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A novel adaptive scene-based nonuniformity correction technique is presented. The technique simultaneously estimates detector
parameters and performs the nonuniformity correction based on the retina-like neural network approach. The proposed method
includes the use of an adaptive learning rate rule in the gain and offset parameter estimation process. This learning rate rule, to-
gether with a reduction in the averaging window size used for the parameter estimation, may provide an efficient implementation
that should increase the original method’s scene-based ability to estimate the fixed-pattern noise. The performance of the proposed
algorithm is then evaluated with infrared image sequences with simulated and real fixed-pattern noise. The results show a signi-
ficative faster and more reliable fixed-pattern noise reduction, tracking the parameters drift, and presenting a good adaptability to
scene changes and nonuniformity conditions.
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1. INTRODUCTION

Infrared detectors are widely used in a variety of applica-
tions such as defense, surveillance, remote sensing, and as-
tronomy. Usually, the infrared imaging sensors are based on
the infrared focal-plane array (IRFPA) technology [1, 2, 3].
An IRFPA can be considered as an array of independent de-
tectors aligned at the focal plane of the imaging system. Un-
fortunately, every detector on the IRFPA can have different
responses under the same stimulus, what is considered as the
nonuniformity problem, leading then to the presence of a
fixed-pattern noise (FPN) in the resulting images. Further-
more, this FPN presents a noticeable temporal drift, which is
even severe in uncooled infrared systems.

Under this scope, nonuniformity correction (NUC) is a
necessary and unavoidable task to be performed in order to
achieve higher-quality infrared images, or image sequences,
eliminating thus the unwanted FPN. In this way, NUC tech-
niques normally assume a linear model for the detectors,
characterizing the nonunifomity response problem as a gain
and offset estimation problem per detector.

The most accurate NUC methods are based on the use
of uniform infrared sources, where the simplest and most
used one is the two-point calibration [4], which employs two

blackbodies at different temperatures to calculate the exact
gain and offset of each detector on the IRFPA through the use
of a simple line fitting procedure. However, these reference-
based NUC methods must be often repeated in order to fol-
low the temporal drift of the nonuniformity characteristic
parameters, necessarily halting the normal operation of the
system to allow the use of the blackbody sources, interrupt-
ing the scene anyway.

On the other hand, scene-based NUC techniques only
make use of the readout infrared data captured during the
normal operation of the imaging system, reducing the op-
tical setup complexity, and avoiding scene interruptions.
Nonetheless, the scene-based approach is well known for
requiring higher computational resources (memory and
MFLOPS), and also for achieving less accurate results com-
pared to the calibration methods. The larger memory re-
quirements are related to the use of block of frames to per-
form the gain and offset estimation in a consistent way, ne-
glecting the drift on the parameters over the block duration.
The accuracy, or nonuniformity correction performance, is
up to the algorithm used, the scene variation, and the size of
the block of frames previously chosen. That is the case of the
constant statistics (CS) method, first developed by Naren-
dra in [5], and lately revisited and enhanced by Harris and
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Chiang [6], where, in spite of its simplicity, the achieved per-
formances are strongly dependent on the scene diversity, or
motion, which can only be compensated using larger blocks
of data to reinforce the needed statistics. Anyway, and follow-
ing the same block-based approach, many other efforts are
recently being devoted to the development of novel scene-
based techniques [7, 8, 9, 10, 11, 12], taking advantage of
advanced image processing techniques apart from the classi-
cal statistics, such as motion vectors, image registration, and
Wiener and Kalman filtering. However, and regardless of the
scene-based NUC technique employed, the intrinsic scene-
data dependence is in most of the cases responsible for a no-
ticeable performance degradation, specially when the NUC
methods are applied over scenes with lack of motion and low
contrasts, which could finally constraint the range of applica-
tions where such scene-based methods could be successfully
employed. Thus, the main challenge of all these block-based
NUC methods is to obtain a reasonable NUC performance
using smaller block sizes (fewer data frames), reducing as
much as possible the unavoidable scene data dependence.

Then, and also following the constant need of computa-
tional resources reduction, in this paper, special attention is
given to the adaptive scene-based NUC developed by Scrib-
ner et al. [13, 14]. This method has the ability to estimate the
needed gain and offset parameters under a frame by frame
basis by means of the least mean square (LMS) algorithm
[15], using a retina-like neural network approach. In this
way, the nonuniformity parameters are dynamically updated
as new image frames arrive, and the nonuniformity correc-
tion is simultaneously performed by the same neural net-
work model. With this approach, the algorithm is also able to
track the parameters drift while it is occurring. Nonetheless,
in spite of its straightforward real-time implementation, and
the low computational load required, this method is hard to
set up for providing robustness and independence to the in-
formation provided by the scene data, sacrificing estimation
speed by accuracy or vice versa.

Therefore, seeking for more effectiveness in the use of
the scene information, and also exploiting even further the
tremendous potential of the original Scribner’s method [13],
in this paper, an enhanced version of his NUC technique is
presented. Specifically, the fast adaptive NUC method here
proposed relies on the use of an adaptive learning rate sched-
ule in the parameters estimation update process, based on
a custom variation of the normalized least mean square
(NMLS) algorithm [15]. This adaptive learning rate is cho-
sen to be dependent on the spatial content of the readout
data, constraining thus the speed of the learning process
for each detector on the IRFPA independently. In this way,
faster adaptation is mainly allowed for such detectors (pix-
els) where the input data fits the hypothesis assumed by the
retinomorphic model, as presented by Scribner in his semi-
nal work [13]. This new degree of adaptiveness added to the
Scribner’s NUC method may permit a better and faster esti-
mation for the nonuniformity parameters, which in theory
may lead to an improved overall NUC performance.

This paper is finally organized as follows. In Section 2,
the adaptive NUC technique is presented, and the proposed

enhancements developed. In Section 3, the proposed tech-
nique is tested and compared using sequences of infrared
data with simulated nonuniformity. In Section 4, the tech-
nique is analyzed when applied to sequences of real infrared
data. The conclusions obtained are summarized in Section 5.

2. ADAPTIVE SCENE-BASED NUCMETHOD

The goal of this paper is the development of a novel adaptive
scene-based NUCmethod for reducing the FPN in a fast and
reliable frame by frame basis. Then, we start from an avenue
introduced by Scribner et al. [13, 14], briefly showing and ex-
plaining their retina-like neural net NUC method, and after
discussing its weaknesses and drawbacks, we finally motivate
the introduction of our proposed innovations.

2.1. Method description

First, we assume that each infrared detector is characterized
by a linear model. Then, for the i jth detector in the focal-
plane array, the measured readout signal Yij at a given time n
can be expressed as

Yij(n) = gi j(n) · Xij(n) + oi j(n), (1)

where gi j(n) and oi j(n) are the gain and the offset of the i jth
detector, and Xij(n) is the real incident infrared photon flux
collected by the respective detector. As proposed by Scribner,
(1) is reordered as follows:

Xij(n) = wij(n) · Yij(n) + bi j(n), (2)

where the new parameterswij(n) and bi j(n) are related to the
gain and offset parameters of each detector as follows:

wij(n) = 1
gi j(n)

, bi j(n) = −
oi j(n)

gi j(n)
. (3)

The expression presented in (2) is responsible for per-
forming the nonuniformity correction on the readout data.
Then, for each i jth detector, the NUC model (2) can be con-
sidered as the simplest neural network structure [16], which
consists of a single linear neuron node with a weight wij(n)
and a bias bi j(n). Thus, the readout data Yij(n) is the input
to the i jth neuron, and its output Xij(n) is now the estima-
tion obtained for the real infrared data. The entire array of
single-input/single-output linear neurons finally constitutes
the neural network structure for the Scribner’s adaptive NUC
method.

This neural network approach allows the use of linear re-
gression techniques to perform the estimation of each neu-
ron’s parameters. To accomplish this estimation task, the
needed error function Ei j(n) is defined as the difference be-
tween a desired target value Tij(n) and the estimated infrared
data Xij(n) (4). Moreover, and inspired on an analogy with
biological retina-like processes, the target value proposed by
Scribner is assumed as the local spatial average, ormean filter,
of the output dataXij(n) (5). This assumption is based on the
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retinomorphic hypothesis, which states that there is a higher
probability for a given detector, and its surrounding neigh-
bors, of being illuminated by the same infrared irradiance
level. Therefore, the error function is finally given by

Ei j(n) = Tij(n)− Xij(n), (4)

where the desired target value Tij(n) is calculated as

Tij(n) = 1
(2v + 1)2

i+v∑
k=i−v

j+v∑
l= j−v

Xkl(n), (5)

and 2v + 1 is the kernel neighborhood, or averaging window
size. As a remark, in Scribner’s related work [13, 14], a 21×21
window (v = 10) is chosen as the optimum value for NUC
purposes.

Then, in order to minimize the error Ei j(n) in the mean
square error sense, the functional Ji j and its partial deriva-
tives (gradients) related to the desired parameters to be esti-
mated are expressed as follows:

Ji j =
∑
n

Ei j(n)2 =
∑
n

(
Tij(n)− Xij(n)

)2
, (6)

∂Ji j
∂wi j

= −2 · Ei j · Yij ,

∂Ji j
∂bi j

= −2 · Ei j .
(7)

This functional J is minimized only when its both gra-
dients in (7) are equal to zero. Fortunately, and as proposed
by Scribner, this optimization problem can be solved by us-
ing the least mean square (LMS) algorithm [15, 16]. In this
gradient-based search algorithm, also known as the steepest
descent algorithm, the parameters to be estimated are recur-
sively and smoothly updated with a portion of each respec-
tive error gradient, just as follows:

wij(n + 1) = wij(n)− η · Ei j(n) · Yij(n),

bi j(n + 1) = bi j(n)− η · Ei j(n),
(8)

where η is a fixed parameter known as the learning rate,
which has the task of controlling the convergence speed of
the algorithm. Normally, larger values for η can provide a
faster convergence speed, but smaller values can assure bet-
ter stability instead. However, as the learning rate η is a global
parameter for the whole NUC neural network structure, its
chosen value can only be as fast (or large) as more confident
is each error measure Ei j(n) for all the i jth neurons at every
time step n.

Specifically in the NUC sense, the mentioned error confi-
dence is directly dependent on how accurate is the estimated
target value Tij(n) compared to the real incident photon flux
collected by each single detector. Hence, the final responsi-
bility relies on the validity of the retinomorphic hypothesis
and the proper choice of its associated target function.

Nonetheless, the estimated target value for each neuron is
strongly dependent on the scene dynamics and the scene it-
self, affecting not only the accomplishment of the retinomor-
phic assumption, but also the error confidence for the overall
adaptive NUC structure during the continuous adaptive es-
timation process. As a consequence, very small learning rate
values are commonly used, leading to a very slow, but safe,
convergence.

2.2. Fast adaptive NUC development

The latest discussion about the learning rate parameter η,
and its incidence on the speed and robustness behavior of
the NUC algorithm, is the selected starting point for the de-
velopment of the proposed adaptive learning rate rule. The
main idea behind the use of an adaptive learning rate is to
increase the efficiency of the learning process, which in the
adaptive NUC case would help not only in speeding up the
FPN reduction, but also in decreasing the scene data depen-
dence, finally improving the overall NUC performance.

As mentioned before, it is clear that the error measure
is more confident when the target value is as close as pos-
sible to the real incident infrared irradiance. But following
the retinomorphic assumption, when could the target func-
tion perform in such a good way? Well, an accurate behavior
of the target function can only be assured when the spatial
content of a given pixel and its surroundings is as similar as
possible, hopefully only containing spatial noise generated by
the nonuniformity instead of some useful scene information.
In this way, it can be guaranteed that when a spatial mean fil-
ter is used, the calculated value should be a very good spatial
noiseless estimation for that neuron output, so a large learn-
ing rate value could be safely used. On the other hand, when
the spatial content of a pixel neighborhood is too spread,
there are more chances of deviating the target value from the
real desired one, which in the adaptive NUC sense is equiva-
lent to say that the retinomorphic hypothesis is not fulfilled,
and therefore a small value for the learning rate should be
used.

Then, as a basis for developing the dynamic variation of
the adaptive learning rate to be used, we selected the normal-
ized least mean square algorithm (NLMS) [15] in replace-
ment of the LMS. In this algorithm, η is no longer a fixed
number, but a variable one calculated as η(n) = µ/(‖x(n)‖22+
ε), where µ is a constant that fix the maximum allowable
value for η, ‖x(n)‖2 denotes the Euclidean norm of the input
vector x at a given time n, and ε is a small positive constant
used for stability.

Assuming that the adaptive NUC scheme consists in an
array of single neurons with separated parameter estima-
tion processes, we propose the use of an independent adap-
tive learning rate ηi j(n) for each i jth neuron in the adaptive
NUC neural net structure. Moreover, in order to adapt the
NLMS to every ηi j(n), we propose the use of the local spa-
tial standard deviation of the input image σYij (n) as a mea-
sure of distance, replacing the Euclidean norm formerly used
in the original NLMS algorithm. But in order to reinforce
even further the retinomorphic assumption, we also pro-
pose that the input vector for each σYij (n) must consist in the
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Figure 1: Scheme of the proposed fast adaptive scene-based nonuniformity correction method.

Table 1: Statistical parameters to generate the simulated fixed-
pattern noise test image sequences.

ḡ σg ō σo t̄ σt

Test sequence 1 1 0.025 0 5% 0 0.5%

Test sequence 2 1 0.05 0 10% 0 0.5%

same neighborhood used for the desired target Tij(n) cal-
culation. In this way, σYij (n) becomes a confidence measure
of the ability of Tij(n) to fit the retinomorphic hypothesis.
Thus, the adaptive learning rate rule designed for the fast
adaptive NUC algorithm here proposed is expressed as fol-
lows:

ηi j(n) = kalr
1 + σYij (n)

, (9)

where ε = 1 and µ = kalr in respect to the NLMS algorithm.
Thereby, if a given piece of the input image (a pixel and its
neighbors) is smooth enough, then the desired averaged tar-
get value at the output is more confident, and the learning
rate assumes larger values. On the other hand, if the local in-
put standard deviation in the surroundings of a certain pixel
is too high, like in an object border, the correspondent learn-
ing rate assumes smaller values. Thus, in order to add this
adaptive learning rate to the NUC algorithm, η in (8) must
be replaced by its counterpart ηi j(n).

The overall fast adaptive NUC scheme is presented in
Figure 1, where the input image is the readout data Yij(n),
which enters the adaptive NUC neural net model (repre-
sented by an array of linear neurons) that calculates the cor-
rected image version Xij(n). The local spatial average func-
tion (neighborhood operation 1) is applied to the estimated
corrected image Xij(n), generating thus the target Tij(n) in
order to calculate the error function Ei j(n). The error is then
needed in the steepest descent parameters update algorithm,
where the adaptive learning rate ηi j(n) utilizes the local spa-
tial standard deviation (neighborhood operation 2) of the in-
put image.

3. NONUNIFORMITY CORRECTIONWITH
SIMULATED DATA

Several tests were performed over data sequences with sim-
ulated FPN. The first test was designed for checking the in-
fluence of different averaging window sizes on the adaptive
NUC performance. The second one was designed for study-
ing the adaptive NUC behavior under different learning rate
values. Finally, the simulated noisy sequences were used to
test the proposed method with the adaptive learning rate.
The metric used to measure the NUC performance is given
by the peak signal-to-noise ratio (PSNR), which is widely
used in the image processing literature to quantify the dif-
ferences between two images, and it is defined as

PSNR = 20 log10

(
p

RMSE

)
, (10)

where p is the largest possible value for a single pixel (in this
case p = 216 − 1 for 16-bit images), and RMSE is the root
mean square error of the difference between two images. The
PSNR is finally given in decibel units (dB), and it is used
throughout this paper to measure the overall difference be-
tween a clean reference image against its noisy and nonuni-
formity corrected versions.

3.1. Simulated data preparation

A previously calibrated infrared data sequence with 4000
frames was used to produce image sequences with simulated
nonuniformity. The sequence originally contained scenemo-
tion introduced by moving the camera and by also recording
some moving targets. Two levels of nonuniformity were cho-
sen to generate the fixed gain and offset image masks to pro-
duce the desired fixed-pattern noise appearance over each se-
quence. The selected values for the mean of the gain (ḡ) and
offset (ō), and for the standard deviation of the gain (σg) and
offset (σo), are displayed in Table 1. In addition, a small tem-
poral noise component, with mean t̄ and standard deviation
σt , was finally added on both synthetic sequences to simulate
the common electronic/thermal noise.
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Figure 2: Frame 1602 of the following. (a) Original sequence. (b)
Noisy test sequence 1 (PSNR = 26 dB). (c) NUC with η = 0.005 and
a 21× 21 averaging window (PSNR = 21.14 dB). (d) NUC with η =
0.005 and a 9 × 9 averaging window (PSNR = 24.78 dB). (e) NUC
with η = 0.005 and a 3 × 3 averaging window (PSNR = 31.60 dB).
(f) NUC with a 3 × 3 averaging window and an adaptive learning
rate using kalr = 0.075 (PSNR = 35.07 dB).

The generation of the test sequence 1 was based on the
statistics of real-life measurements on typical IRFPA systems.
On the other hand, test sequence 2 was generated with the
double of the spatial noise over the gain and offset, just for
testing the ability of the methods under stronger FPN con-
ditions. In this way, each synthetic noisy sequence achieved a
constant image quality of 26 dB and 20 dB, respectively, over
their whole length. An image sample of the original clean se-
quence and its noisy counterpart in test sequence 1 are shown
in Figures 2a and 2b, respectively.

Finally, and in order to perform fair comparisons, all sim-
ulated NUC techniques under analysis have been initialized
with an unitary gain and null offset. Then, the first output
frame is exactly the same as the noisy input one, forcing
the same PSNR value as the starting point for the quality
measure of all the adaptive NUC methods to be tested.

0 500 1000 1500 2000 2500 3000 3500 4000

Frames (n)

20

22

24

26

28

30

32

34

36

38

40

P
SN

R
(d
B
)

21× 21
9× 9
5× 5
3× 3

Figure 3: Comparison of the adaptive NUC performance obtained
with different averaging window sizes when correcting the synthetic
26 dB noisy test sequence using the same learning rate η = 0.005.

3.2. Averagingwindow size analysis

The first experiment was designed in order to test the adap-
tive NUCperformance when the averaging window size, used
to calculate the desired target output, is changed. In addition,
the experiment is repeated for several learning rate values,
checking the degree of relationship between both adaptive
NUC parameters.

As an example, the performance chart over the whole test
data sequence, corrected using η = 0.005, can be observed in
Figure 3, where it is noticeable that for larger window sizes
the performance is worst than the one achieved with smaller
values, and it is even noisier than the original 26 dB level of
the test sequence. In this particular case, the performance of
the 3×3 window is practically never surpassed over the whole
sequence length, and it looksmore stable, never going behind
the 32 dB quality.

This can be verified by checking the corrected frame sam-
ples presented in Figures 2c, 2d, and 2e. In that particu-
lar frame, a noticeable amount of ghosting-like artifacts can
be seen, like a piece of the hangar at another position in a
previous frame, appearing over the corrected scene with the
21 × 21 window. It can also be noticed that these artifacts
are being reduced as the window size decreases. Such kind
of behavior can usually happen after even a brief stop on the
scene motion, showing us that the algorithm is very sensitive
to the quality of the target estimation, and to the scene mo-
tion itself. In the particular case when larger window sizes are
used, the estimation is clearly more distorted for the gain and
offset parameters, moving them away from the real nonuni-
formity parameters of the IRFPA, generating a new kind of
FPN finally reflected as ghosting artifacts. Then, the use of
smaller averaging windows looks more robust to the lack of
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Table 2: Mean PSNR for the adaptive NUC sequences obtained with different averaging window sizes and learning rate values over the
synthetic noisy test sequences.

Noise level 26 dB 20 dB

η 0.005 0.0025 0.001 0.005 0.0025 0.001

21× 21 27.6821 29.4850 31.1547 26.8354 28.0028 28.4838

9× 9 30.2413 32.1126 33.3474 28.9378 29.9704 29.7642

5× 5 32.5977 34.0924 34.4145 30.6324 31.0739 29.8505

3× 3 34.5585 35.1503 33.9829 31.5127 30.9352 28.6677

scene motion, reducing the blurring that the averaging filter
will continuously produce to a static scene.

The results of the mean PSNR value for each corrected
sequence are summarized in Table 2, for all the window sizes
and learning rates tested. From the table it can be checked
that for both noisy sequences (26 dB and 20 dB), the 3 × 3
window size have obtained the best overall performance,
achieving 9 dB and 11 dB of respective quality enhancement.
Another relevant issue to be noted when using larger window
sizes is that better performances can be achieved with lower
learning rates. On the other hand, as the window size de-
creases, a slight increase on the learning rates can be used to
enhance the performance. For the highest used learning rate,
the best performance is achieved by the smaller window in
both cases, and for the lower learning rate value the best per-
formance moves to the 5× 5 one, which finally indicates that
smaller window sizes allow the use of faster learning rates.

The clear advantage on the performance issue when
the 3 × 3 window size is used can be explained with the
retinomorphic model assumption, specially if the FPN level
is under normal levels. It is more probable that a pixel and its
neighbors could receive the same amount of infrared photon
flux inside a smaller region, such as a 3×3 one, than in larger
regions such as the 21×21. Then, smaller windows are better
in order to guarantee that the calculated target value is more
confident. Then, apart from adding extra complexity to the
adaptive NUC method, the use of larger averaging windows
is not justified, at least in the case of normal fixed-pattern
noise levels.

3.3. Learning rate analysis

During the previous analysis, it was shown that the use of
smaller window sizes, such as the 3 × 3 one, is recommend-
able to achieve higher NUC performances. Then, the learn-
ing rate analysis will be specially focused in this case. In this
way, the comparison can be performed between corrections
obtained under a very similar quality of the error calculation,
or the desired target estimation, due to the use of the same
retinomorphic function.

Therefore, if the conditions of the scene data lead to a
bad estimation of the target values, and thus in the gain and
offset parameters, then an increase of the learning rate will
only produce a fast decrease on the performance until the
quality of the estimation could be improved, which could
only happen if the scene data allows it. This kind of idea can
be retrieved from the results obtained using three different
learning rate values, which are displayed in Figure 4.
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Figure 4: PSNR results of the synthetic 26 dB noisy test sequence
corrected using different learning rates and the same averaging win-
dow of 3× 3.

From the figure, it is observed that smaller learning rates
have slower and softer performance curves, but much more
stable than for larger values. In this case, the time needed
to adapt to the unknown FPN conditions is extremely large
compared with the use of bigger values. Using η = 0.01
only takes 300 frames to cross the 35 dB barrier, compared
to the 2000 frames needed by the η = 0.001. Nonetheless,
from the graphs it can be seen that increasing the learning
rate can have the same effect of increasing the averaging win-
dow, showing strongest deviations on the quality measure-
ment, reducing thus the robustness. However, such observa-
tion cannot be sustained if only the overall values displayed
in the last row of Table 2 are seen, where with η = 0.005 the
performance is 0.5 dB over η = 0.001, which may be reversed
if only the last half of the results are used to calculate the av-
erage PSNR, just when the slower learning rate is starting to
reach a good performance level.

With the use of a fixed learning rate, the NUC algorithm
is not able to know when the error is good or not to perform
an accurate parameter update towards the nonuniformity
correction, weighting in the same way when favorable or not
so favorable conditions are present, specially in some areas
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Figure 5: PSNR results of the synthetic 26 dB noisy test sequence
corrected using a 21× 21 averaging window with η = 0.001, a 3× 3
averaging window with η = 0.0025, and a 3 × 3 averaging window
with adaptive learning rate of kalr = 0.075.

of the input images, which finally constraints the maximum
value for the learning rate to be used. In addition, smaller
values lead to a very slow achievement of acceptable results.
Therefore, a good balance between correction quality, con-
vergence speed, stability, and scene data dependence must be
considered in order to guarantee a successful use of the adap-
tive NUCmethod, choosing the proper learning rate for each
situation.

3.4. Adaptive learning rate analysis

From both previous analyses, the learning rates which have
provided the best results with the 21× 21 averaging window
proposed by Scribner, and also with the 3 × 3 reduced win-
dow size, are the adaptive NUC parameters selected to per-
form the comparisons against the use of the proposed adap-
tive learning rate. To apply the adaptive learning rate, the 3×3
averaging window is used, mainly because as it was shown in
the previous results too, it allows better use of higher learn-
ing rate values, which is associated with the wanted speed up
of the algorithm, one of the objectives for the proposed new
method.

In Figure 5, the performance chart comparison over the
whole length of the corrected 26 dB noisy sequence is pre-
sented. Again, the improvement achieved by only reducing
the averaging window size is noticeable. In addition, the con-
stant PSNR improvement over the whole corrected sequence
provided by the proposed algorithm with the adaptive learn-
ing rate is also clear, which can also be checked with the sam-
ple frame presented in Figure 2f.

Moreover, from Table 3, it is shown that the best overall
performance achieved was of 36 dB and 32 dB approximately

Table 3: Mean PSNR for the fast adaptive NUC applied to the syn-
thetic noisy test sequences.

Noise level 26 dB 20 dB

kalr = 0.075 36.3050 31.2221

kalr = 0.125 35.6729 32.0483

for both 26 dB and 20 dB noisy test sequences, which is 1 dB
above the best corrections obtained with fixed learning rates.
These results confirm the improvement on the quality when
the adaptive learning rate is used. Nonetheless, it must be re-
called that the value for kalr must be increased as the FPN
level also increases, because as the standard deviation of the
input image logically increases too, if kalr is maintained, the
effective maximum learning rate applied decreases, thus re-
ducing the allowed gain on speed of the algorithm. Anyway,
with the NUC quality and the satisfactory convergence speed
achieved, plus the stability shown, it looks that the fast adap-
tive NUC method can really grant the needed robustness to
the Scribner’s original algorithm.

4. NONUNIFORMITY CORRECTIONWITH
REAL INFRARED DATA

In this section, apart from using real infrared data, the idea is
to simulate the behavior of the adaptive NUC algorithms un-
der real operational conditions. For that reason, a special ex-
periment was designed for testing the reduction of the FPN,
and thus the ability for estimating the gain and offset param-
eters, checking also the adaptability to scene changes and the
tracking ability to the real parameters drift. Again, the chosen
adaptive NUC method parameters are the ones which have
reached the best performances on the previous simulations:
21 × 21 averaging window with η = 0.001, 3 × 3 averaging
window with η = 0.0025, and finally the adaptive learning
rate version with a 3× 3 averaging window and kalr = 0.075.

4.1. Real infrared data

A set of real infrared image sequences has been collected us-
ing a 128 × 128 InSb FPA camera (Amber Model AE-4128),
operating in the 3–5 µm range, and working at 30 frames
per second. In this way, five 4000-frame data sequences were
taken sequentially at 6:30AM, 8:00AM, 9:30AM, 11:00AM,
and 1:00PM, during the same day. Moreover, an additional
data sequence was taken at an unknown time with the same
camera.

4.2. Experiment design

The proposed experiment is based on a simulation of the
turn-on and turn-off operation of a real camera, taking ad-
vantage on the variety of the real infrared data available. In
this way, the experiment is useful to check the adaptability
of the different algorithms under furtive and unexpected
changes in the scene, and also their abilities to estimate
quickly or not the unknown FPN and its drift.

In order to perform the intended experiment, subblocks
of 400 frames of each one of the 6 available real IR sequences
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were selected and then merged in a unique long sequence,
keeping the chronological order, but placing the unknown
time subsequence before the last subsequence of the 1:00PM.
Then, the final 2400-frame sequence of real infrared data is
corrected by the adaptive NUC algorithms under test, in-
cluding the proposed new version. Therefore, as the NUC
algorithms are applied, the last calculated parameters for
each subsequence seem to be virtually stored (they are always
stored from any given frame to the next one), simulating thus
when the camera is turned off. These stored parameters are
obviously used then as the initial conditions for the gain and
offset of the next data subsequence to be corrected, simulat-
ing this time when the camera is turned on.

4.3. Performance analysis

Unfortunately, when dealing with real infrared images, it is
not always possible to have, or obtain, the calibration data
needed all the time to perform a radiometrically accurate
correction to be used as a reference for comparison purposes,
so the PSNR cannot be calculated. However, the roughness
index ρ is often used in the literature [11, 12] as a measure
or indicator of the amount of fixed-pattern noise present in
a real image, which could also be understood as the degree
of nonuniformity on the detector’s parameters. The index is
calculated as follows:

ρ =
∥∥h1 ∗ I

∥∥
1 +
∥∥h2 ∗ I

∥∥
1

‖I‖1 , (11)

where h1 and h2 are a horizontal and vertical difference filter,
respectively, I is the image under analysis, ‖ f ‖1 is the l1 norm
of f , and ∗ represents discrete convolution. Specifically, the
lower the value for ρ, the less the fixed-pattern noise is and
vice versa.

After the nonuniformity correction over the whole test
sequence was done using the selected algorithms, the rough-
ness index ρ was measured for the corrected sequences, and
also for the original noisy sequence as a reference for estab-
lishing the effective FPN reduction. Results of the perfor-
mance obtained are presented in Figure 6.

When checking the roughness on the real infrared data
sequences (original noisy), it is possible to appreciate the
stepwise behavior of the FPN level presented on the transi-
tion between the different scenes, or subsequences. As a mat-
ter of fact, the nonuniformity level shows a progressive in-
crease as the time of the capture advances too (between sub-
sequence 1 and 4). That happens due to the increase of con-
trast as the daylight becomes stronger (more infrared irradi-
ance), enlarging then the usage of the dynamic range of the
system, which also helps in amplifying the FPN level, demon-
strating thus the effect of the gain nonuniformity. Then, it
can also be inferred that the subsequence 5, taken at an un-
known time, was maybe captured at night.

Now evaluating the NUC results, it can be seen that
when the scenes are presented in a sequential order (sub-
sequences 1 to 4), the stored parameters between the scene
transitions seem to be quite useful for continuing estimating
the FPN. The distances between the roughness achieved by
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Figure 6: Roughness index ρ for the turn-on/turn-off experiment
using 6 subblocks of real infrared data sequences (S1-S6). Compari-
son between the original noisy data and different corrected versions
obtained with the adaptive and the proposed fast adaptive NUC
method.

all the NUC variations are decreasing as the frame number
advances, finally merging at the end of the fourth sequence,
reaching a similar level of FPN, and producing very similar
visual results at that point. This indicates that the drift of the
parameters is very small between scenes taken the same day.

On the other hand, when subsequence 5 (frames between
1601 and 2000) is presented to the NUC algorithms, it seems
that the real gain and offset parameters for that sequence
were completely different from the ones that the algorithms
have estimated successfully using the previous subsequences.
Special attention may be given to the roughness of the first
frame (1601), where the values for the NUC methods sur-
passed surprisingly the original FPN of the noisy scene it-
self. In this way, the nonuniformity parameters previously
calculated for the scene subsequence 4, which have already
achieved a good NUC performance, suddenly become com-
pletely useless as starting point for the next subsequence. The
same situation happens again with the next scene transition
(subsequences 5 to 6), because as the parameters are adapt-
ing again to the newer unknown nonuniformity conditions
of subsequence 5, they are also moving away from the ex-
pected NUC parameters for the 1:00PM subsequence, which
would logically be closer to the ones already estimated at the
end of subsequence 4.

From the same graph of Figure 6, and during the first
subsequence (frames 1 to 400), it can be noticed that while
all the normal adaptive NUC methods have almost a linear
decreasing behavior, an important exponential decrement of
the roughness was obtained with the adaptive learning rate
version. Next, and during the following subsequences 2, 3,
and 4, the fast adaptive NUC just maintains its performance
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Table 4: Mean roughness ρ for the adaptive and fast adaptive NUC versions of the real infrared test sequences.

Sequence number
ρ

1 2 3 4 5 6 1− 6

Original noisy IR 0.0646 0.0833 0.0928 0.1031 0.0188 0.1003 0.0771

η = 0.001, 21× 21 0.0545 0.0590 0.0613 0.0655 0.0535 0.0672 0.0601

η = 0.0025, 3× 3 0.0422 0.0460 0.0529 0.0617 0.0452 0.0683 0.0527

kalr = 0.075, 3× 3 0.0269 0.0414 0.0505 0.0599 0.0150 0.0617 0.0426

around less than a half of the roughness of the original noisy
data, while the other algorithms start to approximate such
performance every sequence until all of them finally achieve
a similar performance near the frame 1600. Continuing with
subsequence 5, although all the NUC algorithms start from a
very high roughness value (almost 4 times the original noisy
roughness), the adaptive learning rate version provides again
a very fast reduction on the roughness, just like it happened
in subsequence 1, but this time even quicker. In this case, the
fast adaptive NUC version crosses the original noisy rough-
ness after less than 60 frames (2 seconds) of the subsequence,
and it also reaches half of the original noisy roughness before
the end of the same sub-sequence, while the other algorithms
are still over the original roughness level.

Additionally, results of the mean roughness over each
sequence are presented in Table 4. Again, the fast adaptive
NUC version here proposed achieves the best roughness in-
dex (smaller) over all the subsequences, being the best algo-
rithm in the fixed-pattern noise reduction sense, followed by
the constant learning rate with the 3 × 3 averaging window,
and by the 21× 21 window size proposed by Scribner.

The latest evaluation is even clear when the video se-
quences generated with the data are visually analyzed. Frame
samples at different stages of the nonuniformity correction
process developed over the experiment are presented in Fig-
ures 7, 8, and 9.

All of the frame samples shown correspond to the frame
150 of each individual subsequence. In Figure 7, results at
the very early scene of the 6:30 AM are presented, where the
proposed adaptive learning rate algorithm almost eliminated
the FPN after only 5 seconds of the video scene (150 frames,
at 30 fps). However, in Figure 8, related to the third subse-
quence, the visually achieved FPN level is very similar be-
tween all the adaptive NUC versions, which is also confirmed
by the roughness value. Finally, both adaptive NUCmethods
using constant learning rate in Figure 9 were unable, after
150 frames, to adapt to the new FPN of the given fifth subse-
quence, presenting even more spatial noise than the original
image to be cleaned. But with the adaptive learning rate, the
spatial noise seems to be already partially removed.

5. CONCLUSIONS

In this paper we presented a new scene-based adaptive
nonuniformity correction method, proposing a novel way to
speed up in a robust way the ability of the original algorithm
to reduce the undesired fixed-pattern noise, typically pro-
duced by the infrared focal-plane array detectors. It was

(a) (b)

(c) (d)

Figure 7: Adaptive NUC results on real infrared data sequence
taken at 6:30 AM. (a) Real infrared data (ρ = 0.0646). (b) NUC
with η = 0.001 and a 21 × 21 averaging window (ρ = 0.0545). (c)
NUC with η = 0.0025 and a 3× 3 averaging window (ρ = 0.0422).
(d) NUC with a 3× 3 averaging window with adaptive learning rate
using kalr = 0.075 (ρ = 0.0359).

shown through the simulations that the performance of the
adaptive NUC algorithm can be improved drastically by us-
ing smaller averaging window sizes, at least for normal spa-
tial noise levels. This smaller windows, used for estimating
the gain and offset parameters for the detectors, allowed
the use of larger learning rate values, which means faster
adaptability but less robustness. Nevertheless, the introduc-
tion of the proposed adaptive learning rate rule permitted
a safe increase in the effective learning rate used, speed-
ing up the achievement of high-performance nonuniformity
corrections, avoiding also the formation of the undesired
ghosting artifacts. After several tests under real operational
conditions using real infrared data, our proposed fast adap-
tive NUC method showed the best performance in reducing
quickly the fixed-pattern noise, adapting also to abrupt scene
changes and different nonuniformity conditions. Anyway,
further research may include studies on the use of additional
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(a) (b)

(c) (d)

Figure 8: Adaptive NUC results on real infrared data sequence
taken at 9:30 AM. (a) Real infrared data (ρ = 0.0928). (b) NUC
with η = 0.001 and a 21 × 21 averaging window (ρ = 0.0613). (c)
NUC with η = 0.0025 and a 3× 3 averaging window (ρ = 0.0539).
(d) NUC with a 3× 3 averaging window with adaptive learning rate
using kalr = 0.075 (ρ = 0.0519).

information for calculating the adaptive learning rate rule, in
order to improve even more the performance and robustness
of the new technique.
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