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During the last decade, the exponential increase of multimedia and remote sensing image archives, the fast expansion of the
world wide web, and the high diversity of users have yielded concepts and systems for successful content-based image retrieval
and image information mining. Image data information systems require both database and visual capabilities, but there is a gap
between these systems. Database systems usually do not deal with multidimensional pictorial structures and vision systems do
not provide database query functions. In terms of these points, the evaluation of content-based image retrieval systems became a
focus of research interest. One can find several system evaluation approaches in literature, however, only few of them go beyond
precision-recall graphs and do not allow a detailed evaluation of an interactive image retrieval system. Apart from the existing
evaluation methodologies, we aim at the overall validation of our knowledge-driven content-based image information mining
system. In this paper, an evaluation approach is demonstrated that is based on information-theoretic quantities to determine the
information flow between system levels of different semantic abstraction and to analyze human-computer interactions.
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1. INTRODUCTION

In recent years, the growth of data collected and stored in
archives and the access via the world wide web has greatly
exceeded our ability to significantly extract user-relevant in-
formation from the data. This has resulted in combined ef-
forts to develop new methods and concepts to manage large
volumes of data: content-based image retrieval(CBIR) [1],
data mining [2], knowledge discovery in databases [3], and
information visualization. A broad range of techniques was
developed to deal either with particular data types, such as
text and numerical records, and also with heterogenous data
types, for example, combining video and sound. But one of
the most complex tasks still remains: the access of image in-
formation. Image retrieval systems require both database and
machine vision capabilities, but a gap exists between these
systems. Until recently, standard databases did not deal with
multidimensional pictorial structures and computer vision
pattern recognition systems did not provide database query
capabilities. Since the size and the information content of
imagery keeps increasing, particularly in the remote sensing
domain, many new applications in content-based image re-
trieval are closer to computer vision and require the knowl-

edge and understanding of complicated spatial and struc-
tural characteristics among image objects.

As in other fields, however, further development in image
information mining depends on the capability to carefully
evaluate the image retrieval and image understanding func-
tions and methods. Such an evaluation should include the
technical (objective) quality of a system as well as user-related
(subjective) concepts. The basic problem in CBIR perfor-
mance evaluation is the lack of standardization: defining a
common image database and relevance judgments. One can
already find a considerable literature on evaluating content-
based image retrieval systems [4]. Most of the evaluation ap-
proaches are based on query by image example and “rele-
vant” versus “nonrelevant” classes of images. They mainly
stay on the level of precision-recall graphs and only validate
the image retrieval system function. A work very close to our
system validation approach is described by Jermyn et al. [5]
where a retrieval system that is regarded to consist of differ-
ent semantic levels is analyzed.

In this paper, the overall validation of a knowledge-
driven image information mining system is addressed.
Therefore, the evaluation principles are divided in two main
categories. The first one can be seen as objective and involves
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technical considerations in extracting the information con-
tent, the information quality, and system complexity. The
second category is based on subjective concepts and includes
relevance feedback, user satisfaction, and semantic and semi-
otic confusions. In [6], we describe an algorithmic evalua-
tion protocol that measures the (objective) quality of seman-
tic cover-types, identifies the user’s (subjective) degree of sat-
isfaction, and compares the two reports. In this paper, how-
ever, we restrict ourselves to the analysis of the information
flow between different levels of our system, namely “image
space,” “content-index space,” and “semantic space.” Addi-
tionally, we include the user as an inherent part of the re-
trieval loop and analyze the communication between user
and system.

The paper is organized as follows. In Section 2 we present
the concept that is behind our knowledge-driven image in-
formation mining (KIM)1 system of hierarchical Bayesian
representation of image content. Additionally, the mining
system is briefly illuminated from the communication chan-
nel view. Section 3 introduces information-theoretic quan-
tities and in Section 4 they are applied to determine the in-
formation between different levels of semantic abstraction in
the system. Before we conclude the paper in Section 6, we will
analyze the information content of human-computer inter-
actions as presented in Section 5.

2. KNOWLEDGE-DRIVEN IMAGE
INFORMATIONMINING

In order to build a system that is free of the application speci-
ficity and to enable its open use in almost any scenario, we
start from an application-free hierarchical modeling of the
image content as demonstrated in Figure 1. The applied con-
cept of information representation on hierarchical levels of
different semantic abstraction is based on a 5-level Bayesian
learning model [2, 7].

To extract primitive image features (level 1) from the data
D (level 0), we apply various stochastic signal models M.
These models are given as parametric data models p(D|θ,M)
and assign the probability to a given realization of the im-
age data D for a particular value of the parameter vector θ.
The process of information extraction is realized by the max-
imum a-posteriori estimate of the parameter vector.

The Bayesian formalism is applied to find the most ev-
ident model given some data, in contrast to the model that
best describes the data, which will always be the most com-
plex one. Therefore, we introduce the next level of semantics
and call these features of the features metafeatures (level 2).

Based on the features on level 1 and the metafeatures on
level 2, we derive a set of signal classes ωi describing char-

1KIM was successfully implemented and tested under ESA contract. It
aimed at the generation of a prototype system to rapidly support users in
gathering relevant information from remote sensing image archives. The
tool should further manage and add value to the huge amounts of histor-
ically and newly acquired satellite datasets. KIM can be accessed by everyone
via internet at http://www.acsys.it:8080/kim.

acteristic groups of points in the parameter spaces of the
different models M. This vocabulary of characteristic signal
classes should be valid across all images (to avoid the time-
consuming calculation of similarity functions) and should
reject existing structures in the different feature spaces of
the data. The individual elements of this vocabulary consti-
tute the classes ωi at the image classification (level 3). They
are obtained by unsupervised clustering of the entire set of
data points (features and metafeatures) of the complete im-
age archive. We perform the unsupervised clustering using a
dyadic k-means algorithm with a predefined number of clus-
ters depending on the size of the archive. The approach is
very similar to vector quantization and proved to be suffi-
cient in practical experiments.

Levels 1 to 3 of the hierarchical modeling describe the
image data D at level 0 in a completely unsupervised and
application-free way. Based on this objective characteriza-
tion, the users interests Lν (level 4), that is, semantic interpre-
tations of the image content, are linked to the signal classesωi

by probabilities p(ωi|Lν). The information at level 4 can be
interactively defined by users with a learning paradigm [2].

After presenting the basic concept of the information
mining system of hierarchical image content modeling, we
point out the system characteristics from the communica-
tion channel point of view. Therefore, the image data at the
lowest level in the hierarchical abstraction of image content
is considered as a message transmitted by an imperfect com-
munication channel as 2D signals to users. The difficulty in
understanding the received image information in form of
symbols and semantics in a certain semiotic context, and in-
ferring about the original image causes the problem of un-
supervised image content modeling. Through the hierarchi-
cal image content characterization, the image retrieval sys-
tem can be viewed as a composed communication chan-
nel. The imperfect nature of the system in combination with
the well-known statement of information theory, which says
that data processing cannot increase information, entails that
each level in the hierarchical scheme is associated with a cer-
tain loss of information. The accuracy of communication, for
example, accessing a target image or a category of images as
exploration results, depends on the assumed levels of image
modeling.

In this paper, we deal with the measuring of infor-
mation (association) between different system levels using
information-theoretic quantities. Before we calculate these
system performance measurements, we will specify the ap-
plied measures in the following section.

3. MEASURES OF INFORMATION

In this section, we will shortly describe the concept of in-
formation and give some properties that are essential for its
use. The best known information measures are Shannon’s
entropy, Kullback-Leibler divergence, and Fisher’s informa-
tion matrix. Here, mainly the concept of accuracy in order
to determine the information contained in the observation
about a certain parameter will be considered.

http://www.acsys.it:8080/kim
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Figure 1: Hierarchical modeling of image content. First, primitive features θ (level 1) and metafeatures (level 2) are extracted from image
data D (level 0) based on different parametric signal models M, for example, spectral (sp) and texture (tex) at a certain scale. Through an
unsupervised clustering across all images in the archive, we derive a vocabulary of significant signal classes ωi as content-index. With simple
Bayesian networks we link user-defined cover-type labels Lν (level 4) to the content-index by probabilities p(ωi|Lν).

3.1. Shannon’smeasure of information

Shannon andWiener suggested the following measure of en-
tropy [8] contained in a random variable X with its proba-
bility mass function p(x) as

H(X) = −
∑

x

p(x) log p(x). (1)

The entropyH(X) is the uncertainty of a single random vari-
able. Further, conditional entropy can be defined, that is the
entropy of a random variable given another random variable.
This reduction in uncertainty due to another random vari-
able is called mutual information. For two random variables
X and Y this reduction is

I(X ;Y) = H(X)−H(X|Y)

=
∑

x,y

p(x, y) log
p(x, y)
p(x)p(y)

.
(2)

The mutual information I(·) indicates how much informa-
tion the random variable Y has about another random vari-
able X . If the observation of X is done under very noisy con-
ditions, for instance, the variablesX andY will be statistically
independent. No “information” about X will be recognized
in Y and I(X ;Y) = 0.

Until now we have considered the correlation between
two random variables X and Y modeled by the causality

X −→ Y. (3)

The causality between X and Y is also said to form a Markov
chain in the order X → Y if the conditional distribution of Y

only depends on X . With the more general causality

U −→ X −→ Y −→ V , (4)

described by the joint probability distribution

p(u, x, y, v) = p(v|y)p(y|x)p(x|u)p(u), (5)

the following inequality (data processing theorem) can be
obtained:

I(U ;V) ≤ I(X ;Y). (6)

This equation states that data processing never increases in-
formation, or, no clever manipulation of the data can im-
prove the inferences that can bemade from the data. Tomake
(6) more evident, we can interprete the model as the causal-
ity between different levels of semantic abstraction in the hi-
erarchical image content representation implemented in the
mining system: image data (U), extracted primitive image at-
tributes (X), content-index (Y), and finally the semantic in-
terpretation of the image content by the user (V).

3.2. Kullback-Leibler divergence

Kullback-Leibler divergence is a generalization of Shannon’s
measure of information. The divergence is a function of two
probability mass functions p(x) and q(x) that potentially
characterize the same random variable X :

D(p; q) =
∑

x

p(x) log
p(x)
q(x)

. (7)
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We want to mention that the divergence is nothing else but
the Shannonmeasure of uncertainty for a random variable X
if q(x) is a uniform probability mass function. Thus, Shan-
non’s entropy can be interpreted as the amount of informa-
tion in a model p(x) of X compared to the maximum incer-
titude model—the uniform distribution. The uniform distri-
bution is the one with maximum entropy.

4. INFORMATION BETWEEN DIFFERENT
SYSTEM LEVELS

In the last section, we summarized basic measures used in
information theory and statistics. Now, we will apply them
to determine the information flow in our knowledge-driven
mining system. Therefore, we define three basic levels of dif-
ferent semantic abstraction:

(i) image space I,
(ii) content-index space or class space ω,
(iii) semantic label space L.

4.1. Image space versus class space

First, we will evaluate the correlation between image space
I and class space ω. For this verification, we prepared two
datasets each consisting of 438 geocoded and coregistered
Landsat TM and ERS1 images. All images coverMozambique
and have a size of 2000×2000 pixels. The complexity of Land-
sat TM images is rather high, both from the point of view
of image content and subjective understanding by users. The
images indicate a huge diversity of spectral signatures and
a very broad variety of structural information at different
scales. Contrary to optical image data, the information con-
tent of ERS1 SAR images of Mozambique is quite small. Due
to the SAR sensitivity to the surface geometry, however, large
scale structures like rivers and geomorphology are well visi-
ble in the images.

From optical Landsat TM images we use spectral proper-
ties and textural properties at different scales. The latter are
related to the auto-binomial model of the Gibbs randomfield
(GRF) family [9]. On ERS1 radar data we apply a filter and
obtain the model-based despeckled (MBD) intensity image
[10]. Additionally, structural details are extracted based on a
Gauss-Markov random field (GMRF) prior texture model.

From the generated content-index, the mutual informa-
tion between image space I and class space ω can be com-
puted as

I(I;ω) =
∑

ζ ,i

p
(
ωi|Iζ

)
p
(
Iζ
)
log

p
(
ωi|Iζ

)

p
(
ωi
) , (8)

where p(ωi|Iζ) indicates the posterior probabilities of signal
classes ωi given a certain image Iζ from the archive. Prior
probabilities for signal classes and images are given by p(ωi)
and p(Iζ), respectively.

In Table 1, we summarize the calculations between image
and class space. Themeasures indicate the information trans-
mitted from image data through feature extraction and un-
supervised content-index generation (clustering) to the class

Table 1: Mutual information I(I;ω) between image space and class
(content-index) space. The class space ω was separately generated
for 438 coregistered Landsat TM and ERS1 images based on differ-
ent signal models.

Sensor Signal models Scale I(I; ω)
A Landsat TM Spectral 30m 1.41
B Landsat TM GRF 30m 0.92
C Landsat TM GRF 60m 1.23
D Landsat TM GRF 120m 1.39
E ERS1 MBD 60m 0.53
F ERS1 MBD 120m 0.59
G ERS1 GMRF 60m 0.43
H ERS1 GMRF 120m 0.56

space. Note that for radar data, the computed mutual infor-
mation I(I;ω) is much lower than for Landsat TM reflect-
ing the low information content of ERS1 scenes. For Landsat
TM images, the minimum information is given for texture at
lowest scale.

Measuring image database complexity
The association between image space and class space can fur-
ther be used to measure the complexity of images in the
archive. Since the query performance of content-based im-
age retrieval systems depends on the complexity of the data,
analyzing the image database that is used for testing is rather
important for evaluation. Similar to the method of [11] that
applies image database statistics and information theory to
determine the complexity of image databases, we measure
the information between image space and class space based
on Kullback-Leibler divergence.

In comparison to mutual information, (8), Kullback-
Leibler divergence can be applied to determine the complex-
ity of a single image in the entire archive. Thus, we define
the prior probability pi as the probability p(ωi) of a par-
ticular class ωi in the global (across image) class space and
the posterior probability qi as the probability p(ωi|Iζ) of a
class ωi given a particular image Iζ . For these two quantities,
Kullback-Leibler divergence is given according to (7) as

D
(
pi; qi

) =
∑

i

p
(
ωi|Iζ

)
log

p
(
ωi|Iζ

)

p
(
ωi
) , (9)

and can be interpreted as how much a single image Iζ is a
typical mixture of the complete image content of the whole
dataset or if the image is rather simple. Of course, the image
complexity expressed by (9) highly depends on the ability
of the applied signal model to describe the image content
and to capture characteristic image structures. We show
the image complexity on five images as given in Figure 2.
These images belong to the Landsat TM and ERS1 archives
that are composed of 438 scenes, respectively. For each of
the depicted images, we calculated the relative entropy D(·)
for the applied signal models and compared the results
(Figure 3). Although there are differences between the signal
models, a correlation along the signal models is visible. An
interesting fact is that the GRF texture model at a scale of
30m (original resolution) delivers the smallest entropies.
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Figure 2: Example of multimission dataset containing five coregistered Landsat TM (upper plots) and ERS1 (lower plots) images. For each
image we computed the complexity in the archive using different signal models as outlined in Figure 3. (a) Lan096 cut19, (b) lan107 cut1, (c)
lan104 cut6, (d) lan100 cut55, (e) lan101 cut81, (f) ers096 cut19, (g) ers107 cut1, (h) ers104 cut6, (i) ers100 cut55, and (j) ers101 cut81.
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Figure 3: Information-theoretic complexity of (a) Landsat TM and (b) ERS1 images as depicted in Figure 2. To describe the content of both
datasets, the models from Table 1 are applied. The complexity measures show that “lan096 cut19” is a very simple image in the Landsat TM
archive whereas “lan107 cut1” and “lan101 cut55” are quite complex. For ERS1 data, “ers104 cut6” is rather simple and “ers101 cut55” is
the image with the highest complexity.

It can be seen as the model that captures most of the
significant image structures in the archive.

4.2. Content-index space versus semantic label space

In the same way as we calculated the mutual information be-
tween image space and class space, we can compute the mu-
tual information between the next levels in the hierarchical

image content representation: class space ω and semantic la-
bel space L. The first three levels in the hierarchy are obtained
in a complete unsupervised and application-free way. Con-
sequently, the information between image and class space
can be seen as a complete objective measure. Subjective user-
related concepts neither have an influence on I(·), (8), nor
on D(·), (9).
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Figure 4: Mutual information I(ω;L) for a sequence of 26 seman-
tic cover-type labels. I(ω;L) was separately computed for each sig-
nal model, this time for spectral and GRF, scale 30m. The increase
of the mutual information depends on the diversity of the defined
labels.

Since a user-defined semantic cover-type label Lν is the
result of several human-machine interactions, the informa-
tion between ω and L can be seen as subjective and objec-
tive. More precisely, the stochastic link p(ωi|Lν) derived from
the user’s feedback connects objective signal classes ωi to the
user-specific interpretation of the image content in form of
semantic cover-types Lν. Therefore, the set of probabilities
p(ωi|Lν) is the central element of this analysis. With p(ωi|Lν)
as the likelihoods and the priors p(ωi) and p(Lν), the mu-
tual information between signal class space and semantic la-
bel space can be computed as

I(ω;L) =
∑

i,ν

p
(
ωi|Lν

)
p
(
Lν
)
log

p
(
ωi|Lν

)

p
(
ωi
) . (10)

Note that I(ω;L) is separately computed for each signal
model that the user selected to learn a cover-type of his inter-
est. We can interprete this measure as the quality of seman-
tic cover-types Lν to capture the entire diversity of structures
and patterns represented by the content-index. In Figure 4,
the behaviour of the mutual information is shown for a se-
quence of semantic labels defined by various users. If se-
mantic labels are inserted that differ from the existing ones
in terms of association to signal classes ωi of the different
feature models, mutual information increases. Contrary, the
mutual information decreases if cover-type labels are similar
to the existing ones in the DBMS inventory. We can interpret
an increase of I(·) as the ingestion of a new semantic label in
the database system that differs from the existing cover-types
in terms of signal classes ωi. Contrary, the mutual informa-
tion decreases if cover-type labels are similar to existing se-
mantics.

The mutual information between class space and seman-
tic space can further be applied to determine a dynamic index
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Figure 5: Mutual information between image space I and semantic
label space L. If new cover-types that are dissimilar from the existing
ones are trained and ingested in the DBMS inventory, the mutual
information I(I;L) increases.

control function. This function enables to filter out labels at
real time that are overlapping with other cover-types or to
indicate to the user that similar labels have been already de-
fined (see Section 5).

4.3. Image space versus semantic label space

After computing the mutual information between image-
class space and class-semantic space, we can directly make
the connection between cover-type labels Lν and images Iζ .
Therefore, we start with Bayes’ formula

p
(
Lν|ωi

) = p
(
ωi|Lν

)
p
(
Lν
)

∑

ν

p
(
ωi|Lν

)
p
(
Lν
) (11)

to obtain the posterior probabilities p(Lν|ωi) from the like-
lihoods p(ωi|Lν) and the priors p(Lν). Having defined the
posterior probabilities p(Lν|ωi), we can infer the probability
of a semantic label Lν given a certain image Iζ as

p
(
Lν|Iζ

) =
∑

i

p
(
Lν|ωi

)
p
(
ωi|Iζ

)
. (12)

These probabilities assign each semantic label Lν to the im-
ages in the archive. The images with the highest probabilities
p(Lν|Iζ) are retrieved by the system and displayed to the sys-
tem operator.

In a similar way as the mutual information between ωi

and Lν is calculated, we obtain this information by

I(I;L) =
∑

ζ ,ν

p
(
Lν|Iζ

)
p
(
Iζ
)
log

p
(
Lν|Iζ

)

p
(
Lν
) (13)

with posterior probabilities p(Lν|Iζ) from (12) and priors
p(Iζ) and p(Lν). In Figure 5, we display the computational
results based on the same semantic cover-types that are used
to analyze the association between class space and semantic
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Figure 6: Exploration image archive for 26 defined semantic labels.
The plot shows the archive coverage using the first 6 top-ranked
images in the search results. With all 26 labels, about 35% of the
entire archive is assigned to the semantic content.

space. Whereas I(ω;L) indicates how much information the
clusters contain about semantic labels, I(I;L) directly shows
the association between images and semantic labels (the in-
formation flow from the archive to users). Consequently, we
can—at least qualitatively—infer the amount of images in
the archive that are connected to cover-types. And if a new
semantic label is inserted in the DBMS, its novelty can be as-
sessed to the existing ones.

Notice the similarity between Figures 6 and 5. While the
first figure shows the coverage of the database according to
retrieved top-ranked images based on different search crite-
ria [2], the second shows the information-theoretic associa-
tion between image and semantic label space.

5. EVALUATIONOF HUMAN-MACHINE
INTERACTIONS

The development of intelligent human-machine interfaces
for information mining applications is a difficult task since
no well-established guidelines and models of the functions
that such systems should have are available [12]. Despite
this difficulty, we designed and implemented graphical, in-
tuitive, and powerful visual interfaces that aim at controlling
an underlying mining system, directly interacting with the
user and enabling him to retrieve relevant images without
the support of a human intermediary.

The experiments reported in this section focus on the
evaluation of the performance of human-machine interac-
tions. First, the user’s target structures are classified and
identified by tracing the man-machine interactions. Then,
the convergence of the learning process is analyzed using
information-theoretic measurements, and finally the train-
ing feedback is applied to predict which cover-types the user
might be interested in.

For the evaluation task, we ingested several datasets in the
KIM system that had been used for studying a flooding disas-
ter in Mozambique. Typical tasks for image analysts were to
identify flooded land and road networks, to look for airstrips
to provide humanitarian air-borne supply, and to detect ar-
eas that can be used for building refugee camps. The detailed
study of all scenes and the identification of relevant objects
with “classical” tools for interpreting remote sensing image
data required several months of work. With KIM, we pro-
vided the involved image analysts an easy-to-learn tool to ef-
ficiently explore large archives and to discriminate and an-
alyze the relevant image content. After a short introduction
in the KIM system and its functions, the evaluators could de-
fine semantic cover-type labels, query the archive for relevant
data, and interpret them.

5.1. Target structure classification and identification

In order to follow a system operator’s training iterations,
we use the information stored in the user-log Table 2. With
this information, the following details about target structures
from the traced human-computer interactions are extracted:
the time of performed training samples, the action type, and
the location of samples in the image. In order to exemplify
the classification of target structures, we superimpose the
training samples on the images with indication of training
iteration and the kind of training (positive or negative). We
show the man-machine interactions for training using five
Landsat images in Figure 7.

The user both performed 15 samples on these five im-
ages to learn the semantic cover-type “road” and commented
(off-line) on each iteration. With the positive examples, the
operator tried to include many label relevant (linear) struc-
tures. Negative ones are supposed to cover a high diversity of
irrelevant objects and structures reflected by different feature
models Table 3.

5.2. Convergence of learning process

How efficient is the mining system learning convergence? To
answer this question, we analyze the human-computer inter-
actions and measure the learning progress using Kullback-
Leibler divergence. In [13], the divergence between two com-
plete sets of probabilitiesLν = {p(ω1|Lν), . . . , p(ωr|Lν)} and
¬Lν = {p(ω1|¬Lν), . . . , p(ωr|¬Lν)} is defined as

D
(
Lν,¬Lν

) =
r∑

i=1

[
p
(
ωi|Lν

)− p
(
ωi|¬Lν

)]
ln

p
(
ωi|Lν

)

p
(
ωi|¬Lν

) ,

(14)

which can be seen as the distance between the two probability
distributions Lν and ¬Lν. The divergence D(Lν,¬Lν) can
be calculated either for a combination of signal models or
separately for each signal class.

Each positive and negative training iteration (mouse
click) implicitly causes the update of the probabilistic link
p(ωi|Lν) between content-index and semantic cover-type la-
bel. The amount of information in each learning iteration
is reflected by the increase or decrease of the divergence for
each signal model. The questions that arise are (1) how the
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Table 2: User-log information stored in the image information mining DBMS. After selecting a certain combination of feature models and
an image from the initial gallery, the user started to analyze the image data and to give positive and negative training samples (left and right
mouse clicks). Note that each performed action is assigned to a certain action type and time.

Time Action type Parameters
11:30:06 Model 1, 2, Switzerland, spectral, 256, 256, 151
11:30:06 Model 2, 2, Switzerland, texture, 256, 256, 51
11:30:06 Image 0, tmgeo 402 4 6, new label
11:30:38 Applet loaded —
11:30:48 Click left Zoom Panel, [x = 195, y = 85]
11:30:52 Click left Zoom Panel, [x = 179, y = 30]
11:30:54 Click right Zoom Panel, [x = 172, y = 37]
11:30:59 Click right Zoom Panel, [x = 106, y = 13]
11:31:02 Click right Zoom Panel, [x = 95, y = 104]
11:31:07 Click left Zoom Panel, [x = 196, y = 85]
11:31:10 Search —
11:31:28 Order Separability value ASC, lowest
11:31:28 Image 1, tmgeo 402 3 5, swiss river
11:31:35 Tab change Learn
11:31:41 Applet loaded —
11:31:47 Click left Zoom panel, [x = 87, y = 177]
11:31:52 Click left Zoom panel, [x = 87, y = 158]
· · · · · · · · ·

1,+

(a)

2,+
5,−

6,+
7,−

4,−

3,−

(b)

9,−
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13,+
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Figure 7: Definition of a semantic label “road” based on spectral and textural feature models (Landsat TM) with 15 training iterations. Al-
together, the user performed the training samples (8 positive and 7 negative) with 5 different images. The commented reasons for individual
training samples are summarized in Table 3.
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Table 3: Information about the training samples shown in Figure 7. The user’s aim was to include many similar structures in his positive
training whereas the negative training shows a high range of contrary patterns.

Iteration Training (+/−) User’s comment
1 + Starting sample, road in flat terrain

Search archive, selected image from coverage retrieval set
2 + Road in another image
3 − Negative training sample for smooth terrain
4 − Negative training sample, exclude flat terrain
5 − Negative training sample close to a road
6 + Include road
7 − Exclude rough terrain

Search archive, selected image from separability retrieval set
8 + Include highway road on a new image
9 − Specify road by clicking next to road

Search archive, selected image from coverage retrieval set
10 + Include strong road
11 − Exclude “city”
12 + Include road crossing

Search archive, selected image from separability retrieval set
13 + Include road on another image
14 + Include road
15 − Exclude road

0 5 10 15 20
Training iteration

0

0.5

1.0

1.5

2.0

D
(�

;¬
�
)

Spectral
Texture

Positive training
Negative training

Figure 8: Kullback-Leibler divergence for interactive learning. The
two graphs, each one for a certain feature model, represent the in-
crease or decrease of divergence after each user-performed training
sample.

divergence for the different feature models behaves and (2)
whether there is convergence.

In Figure 8, we analyze the Kullback-Leibler divergence
for the traced interactions as displayed in Figure 7. After the
first two positive training samples, the divergence for both
feature models almost equally increases. The third and all
following interactions show that the defined semantic label
is well represented by texture, the spectral model is of minor
importance. Although the last three positive training itera-
tions lead to a linear increase of the divergence for texture,
the sum of both models as the average quality of the training

shows convergence. This example shows the real behaviour
of the interaction between human and system: with only a
few training samples, an operator can define a cover-type la-
bel and query the database for relevant images. Of course,
the number of iterations necessary to train a label depends
on the selected feature models and the complexity of the la-
bel.

5.3. Matching user-specific semantic labels
The example in Figure 8 demonstrates that a user is able to
define a particular semantic cover-type with just a few train-
ing iterations. Now, we want to predict the user’s intentions.
By monitoring the interactions with the database system, it
might be possible to somehow predict which semantic label
or category of labels the user is interested in. This kind of
forecast is called “matching of user interests” in literature and
tries to identify the user’s target by analyzing his actions [14].
In a similar way as we computed the Kullback-Leibler diver-
gence D(Lν,¬Lν) between the two probability distributions
Lν (positive training) and ¬Lν (negative training) in (14),
we can extend this formula and determine the “similarity”
between a certain label and other labels in the inventory. De-
noting by Lν the label a user is training, the similarity to any
other label Lµ can be assessed as

D
(
Lν,Lµ

) =
∑

i

p
(
ωi|Lν

)
ln

p
(
ωi|Lν

)

p
(
ωi|Lµ

) . (15)

Labels that are “close”2 to Lν are characterized by a very low
divergence D(·) and labels dissimilar to Lν show a high di-
vergence. In Figure 9, we depict the similarity of a partic-
ular label to others during the interactive learning process.

2“Close” in the semantic sense.
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Figure 9: Results of matching a trained cover-type label “cloud” using (a) spectral and (b) textural feature model.

After just a few feedback samples, one semantic label close
to “cloud” is visible for both the spectral and texture feature
model. Of course, the performance of this method depends
on the applied signal models for interactive learning and the
capability of the user to learn the system.

6. CONCLUSIONS

In this paper we demonstrated the evaluation of a probabilis-
tic knowledge-driven image information mining system us-
ing information-theoretic measures.We started the presenta-
tion with the basic system concept of hierarchical image con-
tent modeling and briefly illuminated the system from the
communication channel view. Having explained informa-
tion measures settled in information theory, namely Shan-
non’s entropy, mutual information, and Kullback-Leibler di-
vergence, we applied them to evaluate the mining system.
Therefore, the system was separated in three main levels: im-
age space, content-index space, and semantic label space. We
computed the information between image space and class
space, class space and semantic space, and finally between
image space and semantic space as the direct connection be-
tween image archive data and users. Mutual information be-
tween image and class space can be viewed as a pure objec-
tive measure and indicates the ability of the system to rep-
resent the image content. The other measures are related to
subjective user-defined labels and enable an analysis of the
trained cover-types in the system. To explore the interactions
between human and mining system, an operator was traced
during several learning sessions. We classified and analyzed
the target structures that are given by positive and negative
training samples, analyzed the learning progress, and tried to
match user-specific semantic labels.

In future, we will further develop the system and its
graphical user interface. In order to optimally adjust the user
interface on the user’s needs, we will deal with the registra-
tion of the user’s behaviour and preferences, typical queries,
and actions. The implementation and evaluation of person-
alizer modules for user profiling, content targeting, and user
tracking functionality will be improved to deliver the target
specific content to a particular group of users. Additionally,
different viewing techniques, for example, 2D/3D visualiza-
tion, will support the user in analyzing different data sources
and will give him an immediate feedback.
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