binary map, the initial pixelwise classi-
fication using the densities approximated by the linear com-
binations of Gaussians is already sufficiently accurate so that
the final refinement results in only a minor improvement.
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€I

(e) (f)

FiGUure 12: (a) Initial lower-level segmentation; (b) final lung
regions (the error of 0.89%); (c) lung regions obtained with the
randomly chosen higher-level parameters (the error of 1.86%); (d)
segmentation by the MRS algorithm with the potential values 0.3
and three levels of resolution (the error of 2.3%); (e) segmenta-
tion by the ICM algorithm with the potential values 0.3 (the error
of 2.9%); and (f) lung regions segmented by a radiologist. The er-
rors with respect to this ground truth are highlighted by the yellow
color.

Figure 13 compares our results to those obtained using the
iterative thresholding proposed by Hu and Hoffman [25]. In
contrast to their method, our segmentation does not lose ab-
normal lung tissues.

But the ground truth given by the radiologist may con-
tain by itself errors due to hand positioning instabilities dur-
ing the manual segmentation. In order to better measure the
accuracy of our approach, we have created a phantom with
the same grey-level distribution as the above CT slices. The
phantom, its ground truth, and our segmentation are shown
in Figure 14. The error 0.091% between the found regions
and the ground truth confirms the high accuracy of the pro-
posed approach.

The above experiments as well as additional experiments
with 120 different bimodal LDCT slices have shown that our

The error: 0.98% The error: 1.09%

(b)

2 X2

The error: 3.01% The error: 13.1%

(c)

€) ©

(d)

FiGure 13: (a) Original CT slices; (b) our lung regions (the seg-
mentation errors are only around the outer edge); (c) segmentation
by the method in [25]; and (d) regions given by a radiologist. The
errors are highlighted by the yellow color.

segmentation yields much better results than several more
conventional algorithms. As indicated in Table 3, the most
accurate algorithm among these latter algorithms, namely,
the MRS [26], has the larger error range of 1.9-9.8% and
the mean error of 5.1% with respect to the ground truth.
Our segmentation has the notably smallest error range of
0.21-3.25% and its mean error of 0.72% is more than ten
times less.
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[9)
FIGURE 14: (a) Generated phantom; (b) ground-truth image (black
lung and grey chest regions); (c) our segmentation (the error of
0.091% around the outer edge is highlighted by the yellow color).

(a)

TABLE 3: Accuracy and time performance of our segmentation in
comparison to the three conventional algorithms (IT [25], MRS [7],
and ICM [6]).

Segmentation algorithm

Characteristics

Ours IT MRS ICM
Minimum error (%) 0.21 2.81 1.9 2.03
Maximum error (%) 3.25 21.9 9.8 17.1
Mean error (%) 0.72 10.9 5.1 9.8

Standard deviation (%) 0.81 6.04 3.31 5.11
Average time (s) 117 197 91 125

TaBLE 4: Initial parameter estimates for the dominant Gaussians for
the MRA image in Figure 15a.

Class
Parameter Bones and fat  Brain tissues  Blood vessels
Mean (u) 24.7 105.7 210.7
Variance (0?) 126 318 250
Weight (w) 0.518 0.456 0.026

3.2. Segmenting MRA images: blood vessels

Precise segmentation with three dominant modes is obtained
in a similar way. Figure 15 shows an MRA image and its
three-modal empirical grey-level distribution approximated
with the dominant three-component normal mixture. The
three classes represent dark bones and fat, brain tissues, and
bright blood vessels, respectively. The goal is to separate the
latter class in spite of its large intersection with the second
class and the very low prior probability. Initial parameters of
the dominant mixture are given in Table 4, and the Levy dis-
tance of 0.08 indicates a big mismatch between the mixture
and the empirical distribution. Figure 16 shows the scaled
deviations between these two distributions as well as the six
estimated subordinate Gaussians giving the minimum ap-
proximation error.

Figure 17 shows the approximated absolute deviation
and the whole model obtained after the subordinate parts
are combined with the dominant mixture. The resulting Levy

0.018
0.014
=
2 0.01
U
a
0.006
0.002
0 50 100 150 200 250
q
— fl@

— p3(q)

(b)

FIGURE 15: (a) Typical TOF-MRA scan slice and (b) the deviations
between the empirical distribution and the dominant mixture.

distance between the empirical distribution and the model
decreases to 0.01 from the original value of 0.08. The mini-
mum classification error of 0.01 on the intersecting distribu-
tion tails is obtained for the separation thresholds t; = 57
and t, = 190. In this case, the subordinate Gaussians 1—
3, 4-5, and 6 correspond to the first (bones and fat), sec-
ond (brain tissues), and third (blood vessels) classes, respec-
tively. The nine components of the whole model are shown
in Figure 17¢, and the estimated individual models for each
class are shown in Figure 17d.

Figure 18 presents the initial and the final region maps
for the third class. The first eight iterations of the map
refinement converge to the final region map shown in
Figure 18b having the error about 0.51% with respect to
the expert’s “ground truth” in Figure 18c. The initial and
final potentials for the map model for the MRA image in
Figure 15a are shown in Table 5. The final estimated param-
eters for the dominant Gaussians of the model are shown in
Table 6.
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FIGURrE 16: (a) Estimated subordinate components of the absolute deviation and (b) the absolute error as a function of the number of
Gaussians approximating the scaled absolute deviation in Figure 16a.
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FIGURE 17: (a) Subordinate mixture estimated for the absolute deviation in Figure 16a; (b) the empirical and estimated densities for the MRA
image in Figure 15a; (c) the model components; and (d) the individual models of the classes “bones,” “brain tissues,” and “blood vessels.”
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FIGURE 18: (a) Initial and (b) final segmentation of blood vessels by our approach (the final error of 0.51%); (c) the ground truth (blood
vessels outlined by a radiologist); and (d) the convergence of the proposed algorithm for the experiment in Figure 15a. The errors are

highlighted by the yellow color.

TaBLE 6: Final parameter estimates for the dominant Gaussians for

TaBLE 5: Initial and final potentials of the map model for the MRA
the MRA image in Figure 15a.

image in Figure 15a.
Parameters o M Ay A3 A4 Class
Parameter
Initial 1 0.08 0.05 0.09 0.09 Bones and fat  Brain tissues  Blood vessels
Final 1 0.16 0.11 0.17 0.15 Mean (;4) 23.2 101.5 208.9
Variance (0?) 99 329 270
Weight (w) 0.52 0.451 0.028

3.3. Segmentation of brain tissues

Figure 19 shows a weighted T2 MRI image and its four-
modal empirical grey-level distribution approximated with
the dominant four-component normal mixture. The four
classes represent dark bones and fat, gray matter, white mat-
ter, and cerebrospinal fluid (CSF), respectively. The goal is
to separate these classes with the minimum classification er-
ror. Initial parameters of the dominant mixture are given
in Table 7. The Levy distance of 0.11 indicates a large mis-
match between the empirical distribution and the dominant

mixture. Figure 20 shows the scaled deviations of the dom-
inant mixture from the empirical distribution and the
changes of the approximation error for the increasing num-
ber of components. The minimum error is obtained for the
16 subordinate Gaussians. Figure 21a presents this initial es-

timate.
Figure 21b shows the estimated model after the subor-

dinate components are combined with the dominant mix-
ture. The resulting Levy distance between the empirical
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F1GUrE 19: (a) Typical MRI T2 weighted image and (b) the deviations between the empirical distribution and the dominant mixture.
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FiGURrk 20: (a) Estimated subordinate components of the absolute deviation and (b) dynamics of the error as a function of the number of
Gaussians approximating the scaled-up absolute deviation in Figure 20a.

TasBLE 7: Initial parameter estimates for the dominant Gaussians for
the MRI image in Figure 19a.

Class
Parameter Bones White Gray
CSF
and fat matter matter
Mean (u) 21.7 82.0 128.6 205.0
Variance (0?) 171.1 192.6 892.7 337.4
Weight (w) 0.23 0.49 0.19 0.09

distribution and the model decreases to 0.02 from the orig-
inal value of 0.11. The minimum classification error of
0.01 on the intersecting distribution tails is obtained for
the thresholds t; = 53, &, = 110, and 3 = 179 when
the components 1-3, 4-8, 9-12, and 13-16 are assigned to

the first (bones and fat), second (white matter), third (gray
matter), and fourth (CSF) classes, respectively. The twenty
components of the model are shown in Figure 21c, and
the estimated individual models of each class are shown in
Figure 21d.

The map refinement process converges after 15 iterations
as shown in Figure 22d. The initial and final potentials are
shown in Table 8. Table 9 shows the final estimated parame-
ters for the dominant Gaussians. Figure 22 presents the ini-
tial and final region maps. The final error is about 3% with
respect to the expert’s map in Figure 22c.

4. CONCLUDING REMARKS

We introduced a novel sequential EM-based algorithm for
accurate segmentation of intrinsically multimodal grey-scale
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FIGURE 21: (a) Subordinate mixture estimated for the absolute deviation in Figure 20; (b) empirical and estimated densities for the MRI

image in Figure 19a; (c) the model components; and (d) the estimated models of the classes “bones,
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TasLE 8: Initial and final potentials of the map model for the MRI
image in Figure 19a.

Y “gray matter,” “white matter,” and

TABLE 9: Final parameter estimates for the dominant Gaussians for
the MRI image in Figure 19a.

Parameters « A A A3 A4 Class
Initial 1 0.25 0.15 0.37 0.35 Parameter Bones  White  Gray CSF
. and fat matter matter
Final 1 0.37 0.29 0.41 0.49
Mean (u) 22.9 83.8 125.5 207.0
Variance (0?) 190.1 201.6 780.6 299.4
Weight (w) 0.22 0.5 0.195 0.085

images. The empirical probability distribution of grey lev-
els is approximated by a mixture of linear combinations of
Gaussians more precisely than by a conventional mixture of
Gaussians. This results in a high-quality initial segmentation
map that needs only a small refinement by further process-
ing based on the joint Gibbs random field model of region

maps and grey-scale images. The model parameters are esti-
mated analytically and then refined using a genetic optimiza-
tion technique.
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FIGURE 22: (a) Initial and (b) final segmentation by our approach (the final error of 3%); (c) the ground truth by an expert; and (d) the

convergence of the proposed algorithm for the experiment in Figure 19a. The errors are highlighted by the yellow color.

Our experiments confirm that the proposed algorithm
segments complex images in some medical applications
more precisely than other known techniques. The algorithm
is also suitable for approximating different empirical data
curves with linear combinations of Gaussians. Future exten-
sions will include the like approximation of multivariate den-
sities, other Gibbs models for the higher level, and the use of
stochastic optimization techniques for estimating the mod-
els’ parameters.
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