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Combining multiple neural networks has been used to improve the decision accuracy in many application fields including pattern
recognition and classification. In this paper, we investigate the potential of this approach for land cover change detection. In a first
step, we perform many experiments in order to find the optimal individual networks in terms of architecture and training rule. In
the second step, different neural network change detectors are combined using amethod based on the notion of fuzzy integral. This
method combines objective evidences in the form of network outputs, with subjective measures of their performances. Various
forms of the fuzzy integral, which are, namely, Choquet integral, Sugeno integral, and two extensions of Sugeno integral with
ordered weighted averaging operators, are implemented. Experimental analysis using error matrices and Kappa analysis showed
that the fuzzy integral outperforms individual networks and constitutes an appropriate strategy to increase the accuracy of change
detection.
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1. INTRODUCTION

Analysis of multitemporal images of remote sensing is used
for multiple purposes like environment monitoring and
wide-area surveillance. These applications involve the iden-
tification of changes in land cover and land use practices.
Hence, even, a pair of spatially registered images acquired
on the same ground area at different times is analyzed to
identify areas that have changed. Commonly, the compari-
son of independently produced classifications of data is used
since it provides complete knowledge upon the change [1].
However, there are major problems associated with this tech-
nique. On one hand, its accuracy is critically dependent upon
the two individual classifications. On the other hand, it does
not allow the detection of subtle changes within a land cover
class [2]. Recently, an alternative approach based on simul-
taneous classification of multitemporal data begins to be
used to overcome these drawbacks and allow an automatic
extraction of different kinds of change [3, 4]. To develop
such a change detector, one can adopt statistical classifiers
that are widely used in remote sensing such as the max-

imum likelihood. However, these algorithms are based on
hard and commonly untenable assumptions about the data.
Therefore, nonparametric classifiers such as neural networks
and fuzzy classifiers are increasingly being used. Presently,
we focus our attention on artificial neural networks (ANNs),
which have been successfully applied in a wide range of ap-
plications including classification and change detection in re-
motely sensed data [5, 6, 7]. Theoretically speaking, ANNs
are able to achieve an accurate result with high generaliza-
tion capacity. Nevertheless, in practice, their use poses sev-
eral problems. In addition to the large variety of training
algorithms, we are faced to a vast selection of possible net-
work architectures and setup parameters. A bad choice of
these factors affects subjectively the generalization capacity.
Moreover, different neural networks may a priori perform
differently from a land cover class to another. In this paper,
we propose the combination (or fusion) of some neural net-
works to achieve the best possible performance of change
detection. In fact, several researchers have attempted to use
multiple neural networks with an appropriate collective de-
cision strategy [8]. Among the available techniques, the fuzzy
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Figure 1: Neural network architecture for change detection.

integral has enjoyed a strong success in several applications of
land cover classification, handwritten recognition, and im-
age sequence analysis [8, 9, 10, 11, 12]. This method com-
bines objective evidences in the form of network outputs ac-
cording to expectations about their relevance. These expecta-
tions are estimated by using a fuzzy measure. In a first time,
the experimental design includes architectural and training
rule selection. Next, we carry out the combination of three
neural networks using various forms of the fuzzy integral.
Specifically, we use Sugeno integral, Choquet integral, and
the extended Sugeno integral by two families of ordered
weighted averaging operators (OWA-OR and OWA-AND).
The rest of this paper is arranged as follows. Section 2 re-
views the neural network change detector as well as its train-
ing rules. It presents also the combination via the fuzzy in-
tegral. Section 3 summarises experimental results including
architectural and training algorithm selection for neural net-
works and the performance comparison evaluation of com-
bination rules. Finally, Section 4 discusses and gives the main
conclusions of the paper.

2. COMBINATIONOF NEURAL-NETWORK-BASED
CHANGE DETECTORS

2.1. Neural-network-based change detector

There are two approaches for change detection [2]. The first
approach uses comparative analysis of independently pro-
duced classifications of data, in which pixel labels of two in-
dividual classifications are compared to detect changes. This
approach gives complete information over the land cover
change but errors in the two classifications appear in the
final change map as missed or spurious changes. The sec-
ond approach is based on simultaneous classification of mul-
titemporal data. It overcomes some limitations of the first
approach since the data are handled by the same classifier.
Hence, land cover change classes are selected at the classi-
fier input. For instance, if we are interested to assess changes
from no urban to urban, we select pixels which were not in
the urban class at t1 and are in this class at t2. Similarly, if
we want to extract a no-change class such as urban areas, we
select pixels that belong to this class in both dates.

In this paper, we adopt the simultaneous analysis ap-
proach using artificial neural network classifiers. Recall that
an artificial neural network is considered as a mapping de-
vice between an input set and an output set. Inside it is
constructed from some processing units interconnected by
weighted channels according to some architecture [5]. Thus,
the neural network change detector has the following struc-
ture.

(i) Network input: it receives input data extracted from
two or more multitemporal images of the study area.
Spectral channels of these images are spatially aligned
and concatenated to form the input vector.

(ii) Network output: the network output can be encoded
by several ways. In our case, we use one output node
per land cover category which is either change or no-
change class.

(iii) Network architecture: the number of hidden layers and
their size are determined by the user. In general, for
complex classification, like change detection, a net-
work with two hidden layers achieves the best result in
terms of the square error at convergence and the gen-
eralization ability [6].

For instance, Figure 1 shows the architecture of a two-
hidden-layer network for change detection. Recall that super-
vised learning of this network aims to minimize the cost for
all possible examples through the input-output relation by
modifying iteratively synaptic weights (i.e., minimizing the
mean squared error E between actual and desired outputs of
the network which are, respectively, Y and Yd):

E =
M∑

j=1

(
Yj − Ydj

)2
, (1)

M is the number of the training patterns. Thereby, synaptic
weights are updated at the iteration (t + 1) by

w(t + 1) = w(t) + ∆w(t + 1), (2)

∆w(t + 1) corresponds to the weight change, which is
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compued for the backpropagation algorithm by

∆w(t + 1) = −η ∂E
∂w

+ α∆w(t), (3)

η is the step size and α is the momentum. However, the main
problem of the backpropagation is that many iterations are
required to train a small network. Hence, an alternative algo-
rithm based on the Kalman filtering has been proposed for
accelering the training stage of the neural network. For this
training rule, the weight change is computed by means of the
following equation:

∆w(t + 1) = kieiµi, (4)

ei is the error signal of the layer i computed at each node, µi
is the step size, and ki is the Kalman gain (more details about
this training rule are given in [13]).

2.2. Fuzzymeasures and fuzzy integrals

In this section, we give the basic notions of the fuzzy measure
and fuzzy integral.

(A) Fuzzymeasure

Let Z be a finite set of elements, a set function g : 2Z → [0, 1]
is called fuzzy measure if [7, 8, 9]

(i) g(φ) = 0, g(Z) = 1,
(ii) g(A) ≤ g(B) if A ⊂ B.

The fuzzy measure does not follow the addition rule, that is,
if A,B ⊂ Z, then A∩ B = φ:

g(A∪ B) �= g(A) + g(B). (5)

However, while combiningmultiple sources, onemust set the
fuzzy measure of groups of sources. Therefore, Sugeno pro-
posed the gλ fuzzy measure so that

g(A∪ B) = g(A) + g(B) + λg(A)g(B). (6)

(B) gλ fuzzymeasure
The so-called gλ fuzzy measure satisfies the following prop-
erty [7, 8]: let Z = {z1, . . . , zn} be the set of available change
detectors. For each change detector zi to be combined, we
associate a fuzzy measure gk(zi) indicating its performance
in the class k. For a given pixel, let hk(zi) be the objective
evidence of the change detector zi for the class k. The set
of change detectors is then rearranged such that the follow-
ing relation holds: hk(z1) ≥ · · · ≥ hk(zn) ≥ 0. We obtain
an ascending sequence of change detectors Ai = {z1, . . . , zi},
whose fuzzy measures are constructed as

gk
(
A1
) = gk

(
z1
)
,

gk
(
Ai
)=gk

(
Ai−1 ∪ zi

)=gk
(
Ai−1

)
+ gk

(
zi
)
+ λgk

(
Ai−1

)
gk
(
zi
)
.

(7)

For each class k, λ is determined by solving an n-1 degree
equation:

λ + 1 =
n∏

i=1

(
1 + λgk

(
zi
))
. (8)

Notice that λ ∈] − 1, . . . , +∞[ with λ �= 0. It is important to
stress that (7) allows us to construct the fuzzymeasures in or-
der to provide both the weight of a single change detector as
well as the weight of a subset of change detectors. However,
there is no rule which would be followed to attribute gk val-
ues. In fact, they can be subjectively assigned by an expert, or
computed from the training data [8]. In this paper, gk is ex-
pressed by the fuzzy accuracy per land cover class computed
using a validation set.

(C) Sugeno integral

Sugeno integral IS, of a function h : Z → [0, 1] with respect
to a fuzzy measure g over Z, is computed by

IS(k) =Maxni=1
[
Min

(
hk
(
zi
))
, gk
(
Ai
)]
. (9)

This integral has been extended by using two special fami-
lies of ordered weighted averaging operators OWA which are
OWA-AND and OWA-OR operators [9].

(D) S-OWA-AND integral

With the OWA-AND operator, the objective evidences hk(zi)
are transformed according to

h̃k
(
zl
) = 1− α

l + 1

l∑

i=1
hk
(
zi
)
+ αMinzl∈Z

{
hk
(
zl
)}
. (10)

The new evidences are then utilized in (9) to compute the
new form of Sugeno integral termed IAND.

(E) S-OWA-OR integral

The OWA-OR performs on the values of the fuzzy integral
computed for each class before evaluating the final aggre-
gated decision:

IOR(k) = 1− β

2n
∑

k⊂E
IS(k) + βMaxk⊂E

{
IS(k)

}
. (11)

Note that E is the set of classes. Parameters α and β lie in the
unit interval, and could provide somewhat different results
when extending the fuzzy integral by OWA operators [9].

(F) Discrete Choquet integral

The discrete Choquet integral of a function h : Z → R+ with
respect to g is defined as [10]

IC(k) =
n∑

i=1

{
hk
(
zi
)− hk

(
zi−1

)}
gk
(
Ai
)
, (12)

where indices i have been permuted so that 0 ≤ hk(z1) ≤
· · · ≤ hk(zn) ≤ 1 holds, Ai = {zi, . . . , zn}, and hk(z0) = 0.
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Figure 2: Neural network combination for change detection.

BEGIN
For each class k

Calculate λ; /∗ using the importance of each network ∗/
End For.
For each class k do

For each neural network zi do
Compute hk(zi);
Compute gk(zi) using λ

End For.
/∗ Compute the fuzzy integral for the class k ∗/
If (Choquet integral), then Compute IC(k);
Else
If (Sugeno integral), then Compute IS(k);
Else
If (S-OWA-AND integral), then Compute h̃(zi), Compute
IAND(k);
Else
Compute IS(k), Compute IOR(k);

End For.
Assign the pixel to the class corresponding to the maximal integral.
END.

Algorithm 1: Algorithmic implementation.

2.3. Algorithmic implementation

The basic idea of multiple neural networks is to develop n
independently trained networks with relevant features, and
combine their outputs to produce an average consensus de-
cision [9] as shown in Figure 2. The fuzzy integral seeks the
maximum grade of agreement between objective evidences
hk(zi) according to their performances represented by the
fuzzy measures gk(zi). In Algorithm 1, we adapt the pseu-
docode of combination given in [8] to the work presented
here. We define the performance of a neural network zi in
the class k by

gk
(
zi
) = Rk

Rk + Rc + Ro + Rr
, (13)

where Rk denotes recognition rate, Rc commission rate, Ro

omission rate, and Rr reject rate.

3. EXPERIMENTAL RESULTS

3.1. Description of the study area
and evaluation criteria

The study area is located to the east of Algiers, Algeria. It is
a coastal region which comprises the Isser River and water-
shed as well as several land cover types which are grouped as
follows.

(i) Water bodies: portion of Mediterranean sea, Isser river,
lakes, and the Isser reservoir.

(ii) Vegetation: areas covered by all kinds of vegetation and
mixed forest.

(iii) Constructions: areas covered by both dense and less
dense settlements as well as single buildings.

(iv) Soil: all kinds of bare soil.

Two SPOT high resolution visible (HRV) images ac-
quired in May 1989 and June 1991, respectively, were se-
lected for testing the validity of the proposed change detec-
tion method. During this period, the region has undergone
rapid transitions from the classes’ water, vegetation, and con-
struction to soil. Thereby, we narrowed our attention to clas-
sify these land cover changes. However, satellite data depict
other changes caused by the presence of clouds in the second
image. To avoid all surprising behaviors of the change detec-
tion system towards these changes, an additional class “X⇒
clouds” was taken into account (X denotes whatever land
cover class in the first image). The three spectral channels
(XS1, XS2, and XS3) of both images were spatially aligned
by using ground control points with a second-order poly-
nomial warp on the ENVI software. The registration was
achieved with a residual error less than 0.13 pixels. As illus-
tration, Figure 3 depicts only XS1 bands of both multitem-
poral images.
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(a) (b)

Figure 3: SPOT images of the eastern part of Algiers: (a) XS1 band of the image acquired in 1989, (b) XS1 band of the image acquired in
1991.

Table 1: Classes of interest.

Class labels Class attribute (1989⇒ 1991) Training Test Validation

1 Water⇒ water 400 750 100

2 Vegetation⇒ vegetation 400 860 100

3 Construction⇒ construction 400 1020 100

4 Soil⇒ soil 400 950 100

5 Vegetation⇒ soil 400 780 100

6 Construction⇒ soil 400 660 100

7 Water⇒ soil 400 530 100

8 X ⇒ clouds 400 420 100

Since the selection of the training data is crucial to the
quality of the result, we used reference maps obtained from
unsupervised classifications of available images. Unfortu-
nately, these maps constitute the unique source of ground
truth which can be used to select training data. In order to
validate the results, the dataset for each land cover class was
randomly split into three disjoint sets in order to be used,
respectively, in the training stage, in the test stage, and for
calculating fuzzy measures (Table 1). These data are linearly
scaled between 0 and 1 by dividing radiometric values by 255.

Change detection performance is evaluated by using the
usual error (or confusion) matrix which highlights the good
class allocations or accuracy rates per land cover class. In ad-
dition, many accuracymeasures can be derived from this ma-
trix. We use then the overall recognition rate (ORR), which
is computed by taking the ratio between the sum of the good
allocations and the total number of test data, and the Kappa
coefficient computed by the Khat. This latter is computed by
using all elements of the error matrix. The more the Khat is
closed to 1 (100%), the more the change detector is reliable
[14].

3.2. Architectural and training rule selection

This experiment is conducted to seek the optimal neural net-
work change detector in terms of architecture and training
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Figure 4: Mean squared error versus the number of iterations.

rule. First, the backpropagation (BP) and Kalman filtering
(KF) algorithms were used to train the same network in order
to compare their performances. Both algorithms were started
from the same initial weights with random values ranging
from −0.01 through +0.01 while setup parameters were se-
lected to maximize the performance of each algorithm.

Figure 4 plots the evolution of the mean squared error
(MSE) of the network across the time. As can be seen, KF
converges more rapidly than the BP algorithm. This outcome
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Figure 6: ROC curves.

is confirmed by the second test which calculates the Khat
for various iterations. The result is depicted in Figure 5. We
notice that KF rule reaches its maximal value of Khat after
few iterations. In return, the Khat of the BP increases grad-
ually across the time. In order to evaluate the ability to de-
tect changes, we plot the ROC curves for both algorithms.
These curves are formed by points whose coordinates are
the false positive (FP) ratio (which expresses the amount of
false alarms represented on the x-axis) and the true positive
(TP) ratio (which expresses the amount of good detections
represented on the y-axis). The change detection process is
considered more effective if the area under the ROC curve
and above the main diagonal is big. Figure 6 presents the ob-
tained curves which show that KF algorithm is more accurate
in terms of change detection. On the other hand, we per-
form another test to find the optimal architecture for change
detection. Using the KF algorithm, we trained many neural
networks comprising one and two hidden layers in which the
number of nodes varies between 8 through 50. The result re-
ported in Figure 7 indicates that in all cases the network with
two hidden layers outperforms the one-hidden-layer net.
Moreover, for both architectures, the increase of the number
of hidden nodes does not necessarily lead to an improvement
of performance. In fact, the best results are obtained with ar-
chitectures in which the number of nodes per hidden layer
varies between 10 and 20. Roughly speaking, the KF rule im-
proves the performance of the neural network in both train-
ing and generalization stages. Nevertheless, different neural
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Figure 7: Influence of the number of hidden nodes over the change
detection accuracy.

networks perform differently and make their errors in differ-
ent regions of input space; we then conjecture that the com-
bination of multiple neural networks may improve change
detection.

3.3. Accuracy assessment of combination rules

The optimal number of experts to be combined depends
on the task at hand, and should be found experimentally.
This is not the purpose of the present work, we want just to
evaluate the usefulness of the combination concept for land
cover change detection. However, it is important to stress
that when combining only two networks, if a network has a
poor accuracy in a given class, the accuracy of the combina-
tion rule will be lower than that of the most precise network.
Therefore, the number of combined networks must be supe-
rior to 2. Furthermore, it has been shown in [8] that when
using the fuzzy integral as a combination rule, the recogni-
tion rate depends on the g values, if they change, the value of
the fuzzy integral will change.

In the present work, three different networks having two
hidden layers which contain, respectively, 10, 15, and 20
nodes were chosen to be combined according to the perfor-
mances in terms of ORR given in Figure 7. The KF algorithm
was used in the training stage which was stopped after 400
iterations. The values of g computed using (13) as well as the
λ of each land cover class are reported in Table 2. g expresses
the degree of importance of a given network in a particular
class. Moreover, all λ values are closed to -1 because the sum
of the different degrees of importance is greater than 1. In
this case, the degree of importance may be interpreted as a
plausibility value [8]. Banon [15] showed that λ ≤ 0 if g is
a plausibility measure. On the other hand, parameters of S-
OWA-OR and S-OWA-AND were experimentally fixed at 0.2
and 0.5, respectively.

Table 3 summarizes the error matrices obtained for the
different change detectors, while Table 4 gives the corre-
sponding ORR and Khat values. As expected, while the per-
formance of individual neural networks varies from a land
cover class to another, the combination rules give a signif-
icant improvement in the recognition rate of the majority
of classes, especially the three change classes (classes whose
labels are 5, 6, and 7). In consequent, they produce higher
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Table 2: Values of g and λ for all land cover classes.

Classes 10 15 20 λ

1 0.975 0.962 0.975 −0.999
2 0.926 0.951 0.902 −0.999
3 0.741 0.857 0.612 −0.982
4 0.779 0.612 0.755 −0.969
5 0.678 0.761 0.735 −0.975
6 0.804 0.864 0.814 −0.994
7 0.901 0.865 0.867 −0.998
8 0.548 0.802 0.779 −0.881

Table 3: Accuracy rate per land cover class obtained for the different change detectors.

Classes
Individual networks % Combined networks %

10 nodes 15 nodes 20 nodes IC IS IAND IOR

1 99.60 99.20 100.00 100.00 100.00 100.00 100.00

2 91.15 94.61 90.38 93.07 93.07 94.23 93.46

3 63.33 90.00 94.81 95.18 96.66 85.18 96.29

4 74.80 76.40 76.00 89.60 90.40 92.40 94.40

5 69.28 73.64 72.50 84.64 84.28 83.21 84.28

6 78.07 81.92 71.92 63.46 90.38 90.00 91.53

7 65.65 70.43 67.39 80.86 78.26 77.82 79.56

8 86.08 78.26 81.17 88.69 90.43 94.78 93.04

Table 4: ORR and Khat values obtained for the different change detectors.

Individual networks % Combined networks %

10 nodes 15 nodes 20 nodes IC IS IAND IOR

ORR 78.35 83.34 82.02 86.94 90.54 89.65 91.62

Khat 75.83 81.26 79.78 85.08 89.18 88.17 90.42

overall accuracy, with a gain more than 3% (with IC) and 8%
(with IOR) over the best individual network. More specifi-
cally, the IOR integral presents the most satisfactory results in
terms of ORR and Khat. However, a surprising outcome in
the class Construction ⇒ soil (class 6) which was the most
critical one where the IC exhibited still the bad accuracy
(63.46%).

3.4. Visual inspection
As a result of implementing the different change detectors
presented above, the maps depicted in Figure 8 were ob-
tained. In this figure, only the change classes, which are
namely, construction ⇒ soil, water ⇒ soil, and vegetation ⇒
soil are depicted since we are interested in change detection.
It is easy to see that individual neural networks have limited
generalization capacity. In fact, they cannot detect a large
amount of areas of the class vegetation ⇒ soil (see circles
in Figures 8a and 8b). Moreover, they produce an impor-
tant number of spurious changes in the class construction ⇒
soil (see rectangles in Figures 8a and 8b). On the contrary,
fuzzy integrals provide much cleaner change detection maps,
with fewer numbers of missed and isolated spurious changes.
Thus, we infer that the combination rules discriminate better

between classes, which demonstrates once again the effective-
ness of change detector combination.

4. DISCUSSION AND CONCLUSIONS

In the last recent years, artificial neural networks have shown
a particular relevance to land cover change detection because
they provide complete information on the nature of change
which is not allowed by all change detection schemes. How-
ever, with this method the user is faced to a large number
of training rules and many possible architectures and setup
parameters. The problem is that different networks produce
different results since they make their errors in different re-
gions of input space. In fact, there are various neural net-
work optimization methods such as metropolis scheme and
genetic algorithms [9] which derive the optimal value for
only one parameter (the network architecture or the best se-
quence of the initialization of weights). Therefore, the com-
bination of different neural networks seems to be more in-
teresting since it aggregates the decision functions of differ-
ent networks which can have different architectures, different
training rules, and different setup parameters. In this paper,
we investigated the potential of combining multiple neural
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Figure 8: Change detection maps obtained for the different change detectors: (a) network with 15 nodes in each hidden layer, (b) network
with 20 nodes in each hidden layer, (c) Choquet integral, (d) Sugeno integral, (e) S-OWA-AND integral, (f) S-OWA-OR integral.

networks for change detection in remotely sensed imagery.
Our contribution was twofold. First, extensive experiments
were carried out to obtain the optimal architectural selec-
tion for the neural network. In addition, the performance of
the backpropagation algorithm which is the standard rule for
training neural networks was compared to that of Kalman
filtering algorithm. The results indicated that Kalman filter-
ing algorithm is superior to the backpropagation in terms of
convergence rapidity and change detection accuracy. More-
over, the use of artificial neural networks in remote sensing
image processing was effectively highlighted for change de-
tection. In a second step, we combined three different neu-
ral networks by using a strategy based on fuzzy integrals
to increase change detection accuracy. The main advantage
of this method is that it takes into account the reliability
for individual networks as well as for a subset of networks.
The conventional Sugeno and Choquet fuzzy integrals were
used as combination operators. In addition, we implemented

two extensions of Sugeno integral based on OWA-AND and
OWA-OR operators. Notice that the OWA-AND operator re-
quires that all change detectors make the right decisions,
while the OWA-OR requires that at least one change detec-
tor give the right decision. This is the reason for which IOR
and IS outperformed IAND. The results obtained by combin-
ing three different networks demonstrated the effectiveness
of the combination concept. Specifically, it has been shown
that each combiner provides an overall accuracy higher than
those of individual networks and tends to improve the gen-
eralization performance by equalizing accuracy rates in in-
dividual classes. Furthermore, it has been shown that fuzzy
integrals produced much closer results, which indicate that
their different forms do not conceal the fact that they all stem
from the same concept. Finally, throughout this study, the
fuzzy integral appeared to be a straightforward computation-
ally attractable approach which can enhance significantly the
change detection in remotely sensed data.
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