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The majority of traditional research into automated fingerprint identification has focused on algorithms using minutiae-based
features. However, shortcomings of this approach are becoming apparent due to the difficulty of extracting minutiae points from
noisy or low-quality images. Therefore, there has been increasing interest in algorithms based on nonminutiae features in recent
years. One vital stage in most fingerprint verification systems is registration, which involves recovering the transformation param-
eters that align features from each fingerprint. This paper investigates the use of orientation fields for registration; an approach
that has the potential to perform robustly for poor-quality images. Three diverse algorithms have been implemented for the task.
The first algorithm is based on the generalized Hough transform, and it works by accumulating evidence for transformations
in a discretized parameter space. The second algorithm is based on identifying distinctive local orientations, and using these as
landmarks for alignment. The final algorithm follows the path of steepest descent in the parameter space to quickly find solutions

that are locally optimal. The performance of these three algorithms is evaluated using an FVC2002 dataset.
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1. INTRODUCTION

Fingerprints have been used as a means of personal identifi-
cation for over a century. Traditionally, the driving force be-
hind advancements in fingerprint technology has been law
enforcement agencies and forensic scientists. Using finger-
prints lifted at a crime scene to identify suspects can be a
crucial step during a criminal investigation. Consequently,
massive fingerprint databases have been collected by law en-
forcement agencies around the world. For example, the FBI
maintains the world’s largest fingerprint database, contain-
ing more than 200 million prints. The administration and
querying of such large databases relies heavily on automated
systems, thereby motivating the early research efforts in the
field.

Another application of fingerprint-based identification
that has emerged more recently is biometric systems. Bio-
metrics is the automatic identification of an individual based
on his or her physiological or behavioral characteristics. The
ability to accurately identify or authenticate an individual
based on these characteristics has several advantages over tra-
ditional means of authentication such as knowledge-based
(e.g., password) or token-based (e.g., key) authentication [1].

Example applications of biometric systems include building
access systems, ATM authentication, and welfare disburse-
ments. Due to its security-related applications and the cur-
rent world political climate, biometrics has become the sub-
ject of intense research by both private and academic institu-
tions.

Due to the continuing needs of law enforcement and in-
terest from the developers of biometric systems, efficient au-
tomated fingerprint identification systems (AFISs) are be-
coming increasingly widespread and are being extensively re-
searched by the pattern recognition community. Most fin-
gerprint matching algorithms are based to some degree on
matching small fingerprint details known as minutiae (see
Section 2). Minutiae are notoriously difficult-extract from
noisy or low-resolution images, causing many difficulties for
minutiae-based algorithms [2]. Therefore, in recent years
there has been increasing interest in algorithms based on
nonminutiae features.

Fingerprint registration is a vital stage in most finger-
print matching algorithms. In order to determine the de-
gree of similarity between two fingerprints, it is first neces-
sary to align the prints so that corresponding features may
be matched. This paper introduces the novel idea of using
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FIGURE 1: (a) A fingerprint and (b) its orientation field.

orientation fields for fingerprint registration, which has the
potential to perform robustly for poor-quality fingerprint
images. Three orientation field registration algorithms are
presented. The first algorithm is based on the generalized
Hough transform, and it works by accumulating evidence for
transformations in a discretized parameter space. The second
algorithm is based on identifying distinctive local orienta-
tions, and using these as landmarks for alignment. The final
algorithm follows the path of steepest descent in the param-
eter space to quickly find a solution that is locally optimal. A
framework for the extensive evaluation of these algorithms is
developed, and experiments are conducted using a publicly
available fingerprint database.

The paper begins with background on fingerprint struc-
ture in Section 2, and a literature review of existing finger-
print registration techniques in Section 3. Registration us-
ing orientation fields is introduced in Section 4, along with
three algorithms implementing this concept. Section 5 de-
scribes the experiments that were conducted to evaluate the
registration algorithms, and is followed by the results and an
analysis in Section 6. Finally, Section 7 closes with some con-
cluding remarks and comments regarding future directions
for this research.

2. FINGERPRINT STRUCTURE

The skin on the palm and fingers of the human hand has the
unique property of being corrugated by a pattern of narrow
ridges and valleys. Of particular interest are the ridges and
valleys at the tips of fingers, known as fingerprints. Figure 1la
shows a sample finger print.

There are two main levels of structure in a fingerprint.
The first level of structure is the global pattern of ridges and
valleys, and this pattern is often summarized using orienta-
tion fields. Orientation fields contain information about the
local average directions of fingerprint ridges (see Figure 1b).

The second level of structure occurs in local fingerprint
regions. Local ridge discontinuities, known as a minutiae,
have little effect on the global ridge-valley pattern. However,
it is the existence and locations of these minutiae that em-
body much of a fingerprint’s individuality. For this reason,
they are the most important and common discriminating
feature used by human experts. There are two basic types of
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FIGURE 2: Fingerprint minutiae. (a) A ridge ending. (b)A bifurca-
tion.

minutiae: ridge endings and bifurcations. Ridge endings are
places where ridges terminate and bifurcations are locations
where a single ridge separates into two ridges (see Figure 2).

Singularities are another important fingerprint structure
that have both global and local properties. Globally, a sin-
gularity is a region of a fingerprint where the ridge pattern
makes it visually prominent. There are two types of finger-
print singularities: cores and deltas. Locally, a core is the
turning point of an inner-most ridge and a delta is a place
where two ridges running side-by-side diverge.

3. FINGERPRINT REGISTRATION

Fingerprint matching algorithms are based on comparing
features from one print against those from another finger-
print, and this process is usually composed of several stages.
One stage that is present in most matching algorithms is reg-
istration. In order to compare two fingerprints to determine
their similarity, it is first necessary to find and remove the
relative transformation between the prints. This process is
known as registration. To be specific, the goal of fingerprint
registration is to find the translation and rotation parameters
that align two fingerprints and their corresponding features.!

3.1. Minutiae-based registration

The traditional approach to fingerprint registration is based
on aligning minutiae features [2]. Given two fingerprint im-
ages, all of the minutiae are extracted from each print and
their location, orientation, and type are recorded. Registra-
tion is based on aligning these two minutiae sets. This is es-
sentially point pattern matching; a well-known problem that
often arises in pattern recognition and computer vision. In
the case of matching minutiae sets, there are a few compli-
cations [2]. First of all, every time a fingerprint is obtained,
a different area of the fingerprint surface may be captured.
Therefore, alignment should be based only on the overlap
area of the prints and the corresponding minutiae subsets.
Secondly, missing and spurious minutiae are common when

n our case, we assume the images have the same resolution and do not
consider scaling. Furthermore, we do not account for nonlinear deforma-
tions.
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FIGURE 3: (a) A poor-quality fingerprint. Minutiae extraction from
(a) would be difficult, however an accurate orientation field (b) has
been computed.

the fingerprint image quality is low (see Figure 3a). There-
fore, the alignment algorithm must allow some minutiae to
be unmatched, even in the area of overlap. Finally, it is well
known that fingerprints deform when pressed against a flat
surface. This nonlinear distortion changes the locations and
orientations of the minutiae, making it impossible to find a
perfect alignment of the sets. Therefore, most registration al-
gorithms attempt to find an alignment that minimizes these
errors. After taking these issues into consideration, it is not
surprising that finding the optimal alignments can be very
difficult.

Ratha et al. [3] estimate the rotation and translation
parameters using the generalized Hough transform. The
Hough transform is a common tool in image analysis that
is normally used for detecting lines in point sets, but it can
be generalized for point pattern matching. The space of all
possible transformations is discretized into a finite set of val-
ues, and this is known as the parameter space. For each pair
of potentially corresponding minutiae (one from the test set,
and one from the reference set) the translation and rotation
necessary to align them is calculated. Evidence for this trans-
lation and rotation is accumulated. After testing all possible
matching minutiae pairs, the translation and rotation pa-
rameters with the most accumulated evidence are selected.
The main drawback of this approach is that it is very compu-
tationally expensive. As the size of the minutiae sets grow, the
number of potentially matching minutiae pairs to be consid-
ered increases exponentially.

3.2. Incorporating supplementary features to
aid minutiae registration

Due to the large number of possible translations, rotations,
and distortions, aligning fingerprints has a high computa-
tional overhead. One common approach used to deal with
this complexity is to incorporate supplementary information
from other fingerprint features to aid the alignment. The fol-
lowing registration algorithms use various features to reduce
the number of plausible parameters.

Local structural features

Hrechak and McHugh use a representation of fingerprints
that is based on local structural relationships among minu-

tiae [4]. For each minutia, the number and types of other
minutiae within a given radius are recorded. This informa-
tion can be used to find potential matches in another minu-
tiae set when the local structure is distinctive, and these po-
tential matches can be used to recover the registration pa-
rameters. Several other approaches based on local structural
features can be found in the literature [5, 6, 7, 8, 9, 10].

Ridge shape

Jain et al. use ridge information as an aid for alignment
[11, 12]. When extracting minutiae, the shape and location
of its associated ridge is also stored. For each possible minu-
tiae pair (one from each point set), if the associated ridges
are similar, the minutiae sets are translated so that the candi-
date minutiae pair are at the same place, and then rotated so
that the associated ridges are aligned. This provides a coarse
alignment of the minutiae sets.

Transformation parameter clustering

Germain et al. have developed a matching algorithm that
uses various properties of minutiae triplets [13]. Originally
developed as a method to index large fingerprint databases, it
employs a clever method to align minutiae sets. For each fin-
gerprint in the database, keys are generated based on minu-
tiae triplets. Given three minutiae, a rotation and trans-
lation invariant key is constructed using the distance be-
tween minutiae pairs, ridge-counts between minutiae pairs,
and minutiae orientation angles. For a query fingerprint, the
same keys are generated and used to find similar minutiae
triplets in the fingerprints database. For each pair of simi-
lar keys, the rigid transformation parameters needed to align
them are calculated, and evidence for these transformations
is accumulated. This process is known as transformation pa-
rameter clustering.

Pixel intensities

A fingerprint verification system presented by Kovacs-Vajna
uses the pixel intensities from the local area of a minutia to
help find minutiae matches [14]. Minutiae regions from the
test and reference images are compared to find potential cor-
respondences. The main drawback of this approach is that
the pixel values around a minutiae point can vary for several
reasons, and dealing with rotation is difficult.

Singularities

All fingerprint classes have at least one core point except for
the plain arch. Since core points are common, they can be
used as aid for fingerprint alignment. Zhang and Wang have
explored this possibility [15]. First the core points from the
two fingerprint images are detected using a multiresolution
algorithm, and are then used as landmarks for registration.
Basically, if a corresponding core point from each image can
be found, it determines the translation parameter. Structural
features of minutiae close to the core point are used to cal-
culate the rotation parameter. This is a powerful and fast ap-
proach to fingerprint alignment assuming that core points



2046

EURASIP Journal on Applied Signal Processing

FIGURE 4: A fingerprint image that does not contain a core or delta
point. Registration methods that require locating a singularity will
fail for images such as this.

can be reliably extracted from fingerprint images. In some
cases (such as plain arches), there will be no existing core
point, so the definition of a core point must be broadened
to include a well-defined position in all fingerprints. A more
serious problem with this approach occurs when the capture
surface is small and does not include the true core point at
all (see Figure 4). Therefore, a robust fingerprint matching
system should not rely solely on singularities for fingerprint
registration.

Orientation fields

Tico and Kuosmanen have developed a registration algo-
rithm that records orientation-field information from the
neighborhood of all minutiae [16]. They define an orienta-
tion based descriptor that is used to find likely minutiae cor-
respondences between the two minutiae sets. Registration is
then based on the straightforward alignment of these proba-
ble correspondences.

Another system using orientation field information has
been developed by Tico and Kuosmanen [17]. K points are
selected from the test fingerprint and the orientation of their
surrounding ridges is computed. The alignment parameters
are estimated by searching for the best fit of these K orienta-
tions over the entire orientation field of the reference finger-
print. The location and orientation of minutiae from both
sets are used to restrict the number of possible transforma-
tions that need to be considered.

3.3. Nonminutiae-based registration

All of the registration algorithms discussed in Sections 3.1
and 3.2 are based to some degree on aligning minutiae
points. However, due to the problems with this approach,
listed in Section 3.1, there is certainly value in algorithms
based entirely on nonminutiae features. Surprisingly, there
are very few registration algorithms that adhere to this con-
cept.

Jain et al. have developed a fingerprint identification sys-
tem that is based on nonminutiae features [18]. Their ap-
proach uses a bank of Gabor filters to capture information
about the orientation and frequency of the fingerprint ridge
patterns. Registration is implicitly based on locating a point
of reference in fingerprints, defined to be the point of max-
imum curvature of the concave ridges. The authors admit
that the reference point is difficult to locate for low-quality

images. More seriously, if the capturing surface is small, this
reference point may not even be captured at all. In this case,
the system is unable to perform matches. Another drawback
of the approach is that the feature vector is not rotation-
ally invariant. This is addressed by storing multiple feature
vectors for each fingerprint in the database, which has obvi-
ous storage and efficiency disadvantages. Park et al. have sug-
gested methods to improve the feature extraction and align-
ment stages of this algorithm [19].

Another system based entirely on nonminutiae features
has been proposed by Ross et al. [20]. The feature extrac-
tion for this system is also based on a bank of Gabor filters.
Alignment is based on correlating feature maps, which has
the advantage of not depending on the extraction of land-
mark reference points. However, the system does not calcu-
late rotation parameters, which is a major weakness.

4. ORIENTATION FIELD REGISTRATION

4.1. Advantages

The approach explored in this paper is the use of orienta-
tion fields for alignment. To our knowledge, this is a novel
approach and there have been no studies using this method
published previously. There are several advantages to this
technique over the traditional methods of fingerprint regis-
tration.

(i) There is no reliance on the existence of landmarks,
such as singularities or minutiae. This is important as these
features may not always be captured in the area of overlap.
As long as there is some overlap between the two fields, the
alignment may proceed independent of the fingerprint re-
gions that have been captured. Furthermore, there are no a
priori assumptions about the amount of overlap necessary.

(ii) Orientation fields have been widely researched [21,
22] and can be reliably calculated for low-quality images,
even when other features can not be extracted, as illustrated
in Figure 3.

(iii) Calculating orientation fields has a relatively low
computational cost. Conversely, extracting other features
(such as minutiae points) may require a lot of processing
(and often extensive image enhancement).

(iv) Orientation fields are a high-level, coarse feature, and
therefore, alignment will not be hindered by the presence of
nonlinear distortions in the prints.

(v) Orientation fields are used extensively in fingerprint
algorithms (e.g., for image enhancement, ridge map extrac-
tion, singularity extraction, etc.) and so they will likely be
available without any additional computation.

The primary disadvantage of using orientation fields to
guide registration is that they will only be able to provide
a coarse alignment. Orientation field elements contain local
averages, and this imposes a fundamental limitation on the
accuracy of the alignment (depending on the size of the ori-
entation field elements). Therefore, for applications requir-
ing a high degree of accuracy, other methods would need to
be employed to fine-tune the parameters generated by orien-
tation field registration. However, even in these cases, having
initial parameter estimates may be very beneficial.
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FIGURE 5: A hexagonal orientation field element and its neighbors.

4.2. Definitions

For this study, every pixel in the fingerprint image is assigned
an orientation value. The orientations are restricted to the
range [—(1/2)m, (1/2)m). Therefore, the two directions & and
a + 7 lie along the same orientation. The orientation field
partitions the image into hexagonal elements (see Figure 5),
which has the advantage that the distance to the center of
the 6 neighboring elements is almost constant (as opposed
to the 8 neighbors of the square grid case). For each orienta-
tion field element, the orientation is calculated as the average
of the orientations of each pixel. After averaging, each pixel
in the element is reassigned this value. The orientation field
can be summarized by a set of vectors (one for each element)
with a position and orientation:

P =1k phph)s- s PPN )

The hexagonal elements used in this study have sides 12 pix-
els long. For an image of size 388 by 374 pixels, this partitions
the image into around 700 elements.

Define the function A of the orientations « and f3 to be the
minimum counterclockwise rotation necessary to align one
orientation with the other. If we assume a > 8, we calculate
A as follows:

Ma, p) = min {(a = p), (B — a+m)}, (2)

which takes a value in the range [0, (7/2)].

The output of registration is the transformation param-
eters (0, Ax, Ay) that are applied to one fingerprint to align
it with another. Let & be a representation of the reference
orientation fleld, and let @ be a representation of the query
orientation field. We define the quality of an alignment to be
the degree of similarity between the orientations of elements
at the same locations in & and @ after the transformation
has been applied to @. Assume @’ is the orientation field ob-
tained by applying transformation parameters to the query
fingerprint. The cost function C of # and Q" is

(@) = () = Mporgp), ®
pq

where p € P, q" € @', the location (q;, q)) is within ele-
ment p in P, and N is the number of overlapping element
pairs. This function assigns a cost to each possible transfor-
mation (60, Ax, Ay) in the parameter space (known as the cost
surface). Low values indicate a high degree of consistency be-
tween the elements in each set, while high cost values are
obtained when the respective orientations differ widely. For
example, Figure 6e would receive a low cost, while Figure 7e
would receive a high one. Although the cost of an alignment
is defined in terms of the vector sets  and @, it should be
kept in mind that the transformation is applied to every pixel
of the query image (and its associated orientation).

4.3. Algorithms

Three diverse algorithms have been implemented for eval-
uation: the generalized Hough transform, alignment of dis-
tinctive local orientations, and steepest descent on the cost
surface.

Generalized Hough transform

The Hough transform is a common tool in image analysis
that is normally used for detecting lines in point sets. How-
ever, it can be generalized to solve other problems [23]. This
algorithm is known as the generalized Hough transform, and
is one approach that has been applied to minutiae-based
alignment (see Section 3.1).

The basic idea behind the generalized Hough transform
is that the space of all possible parameters is discretized into
bins used to collect evidence for the respective transforma-
tions. Our GHT algorithm proceeds as follows: for each pair
of potentially matching orientation field elements, the trans-
formation parameters needed to align them are calculated,
and evidence for these parameters is accumulated. It should
be noted that orientation field elements are restricted to the
range [—(1/2)m, (1/2)m), so for a given pair of elements there
are two possible rotations to align them (differing by 7) and
evidence for both must be accumulated. After this has been
completed, the parameters with the most accumulated evi-
dence are returned.

There are several implementation details to consider for
the GHT algorithm. First of all, there is a tradeoff when deter-
mining the size of the accumulator bins in the discretized pa-
rameter space. If the bins are too large, the algorithm will be
unable to find accurate parameters. On the other hand, if the
bins are too small, the parameters may rarely coincide, lead-
ing to little evidence for any parameters. Another considera-
tion is the accumulation of neighboring elements to account
for small errors. Due to the discrete nature of the orientation
field, there is a limited number of transformations that are
considered. It is possible that the optimal parameters are not
accumulated exactly by any of these transformations. How-
ever, these other transformations will tend to cluster around
the optimal solution in the parameter space. Therefore, it is
common to accumulate neighboring elements in the param-
eters space. This allows the full range of transformations to
be considered, even though they may not have been accumu-
lated directly.
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FIGURE 6: A genuine matche and the result of its registration. (a) Reference print. (b) Reference OF. (c) Query print. (d) Query OF. (e) Reg-
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FIGURE 7: An imposter matche and the result of its registration. (a) Reference print. (b) Reference OF. (¢) Query print. (d) Query OF.

(e) Registration result.

Distinctive local orientations

One approach to fingerprint registration is based on using
fingerprint singularities as landmarks [15]. Singularities are
often located using orientation fields because the orienta-
tions surrounding core and delta points have distinctive pat-
terns. However, there are two main drawbacks to this ap-
proach: the singularities may be difficult to extract for poor-
quality images, and may not even be present if the capturing
surface is small (as in Figure 4).

A more general algorithm looks for any distinctive pat-
terns in the orientation field. This has the advantage that
singularities do not need to be located. However, if they are
present, it is most likely that they will be used to guide the
registration.

Consider an orientation field element p with neighboring
elements p’ where i is the neighbor’s index for i = 0 to 5 (see
Figure 5). A feature vector for p that characterizes the local
orientations can be defined as

f, = {X(po, pg)s A(pes py)>-- > A(po> ) . (4)

The feature vector (4) is translation invariant, but not rota-
tion invariant. In order to achieve rotational invariance, we
define max to be the index i of the A(pg, pr)) with the great-
est A value for i = 0 to 5. A revised translation and rotation
invariant feature vector is

£, - {{(A(Pe’p(gmaxﬁ)mo%)}j0} 5)

For the orientation fields & and @, a feature vector is cal-
culated for each element in the field. Distinctive patterns are

those that have high values in the feature vector. For exam-
ple, for most fingerprints large areas of the orientation field
are fairly uniform, creating feature vectors with all six val-
ues close to 0. However, for nonuniform areas of the orien-
tation field (such as those near singularities), the feature vec-
tors will contain some high values making them distinctive.
The alignment algorithm first uses a simple search to find
similar distinctive patterns from # and @, and uses these
pairs to calculate translation and rotation parameters. The
parameters leading to the lowest cost (according to (3)) are
selected.

Steepest descent

The steepest descent algorithm takes a very different ap-
proach from the previous two as it directly tries to mini-
mize the cost function. The algorithm traces a path along the
cost surface in the parameter space until a local minimum
is found. The algorithm begins with an initial estimate for
the parameters and evaluates its cost according to (3). Re-
call that (3) assigns a cost to every possible transformation
(0, Ax, Ay). The algorithm then evaluates a sample of points
within close proximity in the parameter space and evaluates
their costs. The parameters that give the greatest decrease in
cost are selected, and this is repeated until no neighbors have
a lower cost (i.e., a local optimum has been found).

The initial parameters estimate can be chosen in several
ways. For this application, an approach that works well is to
choose the translation parameters that align the centers of
mass of the two orientation fields. This is a very fast calcula-
tion, and provides a good initial estimate. The initial rotation
parameters are set to —15°, 0°, and 15°, and the best result is
chosen. Once again, this is a reasonable choice if the rotation
parameter is expected to be small.



Coarse Fingerprint Registration Using Orientation Fields

2049

5. EVALUATION AND EXPERIMENTS

The dataset used for the experiments is DB1 from the
FVC2002 competition [24], which contains a wide variety of
fingerprint image qualities. This database was captured using
an optical sensor and contains 110 unique fingers, with 8 im-
pressions of each finger. The competition organizers selected
a set of 2800 genuinely matching pairs and 4950 nonmatch-
ing pairs for evaluation. A variety of performance measures
are calculated, the details of which can be found in [24]. The
algorithms have been implemented in Java and the exper-
iments were conducted on a 2.5 GHz PC with 512 MB of
RAM. The method used for calculating the orientation field
is the gradient-based method presented by Bazen and Gerez
[22].

The evaluation of alignment algorithms is difficult, so
four different experimental methods have been devised and
executed.

Visual

Visual comparisons give some indication performance (see
Figures 6 and 7), however they are difficult to test using au-
tomated methods. The difficulty is largely due to the lack of
ground truth registration parameters. Finding and labeling
optimal alignments by hand is a very laborious process, and
is somewhat subjective. This inhibits directly evaluating the
results of the registration algorithms. Despite this, an exten-
sive manual evaluation has been conducted. A random sam-
ple of 300 genuine matches were selected and registered us-
ing each algorithm. For each result, it was decided whether
or not the results were a reasonably accurate registration of
the two fingerprints. Due to the fact that only a portion of
the database was sampled, a 95% confidence interval for the
standard error is also reported.

Fingerprint verification system

A less subjective method to get a measure of performance
is by constructing a fingerprint verification algorithm based
on orientation field alignment. This will give some indica-
tion of the relative accuracy of the algorithms. Equation (3)
is the cost function that measures the quality of an align-
ment. Specifically, it measures the average orientation dif-
ference between overlapping elements. A match score M be-
tween orientation fields & and @’ can be defined simply as

M(P,@) =1 - (%)c(av,@'), ©6)

which produces a score in the range 0 to 1 (with 1 being a
perfect match). We make the assumption that high scores
represent correct alignments for genuine matches, and low
scores are obtained when aligning imposters. If the match
score is higher than a given threshold, the prints are labeled
as a match, otherwise a nonmatch. A useful measure that is
often used to summarize such system is the equal error rate
(EER). The EER is the value that results when the false match
rate is equal to the false nonmatch rate as the threshold is
varied.

We can use the performance of this verification algo-
rithm as an indirect measure of how well the prints are being
aligned. However, it should be kept in mind that the follow-
ing situations are possible and will affect this mode of evalu-
ation.

(i) A correct alignment for genuine matches may be given
a relatively low score for a variety of reasons (such as
noise).

(ii) An incorrect alignment may be found for genuine
matches and still be given a high score.

(iii) We assume that genuine matches should lead to high
match scores, and similarly we assume that, in general,
high match scores will not be obtained for imposter
matches. However, this may not always be the case as it
is possible for imposter matches to receive high scores
if the overall ridge-valley patterns are similar (which is
not uncommon [25]). This will affect the accuracy of
the proposed verification system negatively, however it
is not an indication that the registration algorithm is
failing.

Due to these considerations, the EER should not be inter-
preted as the error rate of the registration algorithm.

This method of evaluation has the benefit of answering
another interesting question; namely, how much discrimi-
natory information is contained in a fingerprint’s orienta-
tion field? Classification systems (such as Henry’s classifi-
cation) partition fingerprints into mutually exclusive cate-
gories based on the overall pattern in orientation fields. How-
ever, approximately 95% of prints fall into only three cate-
gories (the left loop, right loop, and whorl). Therefore, these
schemes have little ability to distinguish individual prints
from one another. A fingerprint identification system based
solely on orientation field information may give some insight
into the expected performance bounds of fingerprint classi-
fication systems.

Hybrid minutiae and orientation field verification

Another experiment has been designed to test the benefit of
using orientation fields as a supplementary feature for finger-
print verification. The minutiae-based matching algorithm
described in Section 3.1 based on the generalized Hough
transform has been implemented. This algorithm is used for
registration and a match score based on the number of cor-
responding minutiae is calculated [3]. Equation (6) is then
used to calculate another match score based on the orien-
tation field alignment using the registration parameters de-
rived by the minutiae alignment algorithm. Instead of one
match score, we now have two; one based on minutiae cor-
respondences and one based on orientation field alignment.
The match scores are combined by having two thresholds,
and if either match score is above their respective thresh-
old, the prints are labeled as a match. The goal of this ex-
periment is to determine whether the EER of the system will
drop with the introduction of this supplementary matching
feature.
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TaBLE 1: Averages and standard deviations of the genuine and im-
poster match score distributions.

Algorithm Genuine Imposter
SD 83+9 49 + 18
GHT 80 =10 42 =20
DLO 76 + 16 37 +£22

TasLE 2: Algorithm accuracy, EER, and time.

Algorithm Accuracy EER Average run time (ms)
SD 98.9% + 1.1% 8.6% 215

GHT 95.2% + 2.5% 9.6% 4510

DLO 93.8% + 2.9% 12.4% 6

Visual comparison with minutiae registration results

As mentioned above, a minutiae-based registration algo-
rithm has been implemented. A final experiment was con-
ducted to compare the results of its registration results with
the methods proposed in this paper. For each of the 2800
genuine matches, registration parameters were calculated us-
ing the minutiae-based algorithm and the SD algorithm pro-
posed in this paper. The parameters generated by these algo-
rithms were compared with each other, and when they were
close it was assumed that they represented an accurate align-
ment of the prints. This is a valid assumption because the
features used for registration are completely different, and
so it is very unlikely that both methods would chose simi-
lar, but erroneous, parameters. For prints that generated sig-
nificantly different registration parameters, a visual exami-
nation classified this result as one of the following: the SD
algorithm is correct while the minutiae algorithm is incor-
rect, the minutiae algorithm is correct and the SD algorithm
is incorrect, or both the SD and minutiae algorithms are in-
correct. By comparing the size of these classes, this mode of
evaluation allows a direct comparison between the methods
proposed in this paper and the more traditional minutiae-
based methods.

6. RESULTS AND DISCUSSION

Table 1 contains some statistics on the match scores ob-
tained by the registration algorithms. As expected, the av-
erage match score for genuine matches are higher than for
imposter matches. Furthermore, the standard deviations are
smaller, showing that most genuine matches receive a high
score, while imposter match scores are more variable. This
is not surprising as it is certainly reasonable for imposter
matches to receive a variety of high and low scores de-
pending on arbitrary similarities between the orientation
fields.

Table 2 contains the results of the accuracy experiments
by manual evaluation. The EERs for the verification experi-
ments and average running times for the algorithms can also
be found in Table 2. The running times listed do not include
the time necessary for preprocessing and feature extraction.

The best performance in terms of accuracy is attained
by the SD algorithm. This is confirmed by both the man-
ual evaluation and the lower EER. The choice of initial pa-
rameters seems to work very well, allowing the SD algo-
rithm to quickly find a good solution without getting stuck
in local minimums. The average running time for this algo-
rithm is reasonable; not as quick as DLO, but much less that
GHT.

It is somewhat surprising that the SD algorithm outper-
forms the GHT algorithm since the GHT algorithm conducts
the most extensive search of the parameter space. One reason
that the GHT sometimes fails is that it does not give any pref-
erence to alignments with low rotation parameters. There-
fore, it sometimes finds alignments with a low cost by using
a large rotation. However, in practice the rotation parame-
ters are usually relatively small. Our experiments have shown
that for the FVC2002 DB1 database, most valid registration
rotations are within +20°. Since SD’s initial parameters are
—15°, 0°, and 15°, it has a preference for alignments with
small rotations (which are more often correct). Another fac-
tor is that the SD algorithm directly tries to minimize the cost
function. Conversely, the GHT algorithm does not consider
the cost; it attempts to maximize the number of consistent
orientation field elements. The former seems to be a better
approach.

An obvious disadvantage of the GHT algorithm is its slow
running time of almost 5 seconds. This running time will in-
crease quickly (@ (n?)) as the number orientation field ele-
ments # increases (e.g., due to larger prints or smaller ele-
ments). Furthermore, the GHT algorithm has a large space
complexity. A three-dimensional accumulator array must
be set up, and this grows exponentially as the accumula-
tor elements get smaller. For example, consider a param-
eter space that is discretized to 360 degrees for the rota-
tion parameter, 250 pixels for each of the x and y trans-
lation parameters, and contains a two-byte counter. This
would require over 40 MB of memory, making it infeasi-
ble for environments with limited resources (such as smart
cards).

The accuracy and EER results of the DLO algorithm are
poor in comparison with the other algorithms. The primary
advantage of this method is that it is very fast and it requires
little memory. The feature vectors for the orientation ele-
ments can be calculated quickly, and efficient search algo-
rithms can be used to find potential matches. Recovering the
transformation parameters is also a very fast computation.
Another advantage is that it does not require too much over-
lap between the prints. As long as some mutual distinctive
patterns exist, the algorithm will be successful. However, the
algorithm seems to suffer from the same problems (although
not to the same degree) as algorithms based on aligning sin-
gularities. Since singularities create the most distinctive ori-
entation patterns, if they do not exist or are not captured,
there is little information to guide the alignment. For ex-
ample, consider the fingerprint and orientation field shown
in Figure 8. In this case, a large area of the fingerprint has
been captured, but the orientation field is relatively homo-
geneous. The DLO algorithm struggles in situations such as
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FIGURE 8: A fingerprint (a) whose orientation field (b) does not
contain any distinctive local patterns.

these, while the GHT and SD algorithms perform well. The
DLO approach is based entirely on local patterns, whereas
the other two use information from the whole print to guide
the alignment. The results suggest that the global approach is
more effective.

The EER rate obtained by the SD algorithm is compara-
ble with those from some other verification systems in the
literature. For example, a recent paper published an EER
of 8.36% for a system using a directional filter bank [26].
The authors also implemented a system using a Gabor filter
bank [18], and obtained an almost identical EER of 8.37%.
Both of these results are comparable to the results obtained
by the SD algorithm, despite being much more compli-
cated.

The results of the hybrid minutiae and orientation field
verification systems are as follows. Using only minutiae cor-
respondences, the EER of the system was 7.5%. However,
after the introduction of the orientation field features, the
EER dropped to 3.4%. This is a significant improvement, and
demonstrates the profit that results from using orientation
fields as a matching feature.

Finally, experiments were conducted to compare the reg-
istrations generated by the SD algorithm with those gener-
ated by a minutiae-based algorithm. Out of the 2800 gen-
uine matches tested, the two methods agreed (within a given
tolerance threshold) on 96% of the registrations. Of the re-
maining 4%, 45% of the orientation field registrations were
correct, 38% of the minutiae registrations were correct, and
for the remaining 17% both algorithms failed (this is equiv-
alent to 0.7% all genuine matches). One point that should be
mentioned is that in most cases the minutiae results are more
accurate than the proposed algorithms (due to the averag-
ing nature of an orientation field). The two methods have
different strengths and weaknesses. For example, the orien-
tation field algorithm struggles with prints that have circu-
lar patterns (i.e., whorl prints). In these cases it is difficult
to determine the correct rotation parameter. These prints do
not pose a problem for the minutiae-based algorithm. Con-
versely, the minutiae algorithm often fails for noisy prints
(with unreliable minutiae information) or prints with a small
number of minutiae in the area of overlap. A combination of
these factors can cause both algorithms to fail (see Figure 9a),
however the most common cause of failure for both algo-

rithms is a small amount of overlap between the prints (see
Figures 9b and 9c¢).

7. CONCLUSIONS AND FUTURE DIRECTIONS

A novel method of fingerprint registration has been pre-
sented based on the alignment of orientation fields. Three
algorithms implementing this concept have been presented,
and their performance has been evaluated using an FVC2002
database.

All three of the algorithms presented have been concep-
tually simple, yet effective. Overall, the SD algorithm has the
best performance, with an accuracy of approximately 98.9%.
The SD algorithm is also reasonably fast. Therefore, this al-
gorithm is superior to the DLO and GHT algorithms, and
would be the preferred method for most practical applica-
tions. The primary application of the algorithms presented
in this paper is for any system requiring coarse alignment pa-
rameters. The algorithms will be particularly useful when the
fingerprint image quality is unreliable.

This research also demonstrates an interesting applica-
tion beyond fingerprint registration. Many identification sys-
tems consider only minutiae features when matching prints.
Therefore, it is possible that imposter prints are labeled
as matches even when the overall shape of the ridge pat-
terns is very different. A simple but effective modification to
these systems is to include orientation fields as an additional
matching feature. Combining independent feature sets for
identification improves the performance of such systems sig-
nificantly. In our experiments, the EER of a strictly minutiae-
based verification system was reduced from 7.5% to 3.4%. In
most cases the orientation field will have already been calcu-
lated during preprocessing, so the additional computation is
negligible.

Classification schemes based on categorizing the over-
all orientation field pattern into mutually exclusive classes
(such as Henry’s classification) are difficult to implement due
to large intraclass and small interclass variation [25]. Even
when their performance is high, these experiments show that
there is more discriminatory information available in orien-
tation fields than is currently being exploited. Some contin-
uous classification schemes based on orientation fields have
been suggested [27, 28]. The results from this paper support
that this is a promising approach.

One idea to extend this research would be to develop reg-
istration methods that are guided by both orientation fields
and minutiae. In the experiments, it was shown that 99.3%
of genuinely matching pairs could be registered correctly by
at least the minutiae or SD algorithm. However, neither al-
gorithm in isolation could achieve this accuracy. Therefore,
an algorithm that exploits both feature sets has the poten-
tial to be very powerful. Another future direction is to de-
velop methods to fine-tune the coarse registration parame-
ters generated by these algorithms. This can be done by us-
ing either minutiae or nonminutiae features. Finally, the ulti-
mate extension of this research would be to develop nonrigid
registration algorithms that model the nonlinear distortions
present in fingerprints.
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(a)

(c)

FIGURE 9: Genuine matches that could not be registered by neither the SD algorithm nor the minutiae-based algorithm.
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