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It is challenging to track multiple facial features simultaneously when rich expressions are presented on a face. We propose a two-
step solution. In the first step, several independent condensation-style particle filters are utilized to track each facial feature in the
temporal domain. Particle filters are very effective for visual tracking problems; however multiple independent trackers ignore
the spatial constraints and the natural relationships among facial features. In the second step, we use Bayesian inference—belief
propagation—to infer each facial feature’s contour in the spatial domain, in which we learn the relationships among contours of
facial features beforehand with the help of a large facial expression database. The experimental results show that our algorithm
can robustly track multiple facial features simultaneously, while there are large interframe motions with expression changes.
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1. INTRODUCTION

Multiple facial feature tracking is very important in the com-
puter vision field: it needs to be carried out before video-
based facial expression analysis and expression cloning. Mul-
tiple facial feature tracking is also very challenging be-
cause there are plentiful nonrigid motions in facial fea-
tures besides rigid motions in faces. Nonrigid facial fea-
ture motions are usually very rapid and often form dense
clutter by facial features themselves. Only using traditional
Kalman filter is inadequate because it is based on Gaus-
sian density, and works relatively poorly in clutter, which
causes the density for facial feature’s contour to be multi-
modal and therefore non-Gaussian. Isard and Blake [1] firstly
proposed a face tracker by particle filters—condensation—

which is more effective in clutter than comparable Kalman
filter.

Although particle filters are often very effective for visual
tracking problems, they are specialized to temporal problems
whose corresponding graphs are simple Markov chains (see
Figure 1). There is often structure within each time instant
that is ignored by particle filters. For example, in multiple
facial feature tracking, the expressions of each facial feature
(such as eyes, brows, lips) are closely related; therefore a more
complex graph should be formulated.

The contribution of this paper is extending particle filters
to track multiple facial features simultaneously. The straight-
forward approach of tracking each facial feature by one in-
dependent particle filter is questionable, because influences
and actions among facial features are not taken into account.

In this paper, we propose a spatio-temporal graphical
model for multiple facial feature tracking (see Figure 2). Here
the graphical model is not a 2D or a 3D facial mesh model.
In the spatial domain, the model is shown in Figure 3, where
x' is a hidden random variable and y’ is a noisy local ob-
servation. Nonparametric belief propagation is used to infer
facial feature’s interrelationships in a part-based face model,
allowing positions and states of some features in clutter to
be recovered. Facial structure is also taken into account, be-
cause facial features have spatial position constraints [2]. In
the temporal domain, every facial feature forms a Markov
chain (see Figure 1).

After briefly reviewing related work in Section 2, we
introduce the details of our algorithm in Sections 3 and
4. Many convincing experimental results are shown in
Section 5. Conclusions are given in Section 6.

2. RELATED WORK

After the pioneering work of Isard and Blake [1] who
creatively used particle filters for visual tracking, many
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FiGUure 1: The Markov chain assumption of particle filters. The

empty circle x; represents the hidden state (contour) in time 4, and
the filled-in one y; denotes the local observation.

O Eyebrow
O Eye

Figure 2: Tracking multiple facial features with a spatio-temporal
graphical model. Each facial feature’s state (contour) forms a
Markov chain in the temporal domain, while facial features are re-
lated to each other in each time instant.

researchers have adopted particle filters to track face or fa-
cial features (2, 3, 4, 5, 6, 7, 8].

Rui and Chen [3] used the unscented particle filter (UPF)
[9] to do visual tracking. Zeng and Ma [4] proposed an
active particle filtering approach. Vermaak et al. [5] selec-
tively adapted the observation model to obtain better track-
ing results. Perez et al. [6] combined color-based CamShift
or MeanShift algorithm with particle filters. Loy et al. [2]
utilized multiple cues to track target. All of the above meth-
ods only used particle filters to track the whole face or head,
not the facial features. De la Torre et al. [7] used particle
filters to track eyes or lips while switching between differ-
ent shape/texture models; however they didn’t track both si-
multaneously. Wang et al. [8] integrated a learned intrin-
sic object structure into a particle-filter style tracker; how-
ever only one facial feature—mouth—was tracked. There-
fore the idea of this paper is very new. We use particle filters
to track multiple facial features rather than one facial fea-
ture.

Isard [10] and Sudderth et al. [11] have independently
developed an algorithm for performing belief propagation
with the aid of particle sets. Their methods motivated us
to use graphical model in multiple facial feature tracking.
However they only show their algorithms’ effectiveness in 2D
graphical models, which are in the spatial domain. As far as
multiple facial feature tracking is concerned, the correspond-

O Nose
O Mouth

Q Eyebrow
O

FIGURE 3: Markov network representation of a face in the spatial
domain. x', 22, x*(x*), and x°(x®) denote the contours of mouth,
nose, eyes, and eyebrows, respectively.

ing graphical model is a 3D one, which is spatio-temporal.
The 3D graphical model belongs to a specific type, and is
directed-cum-undirected. In this paper, we try to seek the re-
lationships between the particle filter in the 1D temporal do-
main and nonparametric belief propagation in the 2D spatial
domain.

Facial feature tracking has also been extensively studied
by other methods [12, 13, 14, 15, 16, 17, 18, 19], such as op-
tical flow [20] based [12, 13, 14], ASM/AAM based [15, 16],
model-less based [17], infrared camera based [18], and so
forth. However, in this paper, the particle-filter-based ap-
proach is preferred for performing multiple facial feature
tracking.

3. MULTIPLE FACIAL FEATURE TRACKING BY
PARTICLE FILTER: THE FIRST STEP

We adopt the condensation algorithm to track each facial fea-
ture. After Isard and Blake [1] first proposed an implementa-
tion of particle filters, many other researchers also proposed
enhanced algorithms for particle filters, for example, Icon-
densation [21], UPF [9], and the Rao-Blackwellised particle
filter [22]; however they still could not solve the “curse of di-
mensionality” problem, and generally the workable dimen-
sionality was below 10. On the other hand, we should break
down the tracking result of particle filters in the spatial do-
main. Therefore the choice of different particle filters has no
key effect on our algorithm. For simplicity, we choose the ba-
sic condensation algorithm because it can satisfy our require-
ments.

Six facial features are tracked in this paper. They are
eyebrows, eyes, nose, and mouth. Taking eye for example,
we track the eyelid contour. The contour is modeled as
B-spline X; = x1,%2,...,%:, and the observation of eye is
Y: = y1, ¥2,. .., ¥r. We need to infer the marginal conditional
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density p(x¢|Y;). Isard and Blake [23] have proved that

p(xt|Yt) = P(xt|)/t) Yi) = Ctp()’t|xt)P(xt|Yt—1)) (1)

where ¢; is a constant, and
Pl = | plalsi)plailYedror. (@)

In (1), p(x|Y;—1) is the effective prior model, and p(y;|x;)
is the observation model. In (2), p(x¢|x;-1) is the dynamic
model.

3.1. Why several particle filters?

Single particle filter is not suitable to track multiple facial fea-
tures simultaneously. The reason is as follows: the total di-
mensionality added by each feature’s dimensionality is too
high (dozens); the tracking efficiency of the particle filter de-
creases exponentially along with the linear increasing of di-
mensionality. Usually, it is extremely difficult to get good re-
sults from particle filters in spaces of dimensionality much
greater than about 10 [24]. Even if dimensionality can be re-
duced by principal components analysis (PCA) [25] or other
nonlinear methods [8, 26], the total dimensionality of mul-
tiple facial features is significantly large. If we reduce the di-
mensionality too much, valuable state information may be
lost.

A human face contains multiple facial features, and it can
be decomposed into several parts, such as eyebrows, eyes,
nose, and mouth, to form a graphical model in the spatial
domain. In this paper, we track each facial feature by its cor-
responding particle filter, therefore computational complex-
ity is converted from exponential to linear with the size of the
graph.

3.2. Particle filter itself is not enough

When there are rapid motions in one facial feature (e.g.,
mouth) due to the changes of facial expressions (see
Figure 4), the corresponding particle filter may fail to track
the facial feature’s contour. It is difficult to reduce this failure
if we only use multiple independent particle filters to track
each facial feature. In this paper, we track several facial fea-
tures simultaneously through using several correlated parti-
cle filters. When emotion is presented on the face, different
facial features have natural physical interaction. For example,
when we smile with blinking the left eye, our left mouth tip
will move up; when we surprise with the wide-open mouth,
the eyebrows will also move up.

Instead of constructing heuristic rules for these rela-
tionships, we learn the relationships among facial features
from training data beforehand. During the process of track-
ing, if we detect that some facial feature tracker’s results
are poor, we can infer their positions and states from other
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FiGgure 4: Three consecutive frames at 30 fps show that facial feature
motions are rapid.

facial features by Bayesian inference. In this paper, belief
propagation is used to carry out Bayesian learning and
inference.

4. COMBINING PARTICLE FILTER WITH BELIEF
PROPAGATION: THE SECOND STEP

4.1. Loopy belief propagation

In every time instant, facial features are contained in an undi-
rected graphical model Gy (see Figure 3). Let V' denote the
set of nodes (facial features). Nodes are connected by edges
E to describe the relationship between facial features. The
neighborhood of a node i is NB(i) = {j|(i,j) € E}. Let X!
denote the hidden variable (contour of facial feature), and
let y* denote the observed variable (facial feature image). Let
{x'} = {x'|l <i<N}and{y} = {y/|]1 <i< N}, where N
is the number of nodes in the graphical model Gy. The joint
probability density function factorizes as

UL N = & 1wy [Tty )

(i,j)€E icev

where C is a normalization constant, and y; j(xi,xj ) and
¢i(x', y') are compatibility functions. y;j(x’,x/) is a correla-
tion function between x' and its neighbor variable x/, and
¢i(x', y') is an observation function that denotes the evidence
of x* [27].

From Figure 3, we can see that it is a Markov network
with loops. Pearl [28] warned that belief propagation might
not converge in this kind of graphical models. However,
some experimental [29] and theoretical results [30, 31, 32,
33] motivate us to apply the belief propagation rules in the
Markov network with loops, and Murphy et al. called it loopy
belief propagation [31].

In belief propagation, we need to calculate the condi-
tional marginal distribution p(x'[{y'}) for the nodes that
have less confidence in the tracking results by particle filters.
The intuitive meaning is that we can infer the facial feature i’s
position (contour) and state (e.g., expression) from all facial
features’ observations {y'}.
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FIGURE 5: Message passing in a directed-cum-undirected graphical
model.

4.2. Belief propagation in spatio-temporal
graphical model

In this paper, the graphical model is the combination of di-
rected graph (Markov chain) and undirected graph (Markov
network). In order to do Bayesian inference, the key point is
belief propagation or message passing.

The messages of directed graph are passing through the
time axis. In Figure 5, the message passing from x'_; to x; is
denoted by M(xi_; — x!). We have

M(xiy — x7) = p(ail{Y}), (4)

where {Yf,l} = {Yf,lll <i< N}, and
PGV = [, pldldd Db Ddx . )

b(x!) is the conditional marginal probability distribution in
node x!, and it is what we have to calculate. b(x}_,) means
the tracking result in facial feature i by graphical model in the
previous time instant. The belief at node (i, t) is proportional
to the product of the local evidence ¢;(x}, y{) at that node
and all the messages coming into it [34]. There are two kinds
of messages: one comes from the immediate preceding node
xi_, temporally, and the other is from the neighbors of node
(i, t) spatially. Therefore, we have

b(x}) = Kei(xp, y)M(xi_, — xi) [] mj(xd).  (6)

JENB(G1)

In (6), K is a normalization constant and NB(i, t) denotes
the nodes neighboring the node (i, ¢). As defined in (4) and
(5), the message from the previous time is M(xi_; — xi).
Furthermore, the message from the spatial neighbor is de-
termined self-consistently by the following message update

rule:
i) = o [ vl 2y (cd oy )Ml — )

x 1

kENB(j,0\ (irt)

(7)

m; (x])dx].

In the right-hand side of (7), we take the product of mes-
sages going into node (j, t) except for the one coming from

node (i,t). Note that the message M (x]_, = x]) from the
previous time instant is also taken into account.

Based on a factorization described by [27], we use the
observation function ¢;(x, y,f) = p( yf |x1), and it can be seen
that ¢;(xi, yi) is equal to the observation model in [23]. We
also use the correlation function wji(xf ,xh) = p(x{ ,xD)/ p(xf),
and fit this probability with mixtures of Gaussians [35].

The message M(xi_, — x!) passing from x!_; to x} can
be viewed as the effective prior: a prediction taken from the
marginal probability b(x!_,) from the previous time step,
onto which is superimposed one time step from the dynam-
ical model.

From (6) and (7), we can see that ¢ always comes with
M. By the analysis above, the product of them is

i (s yM (xi_, — xi)
= p(yilxﬁ)p(xil{Yf,l}) (8)

= Zp(dlyb {Yi)  (using (1)

t

Equation (8) means that the product is effectively the poste-
rior probability of x} conditioned on yf and {Y?_,}, and this
shares the same idea with the condensation algorithm. This
property is important because it allows us to firstly run the
particle filter to track each facial feature in one time step, and
the output of particle filter is naturally fitted into a loopy be-
lief propagation process (see (6) and (7)).

Wau et al. [36] proposed a mean-field Monte Carlo algo-
rithm for visual tracking of articulated human body, which
is similar to ours in using the dynamic Markov network.

4.3. Particle propagation in spatio-temporal
graphical model

Since in our spatio-temporal graphical model, messages are
not needed to pass backward in the temporal domain, there-
fore the choice of importance function can be omitted.

In conventional particle filter algorithms, the probabil-
ity distribution of possible interpretations is represented
by a randomly sampled set, which can be called “particle
set.”

In particle set form, our algorithm is also the combina-
tion of particle filter and loop belief propagation as indicated
by (8).
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Each sample is a (si(m), 7{(m)) pair, in which si(m) is a
value of x}(m) and 7}(m) is a corresponding sampling prob-
ability. m € [1, M], and M is the total number of samples for
one facial feature.

Step 1. Firstly, a particular si_y(m) is drawn randomly from
i_1(m) by choosing it with probability 7;_; () from the set
of M samples at time t — 1.

Step 2. Draw s_pfi(m) randomly from p(xi|xi_, = si_,(m)),
one time step of the dynamic model, where pf denotes the
particle filter.

Step 3. A value s_pff;(m) chosen in Step 2 is a fair sam-
ple from p(xi[{Y;_,}). Set m_pfi(m) = ¢i(x; = spfi(m),
y;), therefore we obtain the particle set form of ¢;(x;,
yOM(xi_, — xi) = LL(x}), which can be viewed as a like-
lihood function in belief propagation.

Actually, LL(x!) is the tracking result of particle filter for
one facial feature, since we have

LL(x}) (xi-y — x1)

¢i(xf, y)M
9)

(xA)Q’{ - 1}) (using (8)).

Using the sampling method similar to conventional parti-
cle filter (as described in Steps 1, 2, and 3), we can ob-
tain a nonparametric approximation (s_pf;(m), w_pf,(m))
to LL(x})). We can further use a bandwidth selection
method to construct a kernel density estimate ﬁ(xi) from
(s_pfi(m),ﬂ_pfi(m)); therefore we can evaluate it in non-
parametric belief propagation.

Step 4. Let p?;sg(x{ ) denote the foundation of message

m j,-(xf) as follows:

= Kjj(x/, )M (x_y — x1)

x 1

KENB(j,)\(irt)

PirE ()
, (10)
M j (Xf),

where K is a constant which makes p;?sg(xf) a probability
density.

Step 5. Draw M samples

sbpl(m) ~K; [ mij(xd). (11)

keNB(j,t)

In order to obtain the integral of (7), we should compute a
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weight for each sample:
7 _bp] (m)
Pl (s-bpi (m))
[Tkens(j Ak (s-bpi (m))
(12)

(p] (x{)y{)M(xffl - x{) |X}]=S_bp'tl(m)

#i1ij (s-bpl (m))

oC

. LL(s-bpi(m))
fiij (s-bpi (m))

where p;-?sg is defined in (10), and 7;; is obtained from the

message update in the last iteration. ¢; (x], y,{ YM(x]_, — x)
is the result of temporal filter for each facial feature, and we
use it to calculate sample weights of message m ji(xi) in (7)
for nonparametric belief propagation.

In (12), although I:\i(xf) is in particle set form, it still can
be evaluated.

For iterations of message passing, the procedure is initial-
ized with all messages set to constant values.

Step 6. The approximation of message m1;;(x;) is obtained by

ﬁlji(xf)

M . .
= Xn—bp(m) > (m_bpl(m) X yji(s-bpi (m), xi)).
m=1 t =1

(13)

Step 7. Generally, after several iterations of message passing,
the belief distribution has converged. We should obtain the
marginal estimate for b(x!) in (6) to get the final results.

Given the input messages 771;(x;) from the spatial neigh-
bors NB(i, t),

(1) draw M independent samples si(m), m € [1,M], from

the product
si(m) ~ K 1_[ mji(x)); (14)
FENB(i,t)
(2) compute the weight for each sample s (m):
T[tl(m) oc ¢i(xi’ y;)M(-x;‘—l - x;) |xf:s’[(m)
(15)

oc LL(si(m)).

We also use the result LL(x!) of particle filter in this step
besides Step 5. Therefore our algorithm combines temporal
particle filters with spatial belief propagations.
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FIGURE 6: Six facial features are described by quadric B-splines.

For sampling s_bp] (m) in Step 5 and s,(m) in Step 7, we
use a similar method to [10]. Sampling from the product can
be decomposed into two steps: randomly select one of the
product density’s components and then draw a sample from
the corresponding Gaussian.

The algorithm in this paper is summarized in the above
steps.

4.4. Learning the correlation function

In the training database, we manually mark some face’s fea-
tures; therefore we obtain the ground-truth position of the
contour x'. First we reduce the dimensionality of facial fea-
ture i’s contour x' by PCA. Then from the training data, we
fit mixtures of Gaussians to p(x}) and the joint probabilities

p(x{ ,x}) for neighboring facial feature i and j. We evaluate
p(xt \?ci) = p(x/,x})/p(x}), therefore the correlation function
V/ji(xf,xf) is obtained.

4.5. Optimizing Bayesian inference for
Markov network

Considering that Bayesian inference using belief propagation
costs substantial time, we only initiate it when the particle
filter’s tracking result is poor.

For the corresponding particle filter on one facial feature,
the tracking result on time t can be described by the mo-
ments [1]:

E(f (x) Y1) =

i Mz

nﬁ'”)f(si’”)). (16)

1

As in [1], a mean position using f(x;) = x; can be uti-
lized for graphical display. Moreover, let f(x;) = x.x/, and
we obtain the variance a; = E(x;x{ |Y;) of the tracking result.
We use the variance o; as a metric of the tracking quality.

For each facial feature, we have ¢/, i = 1,...,N, where N
is the number of all facial features (in this paper, it is 6). For
the facial features that have larger variances, we determine
that their tracking results are worse than others. Therefore
belief propagation is carried out to infer the more plausible
positions of their contours. Based on experimental results, if
the o’ > 0.5 * Area(x’), we consider that the tracking result
on facial feature i is bad, where Area(x’) denotes the pixels

occupied by facial feature i in the video stream. In implemen-
tation, the Area(x’) is obtained by computing the bounding
box for the facial feature i.

5. EXPERIMENTAL RESULTS

We have developed a prototype system on Windows platform
using Visual C++ to implement the algorithm in this pa-
per. There are 6 contour models for facial features: eyebrows,
eyes, nose, and mouth. Each contour is a quadric B-spline
curve, in which contours of nose and eyebrows are open
curves, and others are closed curves. As shown in Figure 6,
there are 6, 9, 12, 12 control points for left (right) eyebrow,
left (right) eye, nose, and mouth, respectively. The total num-
ber of control points is 54; therefore the dimensionality is
108.

We choose Cohn-Kanade [37] facial expression database
as the training set, because it contains plenty of frontal faces
with rich facial expressions. This database is stored as 30 fps
grayscale image sequences. To learn the relationships among
facial features, we have selected 496 frame frontal face im-
ages, which belong to 98 different persons, and used inter-
active program to mark each facial feature’s contours. PCA
is used to reduce the dimensionality for each facial feature’s
contour. After that, the dimensionality of left (right) eye-
brow, left (right) eye, nose, and mouth is 4, 7, 9, and 9,
respectively; therefore the total dimensionality after dimen-
sion reduction is 40, accounting for 99% of the total vari-
ance.

After constructing the PCA bases, we compute the cor-
responding PCA coefficients for each individual in the train-
ing set. For each of facial feature’s contour pairs connected
by edges in Figure 3, we determine kernel-based nonpara-
metric density estimates for each node itself p(x!) and their
joint probabilities p(x/, x!). Figure 7 shows several marginal-
izations of p(x{,x!), each of which relates a single pair of
PCA coefficients (e.g., the first mouth and second left eye
contour’s coefficients). We can see that simple Gaussian ap-
proximations would lose most of this data set’s meaningful
structure.

Using the similar method in [23], we have also trained
the dynamic model for each facial feature. For observation
model, a set of independent measurement lines that are per-
pendicular to the hypothesized contour are used to measure
the likelihood of detected edge points.

Using a single condensation tracker with multiple con-
tours to track multiple facial features is infeasible because the
dimensionality is much higher than 10. Here we compare our
results with those of multiple independent condensation-
style trackers. We have tested our algorithm on the image
sequences in Cohn-Kanade database and the videos (640 X
480, 30fps) that we captured by a digital video camera.
The test image sequences are not included in the training
database.

As stated in Section 4.2, our algorithm can be viewed
as conventional condensation tracker plus contour adjust-
ment by belief propagation. The experimental results (see
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F1GURE 8: Tracking results of a surprise sequence. (a) Our algorithm correctly tracks the eyebrows and mouth. (b) The dark circles and teeth

distract the MICT tracker; therefore it fails to track them.

Figures 8, 9, and 10) show that our tracker is more ro-
bust than multiple independent condensation-style trackers
(MICT).

In Figure 10, we also compare our algorithm’s results
with those of active appearance model (AAM). AAM [15] is
based on face alignment, and we use the same training set as
MICT to train the active appearance model. From Figure 10,

we can see that AAM fails to track mouth in the case of oc-
clusion. The advantage is that our algorithm is more accu-
rate than AAM, while the drawback is that our algorithm is
slightly slower than AAM. Our algorithm is more robust than
AAM, since even the particle filter fails to track the mouth,
the mouth’s location, and state can be inferred from the spa-
tial domain by belief propagation. For AAM, it is difficult to
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FiGUre 9: Three consecutive facial expressions: neutral, surprise, and happy. From the first row to second row, and left to right, frame
numbers are 320, 322, 323, 324, 353, 355, 356, 358. (a) Our results. (b) MICT’s results.

incorporate negative samples (e.g., occlusion) into its train-
ing set; therefore AAM performs badly when facial feature
occlusion happens.

For all the testing image sequences, our algorithm obtains
better results than those of MICT and AAM. For the exper-
imental results shown in Figures 8, 9, and 10, the image se-
quences have 116, 368, and 900 frames, respectively.

Our tracker runs at about 3 Hz, the MICT tracker runs at
about 4 Hz, and the AAM tracker runs at about 3.5Hz on a
Pentium 4 1.8 GHz 256 MB RAM computer.

6. CONCLUSIONS

In this paper, we extend the particle filter from the rela-
tively simple Markov chain to the directed-cum-undirected
graphical model applied to multiple facial feature track-
ing problem. Spatial structure information and relationships
among nodes in each time instant are effectively considered
by Bayesian learning and inference in the loopy belief propa-
gation framework.

The advantages of our algorithm are as follows. Com-
pared with particle filters, we extend conventional particle
filters to track multiple facial features simultaneously by ex-
ploring the spatial coherence in each time step, and the com-
plexity of tracking is linear rather than exponential in the

number of facial features. Compared with AAM, our algo-
rithm is more robust.

The tracking results in this paper can be used as mo-
tion capture data. We plan to use these data to derive a 3D
face model and generate facial animations. The ultimate pur-
pose of multiple facial feature tracking is for facial anima-
tion.

Currently, the tracking results are 2D control points of
B-splines in each time instant. In the future, we will use
these results as video-based motion capture data. Using
performance-driven facial animation techniques, we can ob-
tain 3D facial animation of the tracked human face from 2D
mocap data. Finally we will retarget animation from human
faces to other virtual avatars.

While our current results are promising, details of our
implementation could be improved. The spatial and tempo-
ral relationships among facial features can also be learnt by
recently proposed spatio-temporal manifold learning algo-
rithms. Currently, the testing image sequences are obtained
by a fixed camera. For greater applicability, the method
should be extended to allow a moving camera. Our track-
ing algorithm will fail if the face is too small in the video
stream, and MICT and AAM will fail too. Maybe some
face video super-resolution techniques can solve this prob-
lem.
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Figurg 10: Comparison results of hiding mouth. Frame numbers
are 802, 803, 805, 810, 871, 872. (a) Our algorithm can success-
fully predict the contour of mouth. (b) MICT algorithm failed to
track the contour of mouth, which is distracted by the moving hand.
(c) AAM algorithm failed too.
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