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We present a new version of our content-based image retrieval system RETIN. It is based on adaptive quantization of the color
space, together with new features aiming at representing the spatial relationship between colors. Color analysis is also extended to
texture. Using these powerful indexes, an original interactive retrieval strategy is introduced. The process is based on two steps for
handling the retrieval of very large image categories. First, a controlled exploration method of the database is presented. Second,
a relevance feedback method based on statistical learning is proposed. All the steps are evaluated by experiments on a generalist

database.
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1. INTRODUCTION

The recent domain of image retrieval in large databases has
induced a revision of the topics of image processing and pat-
tern recognition. Image retrieval and extraction of visual in-
formation from image databases are useful in many appli-
cations. Even if there are many different application con-
texts, two kinds of search are usually distinguished [1]: tar-
get search and category search. Target search aims at retriev-
ing one or a few particular images in the database. Category
search aims at retrieving all the images belonging to a given
category. In the latter case, the major difficulty is that images
belonging to the same semantic category may have very dif-
ferent visual contents.

In image retrieval, fully automatic systems have given
poor results. In interactive systems, the user is requested to
manage the search within the database. For instance, the user
may interactively annotate the results as relevant or irrelevant
to his query. The system integrates these annotations through
arelevance feedback. The main idea of the relevance feedback

is to use the information provided by the user to improve the
system effectiveness. One reason for this new need of inter-
activity is definitively the huge size and the diversity of the
data to be mined. Another reason is the well-known seman-
tic gap [2] between the numerical data and their semantic
meaning. The user is looking for an image or a set of images
with semantics, for instance, a type of landscape, whereas ac-
tual systems deal with color or texture features. The problem
is even more complicated when the user is looking for a par-
ticular building, or a person, or for an abstract concept such
as unemployment. These different levels of abstraction have
been analyzed in [3].

All CBIR systems have to deal with two major challenges:
efficient image coding and effective visual information re-
trieval, working with user interaction to bridge the semantic
gap. In this paper, we propose solutions for both problems.

The first problem has been thoroughly studied in the first
retrieval systems [4, 5]. For generalist databases, the extrac-
tion of low-level features used in human preattentive vision,
like color, texture, and shape, has gained lots of attention
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[6, 7]. Concerning texture, the most popular features are
moments, and features based on cooccurrence matrices, on
Gabor filters or on wavelet decompositions [4]. Wavelet-
based methods have been compared in [8], and authors have
concluded that Gabor wavelets were the most effective. Shape
features are numerous, but they depend on prior extraction
of regions from the image. Concerning color features,
Schettini et al. have gathered color signatures and similarity
metrics employed in various indexing systems [9]: all colori-
metric spaces, from RGB to HSV to CIELab or CIELuv are
used by one or other of these systems. Nevertheless, the au-
thors point out that color alone is not sufficient to index large
image databases. Spatial relationship between regions are
sometimes encoded in order to represent image composition.
Using these features or primitives, signatures are computed.

In this paper, we present an image representation which
encodes color and texture but also the spatial relations be-
tween color regions (or texture regions). For color and tex-
ture analysis, the feature space quantization is significant. To
handle this problem, we propose a dynamic feature quanti-
zation scheme of the whole database. Instead of using prior
criteria, experiments in the image retrieval context are car-
ried out to select the best quantization method and its pa-
rameters.

Concerning the second challenge—effectiveness of the
retrieval task—two types of interactive approaches are usu-
ally considered [10], the geometrical approach (as search-by-
similarity), and the statistical approach (as relevance func-
tion estimation or binary classification).

(i) The geometrical approach of relevance feedback is
based either on the adaptation of the initial query or on the
updating of the similarity function. In this approach, initially
used for document retrieval [11], the query is represented by
a vector in the feature space, and the similarity function al-
lows to compare any image to the query. The adaptation then
consists in moving the query vector, or in changing similarity
parameters. Sometimes both are combined [12]. Similarity
updating may be seen as a shape deformation of the search
neighborhood around the query.

(ii) The approach by relevance function estimation aims
at associating a score to each image of the database, express-
ing the relevancy of the image to the query. A Bayesian con-
text is often used, and the probability density function is
updated considering the user annotations. The probability
function may be uniformly initialized and iteratively refined
in order to emphasize relevant images [13, 14]. The approach
using data classification treats the relevance feedback prob-
lem as a supervised learning problem. A binary classifier is
learnt by using all relevant and irrelevant annotated images
as input training data [10, 15].

We present a new version of RETIN, our content-based
image retrieval system [16]. Several modules have been de-
veloped to deal with target and category searches using both
geometrical and statistical approaches. We first present our
search-by-similarity approach based on similarity updating.
Dedicated to target search, this strategy has been successfully
compared to some of the best relevance feedback strategies
[16].

We have considerably improved the first version of our
system RETIN in order to deal with large category searches.
In this context, a category is defined as a set of images with
common semantic characteristics. All the relevant images are
not always gathered in a single mode in the feature space. The
problem is to catch all these modes. Our strategy for category
search is based on a statistical approach specially dedicated to
explore the database and to track multimodal distributions.
To be able to catch all the modes of a category, we propose to
explicitly take into account the distribution of the data in the
feature space. The stochastic database exploration is based
on a sampling of a relevance density function, and a multi-
modal similarity function. After a few database exploration
steps where many different images of the searched category
are collected, the exploitation may start. A learning strategy
based on SVM classification is then used to efficiently track
large image categories. The latter step is done as soon as the
exploration strategy has provided enough examples of the
category.

To summarize, the main characteristics of our index-
ing system are the adaptive feature quantization (Section 2),
and the computation of signatures composed of color, tex-
ture, and spatial relationship distributions (Sections 3 and
4). Concerning the retrieval engine, two original interactive
strategies are proposed for target and category searches in
Sections 5 and 6. We design a stochastic exploration scheme
that quickly grasps the user query concept (or semantic
query) in Section 6. We model relevance feedback either by
updating the similarity function or by using a binary clas-
sifier in Section 7. In Section 8, experiments on a generalist
database are reported.

2. COLORQUANTIZATION

As color information is usually represented by a huge num-
ber of classes (often over 16 million), it is necessary to reduce
this number by a color quantization process. This quantiza-
tion may be achieved by a static or by a dynamic splitting of
the color space. The difference between these two approaches
is that the first one is independent of the data, whereas the
second one takes into account the distribution of colors in
the feature space. The simplest method to reduce the num-
ber of classes is to split the color space into a reduced number
of classes or bins. There are many methods of regular or ir-
regular splitting. For example, the HSV space is split into 166
bins in Visual Seek [17]: the intensity axis is split into 3 in-
tervals, the saturation axis into 3 intervals, the hue angle into
18 intervals, and the central axis of the cylinder is split into 4
bins for the gray levels.

Dynamic quantization depends on data, either globally
by taking into account all images of the database or individ-
ually for each image. Classification methods may be used to
split the feature space but some adaptation is necessary due
to the size of the data (the number of pixels in the database).
An alternative consists in making clusters independently for
each image. For instance, Rubner [18] uses a color palette
adapted for each image. The use of image-adapted meth-
ods implies the introduction of specific distances, since the
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number and the significance of the bins can be different from
an image to another.

After quantization, a signature may be affected to each
image. Usually, it consists in the statistical distribution of the
classes (estimated by histograms), but it can be reduced to
a few features such as moments (mean, variance), covari-
ance matrices, or distributions restricted to the most fre-
quent classes present in the image.

In RETIN, we use signatures which are statistical distri-
butions of colors resulting from a dynamic quantization of
the whole database. For the dynamic quantization, we use
the k-means method. In the k-means unsupervised learning
algorithm, the clusters are automatically carried out using
the pixels from all the database images. We use an adaptive
algorithm, which means that the whole set of pixels is not
simultaneously processed, which would need an enormous
memory capacity, but the pixels are sequentially proposed to
the clustering process. Pixels are randomly sampled from the
database and processed. The only parameter is the number of
classes (color bins) which must be previously set. To speed up
the process, the database images are sequentially processed,
and the random selection of pixels is done image per image.

In the following subsections, we first determine the ap-
propriate number of color bins for the k-means classifier,
then we compare our adaptive quantization to a static quan-
tization, working in HSV space [17].

As none of the numerous color spaces has proved its su-
periority over the others for image indexing, we have chosen
HSV space in order to compare with static quantization in
the same space.

The CBIR experiments have been performed on the Corel
database to compare static and dynamic quantization. This
database, composed of 6000 images, is divided into cate-
gories, in order to use the classical criteria of precision and
recall [19] for quality assessment. Performances are estab-
lished independently for each category, but are averaged on
20 queries of the same category. In the follow-up, the dis-
played curves are typical results obtained for many cate-
gories.!

In all the experiments, the distance used to compare his-
tograms is L, distance. Comparisons of various distances
have been carried out in [21, 22]. Most of the time, L; dis-
tance is one of the most effective among geometric distances,
statistical tests, and other dissimilarity measures.

2.1. Histogram size selection

Some theoretical rules may be used to tune up the resolu-
tion and the number of histogram bins. Sturges’s or Scott’s
rules [21] allow to avoid over- or under-quantization. In im-
age retrieval context, Brunelli and Mich have evaluated many
feature histograms and they concluded that low-resolution
histograms (with small bin numbers) are reliable [21]. For
color histograms, Tran and Lenz suggest to use around 30
bins [23].

! Alternatively, the number of images per category could be used to draw
new evaluation curves, in the precision/recall plane [20].

Precision

0 01 02 03 04 05 06 07 08 09 1
Recall

—— 8bins

—— 16 bins

—— 25 bins

--= 100 bins
== 400 bins

Figure 1: Precision/recall curves for different numbers of classes
(sunset category).

F1GURE 2: Color palette resulting from our adaptive database quan-
tization (here in gray levels). The 25 clusters are represented by their
barycenters in the color feature space.

In this paper, we set the number of clusters from experi-
mentations. Moreover, tests will be performed in Section 8
with a complete retrieval system, including the feedback
loop. Here, we just examine the influence of the number
of classes on the retrieval results. The k-means algorithm
is evaluated for different number of classes, from 8 to 400.
Figure 1 displays precision/recall curves (averaged over 20
queries) obtained by the k-means algorithm. Except for 8
classes, for which results are lower, there is no significant
difference between the other four curves. As the size of sig-
natures is related to the retrieval time, small signatures, and
small number of classes have to be favored.

The palette of 25 colors (see Figure 2) was obtained from
a quantization using 500 million pixels randomly selected in
the Corel database. Each pixel can then be displayed by the
class center the closest to its original color (see Figure 3).

2.2. Color quantization method selection

We compare static and dynamic quantization results. For the
static quantization, we have used the method proposed by
Smith and Chang on 166 bins [17] from HSV cylindric space,
and our algorithm with 25 classes for the dynamic quanti-
zation. Figure 4 displays the average precision/recall curves
for 20 queries (from one category). Although the number of
classes is much lower (25) for the k-means classifier than for
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(a)

(®)

FIGURE 3: Two examples of images before and after quantization of HSV color space by adaptive k-means in 25 classes. The pixel values are
replaced by the color of the class center, here represented in gray. (a) Original image. (b) Color-quantized image.
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FIGURE 4: Precision/recall curves for two quantization methods:
Smith and Chang with 166 bins and our adaptive method with 25
colors.

the static quantization algorithm (166), the performances of
the dynamic classifier are better.

We observed this behavior for many categories; in order
to provide statistics for the whole database, we present ca-
pacity curves [24]. The capacity curve is defined as the his-
togram of dissimilarities between all pairs of images of the
database [24]. It allows to appreciate the dispersion of sig-
natures within the search space. The more this dispersion
increases, better is the discrimination quality of the signa-
ture. The capacity curves have been computed for the color

0.012

0.008 1

Frequency
j=}
=
S
&
L

0.004 b

0.002 1

0 . . : . , , ,
0 01 02 03 04 05 06 07 08 09 1

Dissimilarity

—— Histle6
— Sign25

F1GURE 5: Capacity curves for the color histogram in 166 classes of
Smith and Chang and for our color signature (color space HSV) of
25 classes (Sign25).

histogram of Smith and Chang and for our color signature
(Figure 5). One can observe that image dispersion in the
search space is larger with our color signature than with
the Smith and Chang histogram. The discriminatory abil-
ity of our approach is higher, which confirms previous re-
sults.

Our approach by dynamic quantization of the feature
space provides a more effective indexing of the database,
compared to a static histogram; image signatures are better
scattered in the search space and retrieval results are better.
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FIGURE 6: Example of transition matrix with 15 x 15 blocks. (a) Original image. (b) Block-image. (c) 3D representation of colorimetric

transition matrix.

A major advantage of the dynamic approach is the reduction
of the size of the signature without performance deteriora-
tion.

Even if the results depend on the image categories and
on the database, all our experiments show that for a gen-
eralist database (around 10000 images), a small number of
classes obtained by a dynamic clustering of the database is
sufficient to build efficient color signatures. We have adopted
this dynamic quantization in the RETIN system with 25 color
classes (as the default value).

3. SPATIO-COLORIMETRIC INDEXING

Color distribution is not sufficient to encode all color infor-
mation, because it gives no information about spatial local-
ization of each color in the image. Some methods integrate
spatial information, for example, color correlograms [25],
spatio-colorimetric histograms [26], and composite region
templates (CRT) [5]. Another solution is to segment the im-
age and to store spatial relationship between regions. How-
ever, automatic segmentation of a whole database is not an
easy task. Using manual annotations, complex spatial rela-
tionships have been modeled and exploited in a pictorial data
retrieval context [27]. Starting from the work of Smith and Li
[5], we propose a new spatio-colorimetric indexing without
segmentation.

3.1. Spatio-colorimetric quantization
without segmentation

The main idea is to store the vertical color transitions within
the image. In generalist image databases, only vertical transi-
tions are of importance. The reason is that a symmetry over a
horizontal axis greatly changes our perception of the image,
while a vertical symmetry weakly changes it: in landscape im-
ages, the sky is usually on the top of the image!

Instead of segmenting the image, we start from the quan-
tized image with N color classes as explained in Section 2.1,
and we split it into rectangular blocks without overlap. Each
block is then represented by the most frequent color class
in the block. Resulting block-image is like a low-resolution
version of the quantized image (see Figure 6). The number
of blocks is a parameter of the method which must be cho-
sen according to the size of the image objects. Tests have
been performed and are presented in Section 3.2. The fre-
quency of top-down transitions of colors between adjacent
or not-adjacent blocks belonging to the same block column
is then computed and stored in a matrix. Unlike CRT tech-
nique, transitions between blocks of same color are counted
only if they are separated by at least one block from an-
other color. This introduces scale invariance since only tran-
sitions are counted, and robustness towards the block size,
since adjacent blocks of same color are not counted: over-
segmentation in small blocks is thus overcome.
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FIGURE 7: Precision/recall curves for various splittings using our
spatio-colorimetric signature (landscape category).

One example of block-image and its matrix of color tran-
sitions is displayed in Figure 6. The matrix is mainly made
up of a large peak corresponding to blue/white transitions,
which represents the vertical sky/snow transitions in the im-
age.

Transition matrices are large and very sparse. It would be
expensive to keep the whole matrix as signature, so the infor-
mation contained in matrices is reduced to N? components
by PCA.

3.2. Method tuning and comparative results

The only parameter of our spatio-colorimetric signature is
the number of blocks. Figure 7 compares retrieval results for
several numbers of blocks from 5 X 5 to 45 x 45. Curves show
that 15 or 30 is a good choice for the number of blocks. The
more image is degraded by a coarse splitting, the more per-
formances decrease. On the other hand, using more blocks
does not improve results. Considering the mean size of ob-
jects contained in the Corel database, which is typical of gen-
eralist image databases, the number of blocks can be set to
15 x 15.

We have carried out comparisons between signatures us-
ing CRT and our spatio-colorimetric signatures. In Figure 8,
precision/recall curves have been obtained for 20 queries
with the CRT signature and with our spatio-colorimetric sig-
nature with 225 (15 x 15) blocks, and after reduction to 25
classes. In order to respect the original CRT method, we have
used the similarity function of Smith and Li for CRT re-
trieval [5]. Our signature gives the best results. The reasons
are that we have a better color adaptation to data through the

2N is the number of color clusters.

Precision

0 01 02 03 04 05 06 07 08 09 1
Recall

—— CRT Smith and Li
— Spatial and color

FIGURE 8: Precision/recall curves using the Smith and Li signature
and our spatio-colorimetric signature (elephant category).

dynamic color quantization and a better spatial adaptation
thanks to the splitting into small blocks, which is more accu-
rate than the coarse segmentation proposed by Smith and Li.
Over-segmentation, which could be criticized, is not a draw-
back in our scheme, because pairs of adjacent blocks with the
same color are not counted.

In Figure 9, we reported retrieval results when the sys-
tem uses either only the color signature, or both color and
spatio-colorimetric signatures. The ten most similar images
are displayed in decreasing rank of similarity. The spatial in-
formation clearly improves the results in this search, moving
away images of mountains, where blue areas are not in the
center of the image.

4. TEXTURE

The same principle of quantization can be applied to any
feature space. For example, texture is often represented by
wavelet coefficients or by features obtained with Gabor fil-
ters. We use a Gabor filter bank of three frequencies and four
orientations, which leads to a 12 dimensional vector for each
pixel. Quantization is performed by the k-means algorithm
which in this case works in a 12 dimensional space (3 fre-
quencies and 4 orientations) instead of the 3 dimensional
HSV space. Two examples of quantization of the texture
space are displayed in Figure 10.

As for color composition, vertical transitions of textures
can be stored in a vector representing texture image compo-
sition.

To summarize, our signature is made of four vec-
tors, two vectors dedicated to color and two vectors ded-
icated to texture. The first vector represents the color dis-
tribution obtained by k-means clustering from HSV space,
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FIGURE 9: Results for a search of doors in the Corel database. Images are ranked by decreasing similarity from top to bottom, and from left
to right. The query is the top-left-hand image. (a) Without spatial information. (b) With spatial information.

(a) (b)

(c) (d)

FIGURE 10: Two examples of images before and after quantization of the texture space by adaptive k-means in 25 classes. A gray level is

randomly attributed to each texture class.

as explained in Section 2.2. The second vector represents
spatio-colorimetric transitions as presented in Section 3. The
other vectors represent texture in the same way as color. In
order to easily combine similarities in various spaces, we take
the same number of clusters for all the spaces. Experiments
on the Corel database have shown that N = 25 classes (for
any feature space) realizes a good tradeoff between the size
and the richness of the resulting signature. We have adopted
this value as the default one in RETIN.

5. TARGET SEARCH: SIMILARITY UPDATING

5.1. Introduction

Target search strategy works as follows: the user presents an
example of the images he is looking for, and the system ex-
tracts from the database the images most similar to the query.
Given a set of results, the user indicates if each image is rel-
evant or irrelevant. Relevance feedback is then applied. Two
main approaches can be distinguished and combined. The
first one is directly inspired by text retrieval and consists in
query refinement, that is, a mean query is computed from
relevant and irrelevant examples provided by user [2]. The
second approach is similarity updating. For instance, some

techniques refine results through tuning of weights associ-
ated to each feature space. Actually, feature weights are either
manually tuned by user [28] or automatically updated via
user annotations [29].

Our CBIR system RETIN includes a relevance feedback
stage with similarity refinement [30]. Our similarity func-
tion is first introduced, and the feedback scheme managing
competition between features is detailed.

5.2. Similarity updating strategy

The similarity is computed in each feature space and the set
of similarities is then merged. We use a hierarchical model
[29] where merging is achieved by a linear combination of all
the feature space similarities. The system compares a query
image R to any image I; of the database, these images are in-
dexed by M statistical distributions (one for each feature) of
N classes, respectively, noted Rand I; : R = {Rx(g), 1 < g <
N,l<k<M}andl; = {Ix(q), 1 =q=<N, 1 <k <M}
The similarity is computed as a double-weighted sum:

M
S(RI;) = Zﬁksk(R,L’) (1)
k=1
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with could be selected. When starting a retrieval session with one
N image from one mode, this strategy makes possible to select

SRL) =1-S a|R -1 i 2 images from other modes.
K(R.1) gl ka | Ri(g) — 1uq) | @ This approach allows us to have a direct control of the

B € RY, axy € RT. Weights fi (resp., ax,) manage the
competition between features (resp., between bins), and they
are normalized: S}°, fr = 1 and Z;\f:l arg = 1 for all
(k € [1, M]). With the signature normalization, we also have
0 < sk(R,I;) = 1 for all k and consequently 0 < S(R,I;) < 1.
The dissimilarity function may be deduced from the similar-
ity one: D(R,I;) = 1 - SR, I).

At the beginning, weights are equal and normalized. Af-
ter computing global similarities between each image and the
query, the images most similar to the query are displayed. Af-
ter user annotations, the set of relevant (") and irrelevant
(&) images constitute a learning set (&). It is used to update
weights by an LMS optimization. Therefore, it is easy to com-
pute both & and § parameter updating [16]: given a learning
rate y (4 > 0), one iteration of feedback for I; € & is

Bk — Pr + p(1lcer — SR, 1))sk (R, I;),
kg — Okq + 1(1peer — S(RI;))BeIRe(q) — Ti(q)1,

where 11 is the indicating function.

6. CATEGORY SEARCH: ON-LINE SEMANTIC
QUERY LEARNING

Search-by-similarity strategies with relevance feedback are
well suited for target search. To retrieve a few images close
to a query image, our search-by-similarity method is effec-
tive. The problem is much more complicated when the user
is looking for large image categories. In this case, all rele-
vant images have common semantic characteristics but are
not always gathered in a single mode in the feature space.
The problem is to catch these various modes. Without spe-
cific strategy, search-by-similarity methods only retrieve im-
ages close to the first query, and so, it is very hard to track
other modes of the searched category.

Any system needs an efficient strategy for exploring the
database in order to catch complex image category distribu-
tions. Statistical learning approaches which perform binary
classification do not really manage exploration. They need
enough initial training data in several modes in order to get
good classifications [15]. Chang proposes a two-step sequen-
tial process to get some relevant images before doing the
classification [31]. Bayesian framework has been proposed
[14, 32] for relevance feedback. Some kind of exploration is
implicitly managed, but the goal is not to retrieve categories,
and the exploration is not easy to tune.

We propose a statistical approach to explore the database
and to track multimodal distributions. The basic idea is to
modify the selection scheme (based on similarity ranking). A
relevance probability is attributed to each image. The system
uses this probability to sample and display new images. The
probability function is defined to ensure that, during the first
steps of a search session, any image, even far from the query,

exploration with intuitive parameters very easy to tune. This
strategy is inspired by simulated annealing techniques [33].

6.1. Stochastic exploration approach

We note that $Q (for semantic query) the set of L images
that have been annotated as relevant since the beginning of
the retrieval session, §Q = {R;, 1 <[ < L}.

The idea is to assign to each image of the database a prob-
ability to be relevant towards the searched category. A Boltz-
mann distribution on the dissimilarity D(-)? is then used to
compute the image probability:

*D(5Q,Ii))) (4)

1
PJQ(I = I,) = — Xexp( T

Zr

where Z7 is the sum of the exponential values over all the
images of the database and T the parameter which tunes the
size of the search subspace.

At each iteration of the interactive search, the system
samples and displays images according to the probability
Pyq. All images that the user annotates as relevant are added
to the set Q.

When the parameter T is high, the influence of the dis-
similarity to 4Q is small, and thus, the neighborhood ex-
plored around the set §Q is broad. When T decreases, the in-
fluence of the dissimilarity to 4Q increases in the probability
computation. The search space cuts down around $Q. Dur-
ing first iterations, the database exploration is favored and
new examples are added to the query, allowing to catch many
modes of the searched category.

The 8Q content information accumulated during first
steps may be fully exploited in a second step.

6.2. Semantic query similarity function

The similarity between an image and the set Q = {R;, 1 <
I < L} is different from the similarity between two images
defined in Section 5. For an image I; (indexed by I;) and for
a search based on M feature spaces, the similarity measure-
ment between [; and the semantic query is calculated as fol-
lows:

M
S(8Q.L) = > sk (8Q. 1), (5)
k=1

where s,(8Q,1;) is the similarity in the kth feature space,
Br € R*. Many similarity functions sx(R;, I;) have been tested
and a similarity based on L; distance has been adopted in our
experiments (with normalization): sg(R;, I;) = 1 —dp, (R, I)).

3The extension of D(Ry, Iq) to D($Q, Iq) is presented in the next section.
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To merge similarities sg(R;,I;), we use the follow-
ing barycenter operator: s(8Q,1;) (Zszl sk(R,1)%)/
(ZIL:1 sk(Rp,1;)) This strategy allows to take the multi-
modality into account [34].

Due to the normalization, sx(8Q,I;) < 1 for all k, and
the similarity values S($Q, I;) are then between 0 and 1. The
dissimilarity may be expressed as follows:

D(8Q,I}) =1 -S(8Q,1,). (6)

6.3. Parameter tuning

A decreasing law for the parameter T has to be defined. In
CBIR context, the number of iterations must be small in or-
der not to discourage the user. We use an exponential decay:*

T]' = C] X To, (7)

where T, and C are constants (C < 1), and j indicates the
user interaction steps. Constants have to be set for an accept-
able number of feedback iterations. Actually, we propose to
base them on maximal dissimilarities in the feature space.
This approach will allow to handle more intuitively the ex-
ploration process.

We first specify that dissimilarity D used for parameter
tuning was equalized beforehand. We consider the probabil-
ity & of selecting an image whose dissimilarity is lower than a
threshold dyound. According to (4) we have

- Y

I,‘Edb‘D(/SQ;Iz)Sdbound

>

1;€db|D(8Q.1;) <dbound

Pso(I =1;)

Lexp <;D(5Q»Ii)) ®
T :

With the notation d; = D(8Q, 1,), for all I; € db, after rank-
ing, 6 may be expressed as follows:

= Z %exp(}?i). (9)

0=d;<dpound

To find an explicit relation between T, dyound, and 8, D may
be considered as continuous (reasonable hypothesis since the
database contains many images). After equalization of D, this
leads to the following approximation:

fod ot exp(—x/T)dx
Jo exp(—=x/T)dx ’

0~ (10)

that is,

dbound = _Tln(l_a) (11)

“In simulated annealing techniques [33], a combination between high
initial parameter T (called temperature parameter) and slow cooling strat-
egy is unsuited. For time-consuming constraints, exponential decay is often
preferred.

Step 1: For each image I;, Pso(I = ;) calculation (4).

Step 2: Pq(.) sampling and display of images.

Step 3: Image annotation and updating of semantic query §@.
Step 4: Decreasing of T (7).

Step 5: Go to step 1 until the end of the exploration.

ArcoriTHM 1: Stochastic exploration of the database.

Ty is calculated according to the maximum dissimilarity
dvound = Dmax at the beginning of the retrieval. So, we have

(cf. (11))

—Dnax

To= In(1-90)

(12)

In the same way, dp,y is defined as the maximal dissimilarity
at the last step of the exploration. By choosing the number
n of iterations during the exploration, it is possible to fix up
the final value of T:

- dmax

Tﬁnal = Tn = m

(13)

The constant C may be computed thanks to (7) in the follow-
ing way:

c=. dm”‘. (14)

To summarize, four parameters handle the exploration pro-
cess.

(i) 8, close to 1, set to 1 — 107 in all tests.

(i1) Dmax. In our experiments, the whole database is se-
lected. In this case, Dyax is the dissimilarity of the image of
the database the furthest away from the query.

(iii) dmax. This value may be tuned thanks to the number
of images that the system has investigated by the end of the
exploration process. We set this number to 20 X Ng;,p images
in our experiments (where Ngjsp is the number of images dis-
played at each iteration).

(iv) n the number of iterations. From 5 to 10 iterations is
a nice tradeoff between short search and effective exploration
of the database.

Once the parameters are set, the process may start. One
iteration of the stochastic exploration algorithm is shown in
Algorithm 1.

7. CATEGORY SEARCH: SEMANTIC
QUERY EXPLOITATION

7.1. Context

When the semantic query is rich enough, it makes sense to
use it to the full extent to get as many relevant images as pos-
sible. All the examples that the user has annotated as irrel-
evant during the exploration step are also stored to be ex-
ploited during this second step.
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Relevance feedback may be used to refine the semantic
query similarity function introduced in Section 6.2. Weight
competition on 3 parameters (cf. Section 5) has been ap-
plied. We called it the SQRF technique (semantic query rele-
vance feedback).

Recently, statistical learning approaches have been in-
troduced in CBIR context and have been very successful
[15, 31]. Discrimination methods may significantly improve
the effectiveness of visual information retrieval tasks. How-
ever, CBIR is a very specific classification task. There are very
few training data during the retrieval process, and the in-
put space dimension is very high. Support vector machines
(SVM) seem to be a good solution in such a context because
they are dedicated for binary classification and are well suited
to these specificities. They usually have good classification
performances with few training data and high input space.

However, SVM need a minimum of examples to obtain
good discrimination and generalization properties. For this
reason, we always start category search session with explo-
ration strategy before SVM classification.

7.2. SVM parameter setting

Let (Ig)gef00-1)> I¢ € RP? be the feature vectors representing
annotated images, and let (y4)gefo,-1]> ¥4 € {—1,1} be their
respective annotations (1 = relevant, —1 = irrelevant).

The aim of the SVM classification method is to find the
best hyperplane separating relevant and irrelevant vectors
maximizing the size of the margin (in between both classes).
Initial method assumes that relevant and irrelevant vectors
are linearly separable. To overcome this problem, kernels
k(.,.) have been introduced. This allows to deal with non-
linear spaces. Moreover, a soft margin may be used, in order
to tolerate noisy configuration. It consists in a very simple
adaptation by introducing a bound C in the initial equations
[35]. The resulting optimization problem may be expressed
as follows:

1-1 -1
argmax >, o = > D, aqa;ygyik(le, 1),

© =0 4,j=0
1 (1)
with Zaqu=o Vqe[0,/-1],0<a,<C

q=0

Thanks to the optimal a* value, the distance between a vec-
tor I; and the separating hyperplane is used to evaluate how
the image I; is relevant:

-1

FL) = yaay k(T Ig). (16)
q=0

The kernel function, used in the SVM algorithm, has to be
determined. Most popular kernels are Gaussian and poly-
nomial ones. We selected a Gaussian kernel k(I;,I;) =
exp(—d*(1;,1j)/20%) because we have no prior assumption
on input data configuration. Moreover, distance in Gaussian
kernel may be chosen according to the type of feature vec-
tors. For instance, we use a y? distance which is well suited
for histograms, and in that case, o = 1.

8. EXPERIMENTS

We display in this section some experiments on 6000 im-
ages from the Corel database introduced in Section 2. In or-
der to make quality assessment, reference categories are used
to generate many experiments and make statistics on preci-
sion and recall criteria [19]. As there are high variations in
the number of images in each category, performances are es-
tablished independently for each category, but are averaged
on many queries of the same category.

Category retrieval is evaluated.® First, results and qual-
ity assessment of the exploration step are examined. The ex-
ploitation of the semantic query is then reported.

Feature vectors are composed of four index vectors pre-
sented in Sections 2, 3, 4, but the user may select or unselect
some of them. For category retrieval statistical computation,
only color and texture features are considered.

In Figure 11, we present three different results:

(i) result with no feedback (Figure 11a),

(ii) result after 5 iterations of our similarity feedback strat-
egy with a single query image without exploration
(Figure 11b),

(iii) result with the exploration process to build the seman-
tic query. Images are not ranked, but most of the im-
ages of the semantic query $Q (obtained after 5 itera-
tions) are displayed (Figure 11c¢).

We note that the same number of annotations has been ap-
plied for the three experiments.

Assume the user is looking for the castle category in this
experimentation and the initial query is the castle picture the
first line, left column of Figure 11(a).

One can notice that the result without feedback is really
poor; the color distributions and the transitions seem to be
very close in the returned images, but there are no castles be-
fore the ninth rank. Next, the feedback strategy SQRF is able
to find relevant images (Figure 11(b)), but the number of rel-
evant retrieved images remains low. Finally, the exploration
strategy gives by far the best results (Figure 11(c)). Many cas-
tle images of very different kinds have been retrieved with-
out using more user annotations than those applied by other
methods.

In Figure 12, a quality assessment is realized over 20 dis-
tinct queries of the flower category. The performance cri-
terion is the recall according to the number of iterations.
We also computed performances of a random search. In
the beginning of our controlled exploration, the system re-
turns many images even far from the query in order to catch
the category diversity. The recall criterion is weak during
these first iterations, and then quickly increases after four or
five feedbacks. When the semantic query has caught enough
modes of the category, performances are higher than with
simple competition strategy.

Experiments on target search with relevance feedback are not reported
here. Interested reader can find in [16] a complete evaluation of our method
and a comparison to leader techniques.
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FIGURE 11: Retrieval strategy comparison: (a) the top-15 result without feedback, (b) result using the simple feedback retrieval strategy , and

(c) the exploration strategy result.

Our exploration strategy is effective to build a powerful
semantic query, which makes the accumulation of many rele-
vant images easy. After some iterations, more relevant images
are retrieved than by using traditional search-by-similarity
methods.

In Figures 13 and 14, the last part of our category re-
trieval strategy is evaluated and compared for two cate-
gories. Two methods have been introduced in Section 7,
the semantic query relevance feedback technique (SQREF),
and the SVM binary classification. They are used after
the exploration and compared to the relevance feedback
technique without exploration. The efficiency of the ex-
ploration method is confirmed by these precision/recall
curves: the technique performs better with exploration. The
SVM classification always gives the best results. These re-
sults have been confirmed by tests on many categories
from this database and from other generalist databases
[36, 37]. One can notice that performances are better
for the cavern category than for the flower category. The

cavern category is simpler (50 images) than the flower
one (200 images sparsely distributed in the feature space).
These properties explain the difference of retrieval effective-
ness.

As far as the time consuming is concerned, the main
computational needs is the O(N) computation (where N is
the number of images in database) of the distance between
any image and the query (step 1 in Section 6), or for the SVM
method, the fellowship to the relevant class (function f(.) in
Section 7.2) on the whole database. Other requirements are
negligible against N. In our experiments, all methods need at
most a few seconds to compute new results with a Pentium
3 GHz. About the main memory space (RAM), we need to
store feature vectors (N X p doubles) and kernel cache lines
(N x c doubles) for the SVM computation, where p is feature
vector dimension, and ¢ the number of lines to cache. Other
requirements are negligible against N. In the experiments,
about 3 Mb are used by the feature vectors, and 10 MB for
the kernel cache.
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FIGURE 13: Precision/recall curves for semantic query relevance
feedback and SVM methods with or without exploration strategy
(flower category).

9. CONCLUSION

We proposed a new system to take up the double gauntlet
of CBIR: powerful image signature and efficient interactive
retrieval strategy.

Color and texture indexing are considered. We carried
out comparative tests concerning color and texture space
quantization in the framework of CBIR. As a result of a
lot of experiments, we have chosen an adaptive quantiza-

0

0 01 02 03 04 05 06 07 08 09 1
Recall

— SQREF without exploration
—— SQREF with exploration
—— SVM with exploration

FIGURE 14: Precision/recall curves for semantic query relevance
feedback and SVM methods with or without exploration strategy
(cavern category).

tion method with an efficient parameter tuning. Adaptive
quantization is more effective than static one. Thanks to this
database quantization, the number of clusters in the quanti-
zation can be drastically reduced. Typically, 25 clusters pro-
duce satisfactory results for databases of about 10 000 images.
It is used in RETIN as the default value to quantify color and
texture spaces. We also encoded spatial information through
vertical cooccurrences of colors and textures. This is a sim-
ple and effective way to build signatures including the spatial
distribution of color and texture features.

We proposed an original method for image category re-
trieval including an exploration step of the database. As the
searched category often has a multimodal distribution in the
feature space, we developed an approach to explicitly model
this complexity. During the retrieval, query and similarity
are modified to take advantages of the user annotations. We
introduced a semantic query, which is composed of all the
relevant images as the search advanced. To select new im-
ages for labeling, our process is based on a controlled explo-
ration strategy of the database. The control parameter is in-
tegrated in a global relevance function. Due to this new for-
mulation, an explicit feature space exploration is proposed
to the user. Many images, scattered in feature spaces, may be
retrieved during this exploration process. We also proposed
an SVM binary classification. It allows to retrieve most of the
images of the searched category starting from the semantic
query obtained at the end of the exploration step. Experi-
ments and quality assessment on a large database have been
carried out to evaluate our approach. The combination of the
exploration-based approach with the classification process
gives outstanding results when large and complex categories
are considered. Experiments have shown that the statistical
approach performs better than the geometrical approach for
category retrieval.
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We are currently working on the integration of our explo-
ration strategy in the statistical framework of active learning
[37, 38]. Other investigations concern the analysis of the se-
mantic queries stored during many retrieval sessions. This
semantic information is very rich and should be helpful for
future category searches [39].
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