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The problem of detecting an anomaly/target from a very limited number of noisy tomographic projections is addressed from
the statistical point of view. The imaged object is composed of an environment, considered as a nuisance parameter, with a
possibly hidden anomaly/target. The GLR test is used to solve the problem. When the projection linearly depends on the nuisance
parameters, the GLR test coincides with an optimal statistical invariant test.
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1. INTRODUCTION

Computerized tomography (CT) is a technique for recon-
structing an object from its projections that are essentially
the collections of line integrals of the attenuation scalar
field at some set of orientations. The noninvasive nature
of tomography has made it very useful for a variety of
applications, including medical imaging, quantitative non-
destructive testing, object recognition, and (biomedical) sys-
tem monitoring, among others [1, 2, 3]. In certain practical
applications, like baggage X-ray scanning or nondestructive
testing, only a few projections are available and, hence, a per-
fect reconstruction of the scene is impossible [2].

The detection of an anomaly/target from projections has
been already studied in [4], where the authors estimate the
unknown location of a parameterized object by maximum
likelihood (ML) estimation. Recently in [5], it is proposed
to detect and localize an elementary geometrical shape on
a rectangular grid but such a problem involves hypotheses
testing over hypotheses spaces of extremely large cardinality.
The computational complexity is then reduced by a multi-
scale approach. Otherwise, such a problem can be viewed as
an object recognition problem [6]. In contrast with [4, 5, 6], a
more realistic problem statement has been discussed in [7, 8],
where the observed scene is composed of an unknown de-
terministic environment, which is considered as a nuisance
parameter, with a possibly hidden anomaly/target (detec-
tion of welding defects in radiographic images). A key issue

in such a detection problem is to state the significance of
the observed deviation (due to the anomaly/target) with re-
spect to a random noise and nuisance parameter. Because an
anomaly/target is superimposed on the environment (see de-
tails in [7, 8]), it can be acquired by subtracting the environ-
ment from the original image.

The goal of this paper is to propose an optimal statisti-
cal tool to detect an anomaly/target directly from a limited
number of noisy tomographic projections and/or with lim-
ited angles of view, without reconstructing the scene, that is,
without solving the inverse problem, which may be ill-posed.

The contribution of this paper consists in the following
developments.

(1) A parametric-based approach, which describes a partly
unknown environment by using a (non-) linear para-
metric parsimonious model, is proposed. Unlike the
traditional “pixel-”based reconstruction methods, this
approach permits to avoid the difficulties of the to-
mographic reconstruction problem that may be ill-
posed in the case of a limited number of projections
and/or angles of view. The hypothesis that the envi-
ronment (nuisance parameter) is unknown but non-
random practically means that it can be intentionally
chosen to mask the anomaly/target, for example, by an
adversary.

(2) By using the proposed parametric approach, the
anomaly/target detection problem is formalized as a
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Figure 1: Detection of an anomaly from tomographic projections.

binary statistical decision with a nuisance parameter.
The main issue of such a decision problem is its abil-
ity to detect an anomaly/target while being insensitive
to the nuisance parameters and to deal with composite
hypotheses.

(3) To solve the statistical hypotheses testing problem,
the general Wald’s theory of uniformly best constant
power tests, combined with the theory of invariant
tests, is used. This theory has been adapted to the lin-
ear stochastic model describing an anomaly/target su-
perimposed on the partly unknown deterministic en-
vironment. The proposed test coincides with the gen-
eralized likelihood ratio (GLR) test. This allows us
to extend the developed theory to the nonlinear par-
simonious parametric model and to warrant an ε-
optimality of this extension.

The paper is organized as follows. In Section 2, a short
introduction to the tomographic projection processing is
proposed and the anomaly detection problem is stated. In
Section 3, the GLR test is derived and it is shown that this test
coincides with the optimal invariant decision rule designed
for detecting the anomaly when the unknown environment is
linearly parameterized. The mathematical details of nuisance
parameter rejection and the optimal test design can be found
in Appendices A and B. Section 4 is devoted to the nonlin-
ear nuisance parameter case. The subtlety of nonlinear GLR
test is discussed here. To illustrate the relevance of the devel-
oped tools, a practical example related to the problem of solid
rocket motor examination is presented in Section 5. Finally,
Section 6 contains some concluding remarks.

2. PROBLEM STATEMENT

The physical background is briefly presented in this section.
Next, the environment and anomaly models are formalized
and the problem of detecting an anomaly from a few noisy
tomographic projections is briefly introduced.

2.1. Physical background
We are dealing with a specific inverse problem consisting in
the detection of an anomaly from a few noisy tomographic
projections. Some tutorial introduction to the computerized
tomography (CT) can be found in [4, 9]. To simplify the pre-
sentation, only the two-dimensional (2D) case is discussed
here but the 3D case can be easily derived from the following
results. We define the X-ray attenuation coefficient s of the
scene as a function of two variables x and y : (x, y) �→ s(x, y).
This situation is depicted in Figure 1. It is assumed that s is an
element of the spaceL2(D) of square-integrable real-valued
functions supported on a compact setD in the plane. A pro-
jectionGs of the scene s at a particular angleω is a real-valued
function defined on the real line by

Gs(t,ω)=
∫ L

0
s(l)dl=

∫ L

0
s(t cosω − l sinω, t sinω + l cosω)dl,

(1)

where L is defined by the acquisition system geometry, and
s(l) = s(t cosω − l sinω, t sinω + l cosω) corresponds to the
X-ray attenuation coefficient of the scene s along the straight
line parameterized by the angle ω and the radius t in polar
coordinates. This line corresponds to the path of the X-ray
flux emitted by the X-source. In the case of CT, the projec-
tions are obtained by using a linear numerical detector com-
posed of n elementary sensors counting the total amount of
X-photons passing through the object (see Figure 1). We de-
fine a family τ = {t1, t2, . . . , tn} of n points of interest reg-
ularly spaced on the linear detector. To simplify the presen-
tation, it is assumed that the X-source is infinitely far from
the detector. Hence, a parallel-beam line-integral projection
taken at the angle ω is related to the original object s by the
discrete Radon transform Rω,τ : L2(D) �→ Rn defined by

Rω,τ(s) =
(
Gs
(
t1,ω

)
,Gs
(
t2,ω

)
, . . . ,Gs

(
tn,ω

))T
. (2)

2.2. Environmentmodel

The anomaly-free environment (called background in [4, 5])
corresponds to the original scene without any anomaly.
Sometimes such an environment is assumed to be a known
function or a zero-mean Gaussian random field [4, 5]. How-
ever, in many practical applications (see, e.g., [7, 8]), such
a hypothesis is not verified and the environment must be
considered as an unknown deterministic function, which is
called nuisance parameter in the rest of the paper. From the
practical point of view, the environment is naturally space
limited to a compact set D ⊂ R2. Physically, the value
s(x, y) = h(x, y) corresponds to the X-ray attenuation coef-
ficient of the anomaly-free environment defined at the point
(x, y) ∈ D (see Figure 1). We stress the peculiarity of our
parametric CT approach. A traditional CT method consists
in reconstructing the original scene, in our case the function
(x, y) �→ h(x, y), with a finite number of variables by decom-
posing the compactD into nonoverlapping regions, “pixels”
{Vi}i∈N (or “voxels” in the 3D case), which are naturally or-
dered overD , in the lexicographical sense, by the set of natu-
ral integers N. Different decompositions well adapted to the
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tomographic problem have already been studied [10, 11]. We
consider a parallel-beam line-integral projection, taken at the
angle ω, and define a set of pixel’s indicators:

φi(x, y) =


1 if (x, y) is within the ith

partition : (x, y) ∈ Vi,

0 otherwise.

(3)

Hence a line integral projectionGh(t,ω) of the function h can
be approximated in the following manner:

Gh(t,ω) =
∫ L

0
h(t cosω − l sinω, t sinω + l cosω)dl

=
∑

i∈Nt,ω

∫ L

0
h(t cosω − l sinω, t sinω + l cosω)

×φi(t cosω− l sinω, t sinω + l cosω)dl

�
∑

i∈Nt,ω

hi

∫ L

0
φi(t cosω − l sinω, t sinω + l cosω)dl

=
∑

i∈Nt,ω

hili,

(4)

where Nt,ω = N(t,ω) is the subset of lexicographically or-
dered pixels over the path from the source to the X-ray detec-
tor taken at the angle ω and the parameter t, hi is the “mean”
value of the function (x, y) �→ h(x, y) over the pixel Vi, and
li is the length of the X-ray beam restricted to the pixel Vi

(see Figure 1). It appears from the literature that no general
rules can be designed for choosing a set of decompositions.
Moreover, in our case, another problem arises due to a lim-
ited number of projections. To detect a hidden anomaly, it is
necessary to obtain a good approximation of the unknown
environment (x, y) �→ h(x, y). Generally, to calculate such
an approximation, the total number of pixels or unknown
variables hi should be large. This leads to a contradiction
with a limited number of tomographic projections and/or
with limited view angles. The resulting inverse problem is
ill-posed. In other words, if the decomposition of D pro-
duces a good approximation of the unknown environment
(x, y) �→ h(x, y) at the expense of an important number of
unknown variables, then this decomposition is not adapted
to the considered problem. In contrast to the above pixel de-
composition, a linearly parameterized parsimonious decom-
position of the environment h is used in Section 3:

hµ(x, y) =
m∑
k=1

µkhk(x, y) ∀(x, y) ∈D , (5)

where {h1, . . . ,hm} is a known family of basic functions in
L2(D) and µ = (µ1, . . . ,µm)T is a real-valued vector of un-
known parameters. We assume that the unknown environ-
ment h = hµ is composed of a finite number of a priori
known basic elements hk, representing the X-ray attenuation

coefficients, with unknown scaling coefficients µk. Here, the
line integral projection is given by

Ghµ(t,ω) =
∫ L

0

m∑
k=1

µkhk(t cosω − l sinω, t sinω + l cosω)dl

=
m∑
k=1

µk

∫ L

0
hk(t cosω − l sinω, t sinω + l cosω)dl

=
m∑
k=1

µkGhk (t,ω).

(6)

2.3. Anomalymodel

It is desirable to detect an anomaly without any a priori in-
formation about it. For example, the support of the anomaly
can be a nonconnected domain d = ⋃N

i=1 di, di
⋂
dj = ∅, in

R2 with N ∈ N∗. The goal is to detect any significant devi-
ations from the environment observed in the original scene.
We define the function (x, y) �→ fg,µ(x, y) ∈ L2(D) repre-
senting a local variation of the attenuation coefficient in the
original scene due to the presence of the anomaly:

fg,µ(x, y) =
g(x, y)− hµ(x, y) if (x, y) ∈ d,

0 if (x, y) ∈D \ d, (7)

where (x, y) �→ g(x, y), (x, y) ∈ d, is the anomaly attenuation
coefficient. Practically, the quantity fg,µ represents a contrast
between the environment h and the true anomaly g. In the
rest of the paper, it is assumed that the anomaly is a contrast
with respect to the environment. This requirement can be
expressed in the following manner:∫ ∫

d

(
fg,µ(x, y)

)2
dx dy > 0 ∀µ ∈ Rm. (8)

2.4. Measurementmodel

We define now the model of X-ray attenuation coefficient
(x, y) �→ s(x, y) that describes the two possible situations,
H0: {environment is anomaly-free} and H1: {the anomaly
is superimposed on the environment}, in the followingman-
ner:

s(x, y) =
hµ(x, y), (x, y) ∈D underH0,

fg,µ(x, y) + hµ(x, y), (x, y) ∈D underH1.

(9)

Putting together (2) and (9), we obtain the following mea-
surement model for a particular view angle ω:

Yω = Rω,τ(s) + ξ, (10)

where Yω ∈ Rn is the vector of observations, ξ ∈ Rn is a
zero-mean gaussian noise, ξ ∼ N (0, σ2In), corresponding
to errors introduced by the acquisition system. The variance
σ2 > 0 is assumed to be known. Due to the linearity of the
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Figure 2: The “source-to-sensor” direction attenuation coefficient: (a) hypothesis H0: {environment is anomaly-free} and (b) hypothesis
H1: {the anomaly is superimposed on the environment}.

operator Rω,τ , the above measurement model can be rewrit-
ten as

Yω =
Hωµ + ξ underH0,

Rω(g,µ) +Hωµ + ξ underH1,
(11)

where Rω(g,µ) = Rω,τ( fg,µ) and Hω = (H1
ω, . . . ,H

m
ω ) with

Hk
ω = Rω,τ(hk) ∈ Rn for k = 1, . . . ,m. It is supposed thatm <

n. This situation is depicted in Figure 2. If P projections are
available, the vector Yω1,...,ωP , the function Rω1,...,ωP (g,µ), and
the matrixHω1,...,ωP can be easily designed from “elementary”
components Yωi , Rωi(g,µ), and Hωi by concatenation. In the
rest of the paper, the subscript ω will be omitted to simplify
the notations.

2.5. Anomaly detection problem
The detection problem consists in deciding which hypoth-
esis is the true one, H0: {environment is anomaly-free} or
H1: {anomaly is superimposed on the environment}, while
considering the parameterized environment Hµ as a nui-
sance parameter. It is assumed that the anomaly projection
R = R(g,µ) is unknown in the rest of the paper. Nevertheless,
sometimes it is possible to include some a priori informa-
tion on the anomaly in the model by assuming that R =Mθ,
where M is a full-rank matrix of size (n × p) and the pa-
rameter vector θ ∈ Rp describes the anomaly projection. It
is assumed in the rest of the paper that q + p < n, where
rankH = q. We rewrite (11) to obtain the linear measure-
ment model:

Y =Mθ +Hµ + ξ. (12)

The anomaly detection problem consists in testing between
H0 andH1:

H0 =
{
θ = 0, µ ∈ Rm

}
, H1 =

{
θ 
= 0, µ ∈ Rm

}
, (13)

while considering µ as an unknown vector.

3. STATISTICAL HYPOTHESES TESTING: LINEAR CASE

The optimal anomaly detection test is discussed in this sec-
tion. It is assumed that the linear parsimonious decompo-
sition perfectly fits the unknown environment: hµ(x, y) =
h(x, y). The decomposition hµ is linear according to the nui-
sance parameter µ. First, a short introduction to the compos-
ite hypotheses testing is proposed. The mathematical details
of nuisance parameter rejection and the optimal test design
can be found in Appendices A and B. Next, it is shown that
the GLR test coincides with this optimal invariant decision
rule. Finally, the role of the matrix M and the statistical per-
formances of the test are discussed.

3.1. Testing between two hypotheses

Let Y be a random variable with distribution Pθ,µ belong-
ing to the parametric family P = {Pθ,µ}, where θ ∈ Θ ⊆
Rp is the informative parameter and µ ∈ Rm is the nui-
sance one. A composite hypothesis refers to a set of param-
eters Hi : {θ ∈ Θi} with Θi ⊂ Θ, i = 0, 1. It is assumed
that Θ0

⋂
Θ1 = ∅. The hypotheses testing problem (12) and

(13) consists in deciding which hypothesesHi is the true one
while considering µ as an unknown vector. The quality of a
statistical test is defined with the probability of false alarm
and the power of the test. First of all, we define the class
Kα = {δ : supµ∈Rm Prθ=0,µ(δ = H1) ≤ α} of tests with
upper-bounded maximum false alarm probability, where the
probability Prθ,µ stands for the vector of observations Y be-
ing generated by distribution Pθ,µ and α is the prescribed
probability of false alarm. The power function βδ is defined
with the probability of detection: βδ(θ;µ) = Prθ,µ(δ = H1),
θ ∈ Θ1, while considering µ as an unknown vector. The pair
(α,β) is then a sufficient performance index. Obviously, α
should be as small as possible and βδ(θ;µ) should be large
for every θ ∈ Θ1 and µ ∈ Rm. Without nuisance parameters,
the ideal solution is a uniformly most powerful (UMP) test.
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A test δ∗ is said to be UMP in the classKα if for all δ ∈Kα,
for all θ ∈ Θ1,βδ∗(θ) ≥ βδ(θ). Unfortunately, UMP tests
scarcely exist, except that when the parameter θ is scalar, the
family of distributions P = {Pθ} has a monotone likelihood
ratio and the test is one sided, namely, H0 : {θ ≤ θ0} and
H1 : {θ > θ1}, with θ1 ≥ θ0 [12, 13]. In the case of a vec-
tor parameter θ, the crucial issue is to find an optimal solu-
tion over a set of alternatives which is too rich. To overcome
this difficulty in the case of the parametric family P = {Pθ},
Wald [14] proposes to impose an additional constraint on
the class of considered tests, namely, a constant power func-
tion over a family of surfaces S = {Sλ, λ > 0} defined on the
parameter space Θ1, in order to avoid the existence of UMP
tests over a subspace Θ of Θ1 which are very inefficient over
Θ1\Θ. A test δ∗ ∈Kα is said to have uniformly best constant
power (UBCP) on the family of surfaces S, if the following
conditions are fulfilled [14]:

(1) for any pair of points θ1 and θ2 which lies on the same
surface Sλ ∈ S, βδ∗(θ1) = βδ∗(θ2), where βδ(θ) =
Prθ(δ =H1) is the power function of the test δ,

(2) for another test δ ∈ Kα, which satisfies the previous
condition, we have βδ∗(θ) ≥ βδ(θ).

It is worth emphasizing that the choice of the family of sur-
faces is naturally imposed by the statistical nature of the
treated problem. For example, in the case of linear Gaus-
sian models, the family S is composed of ellipsoids in the
informative parameter space Rp. The presence of nuisance
parameters transforms this family of ellipsoids into a family
of elliptic cylinders in the observation spaceRn (see details in
[15]). To simplify the presentation, the mathematical details
of the nuisance parameter rejection andWald theory, applied
to the hypotheses testing problem (12) and (13), are moved
to Appendices A and B.

3.2. Generalized likelihood ratio test

The GLR test is based on the following ratio:

δ̂(Y) =


H0 if Λ̂(Y) = 2 log

supθ∈Rp ,µ∈Rm ϕθ,µ(Y)

supµ∈Rm ϕθ=0,µ(Y)
< γα,

H1 else,
(14)

where

ϕθ,µ(Y) = 1
(2π)n/2σn

exp
{
− 1

2σ2
∥∥Y −Mθ −Hµ

∥∥2
2

}
(15)

is the pdf of Y , ‖X‖2 =
√∑n

i=1 x
2
i is the norm of X , and the

threshold γα is chosen to satisfy the definition of the class
Kα. When this ratio is relatively large, the probability asso-
ciated to the parameter of interest θ being in the set defined
by H1 : {θ 
= 0, µ ∈ Rm} (the anomaly is superimposed
on the environment) is relatively high and when the ratio is
relatively small, the probability that the the environment is
anomaly-free (null hypothesisH0 : {θ = 0, µ ∈ Rm} is true)
is relatively high. The precise optimal properties of the GLR
tests in the general case are unknown, but for some special

cases, the GLR test is optimal. We show now that the GLR test
given by (14) coincides with the invariant UBCP test Λ(Y)
defined in Appendices A and B.We assume that H̃ = (M H)
is a full-rank matrix. A simple algebra shows that

Λ̂(Y) = − 1
σ2
∥∥Y −Mθ̂1 −Hµ̂1

∥∥2
2 +

1
σ2
∥∥Y −Hµ̂0

∥∥2
2 (16)

= 1
σ2

YT
(
PH − PM,H

)
Y (17)

= 1
σ2

YTPHM
(
MTPHM

)−1
MTPHY = Λ(Y), (18)

where the ML estimates µ̂0, µ̂1, and θ̂1 are defined by using
the least-squares (LS) algorithm:

{
µ̂0
} = arg min

µ∈Rm

∥∥Y −Hµ
∥∥2
2,{

θ̂1, µ̂1
} = arg min

θ∈Rp ,µ∈Rm

∥∥Y −Mθ −Hµ
∥∥2
2,

(19)

PH = In − H(HTH)−1HT , PM,H = In − H̃(H̃TH̃)−1H̃T , and
A−1 is the inverse matrix of A. By comparing (18) and (B.3),
it can be concluded that the GLR test is an invariant UBCP
test. More details can be found in [16].

3.3. A priori information on the anomalymodel

We briefly discuss the role of the matrix M. The N = E(Y)
parameter space Rn is composed of two orthogonal linear
subspaces: R(H) and R(H)⊥ such that dimR(H) = rankH =
q. In the general case, the anomaly partly belongs to the sub-
space R(H) (this part of the anomaly is undetectable) and to
the subspace R(H)⊥ (this part is detectable). This subspace
of detectable anomalies R(H)⊥ is spanned by the columns of
the matrixWT defined by (A.4) in Appendix A. If no a priori
information on the anomaly is available, it is natural to put
M = WT and θ ∈ Rn−q, that is, the parameter θ describes
only the detectable part of the anomaly. The definition of the
decision function Λ̂(Y) = (1/σ2)YTPHY , and the associated
family of surfaces S = {Sλ : (1/σ2)‖θ‖22 = λ, λ ∈ ]0; +∞[}
are especially simple in this case. As follows fromAppendix B

(see (B.5) and (B.6)), the properties of the test δ̂ depend on
the matrix M. Hence, if some a priori information on the
anomaly is available, a parameterization Mθ with a specially
chosen matrix M can be proposed. For example, the matrix
M can serve to define the a priori known location of the
anomaly on the projection Y or to reduce the uncertainty
of the anomaly description.

3.4. Numerical study of statistical
performances of the test

In some practical applications (e.g., detecting the welding de-
fects in radiographic images [7, 8]), the anomaly-free envi-
ronment is approximated by a polynomial function. We ex-
amine the statistical properties of the proposed test by using
the following numerical example. The anomaly-free environ-
ment is defined by h(x, y) = 1+2x+5y−30x2 +20y2−50xy,
where (x, y) ∈D = {(x, y) ∈ R2 | −10 cm ≤ x, y ≤ 10 cm}.
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Figure 3: (a) The probability of nondetection Prθ 
=0(δ̂(Y) = H0) as a function of the anomaly location. (b) The noncentrality parameter λ
of χ2n−m,λ as a function of the anomaly location.

Hence, m = 6. The anomaly is a small constant attenua-
tion coefficient disk of radius r = 0.5 cm located at the posi-
tion (x0, y0). The considered tomographic projections Y are
taken at the angle of view ω = 75◦. The number of obser-
vations n is equal to 200, which corresponds to a constant
sampling step of 0.05 cm. The (200 × 6) matrix H is full
column rank, M = WT , and θ ∈ R194. The probability of
false alarm α = Pr0(Λ̂(Y) ≥ γα) is equal to 10−2. The vari-
ance σ2 is equal to 179. First, we compute the probability of
nondetection 1 − βδ̂ as a function of the anomaly location
(x0, y0) : (x0, y0) �→ 1−βδ̂(x0, y0). It is assumed that x0 and y0
vary from−10 cm to 10 cm. The numerical results are shown
in Figure 3a by using a base-10 logarithmic scale to attenuate
their variations. A “valley” of good detection clearly appears
on the surface. It corresponds to the disk locations (x0, y0)
where the environment is rejected with a great efficiency. In
contrast to this “valley,” the edges of the surface (x0, y0) �→ 1−
βδ̂(x0, y0) correspond to locations where the anomaly is well
hidden by the environment. To explain this phenomenon, we
consider the variations of the noncentrality parameter λ =
(1/σ2)θTMTPHMθ of the χ2n−m,λ distribution of the statistics

Λ̂(Y) under the hypothesisH1 (see Figure 3b). The noncen-
trality parameter can be rewritten as λ = (1/σ2)M̃T(In −
H̃)M̃, where M̃ = Mθ and H̃ = H(HTH)

−1
HT . Assuming

that the anomaly M̃ differs from zero for only k adjacent
positions (the anomaly is “compact”), it can be written as
M̃ = (0, . . . , 0, m̃p, . . . , m̃p+k−1, 0, . . . , 0)

T , where p is the sub-

script of the first nonzero component of M̃. It follows imme-
diately that

λ = A
(
M̃, σ2

)− E
(
M̃, H̃ , σ2, p

)
, (20)

where A(M̃, σ2) = (1/σ2)
∑p+k−1

i=p m̃2
i , E(M̃, H̃ , σ2, p) =

(1/σ2)
∑p+k−1

i=p
∑p+k−1

j=p m̃im̃ j h̃i, j , and h̃i, j is the element (i, j)

of the matrix H̃ . For a given angle of view ω, the
anomaly projection has a constant geometrical shape for
all possible locations of the anomaly. Hence, the finite set
m̃p, m̃p+1, . . . , m̃p+k−1 is independent of the first subscript

p, and the positive term A(M̃, σ2) represents the constant
anomaly impact on the parameter λ. In contrast to this first
term, the second nonnegative term E(M̃, H̃ , σ2, p) (the ma-
trix H̃ is positive semidefinite) clearly depends on the sub-

scripts p, p + 1, . . . , p + k − 1 through the elements h̃i, j of

the matrix H̃ . Hence, a translation of the anomaly leads to
a variation of the second term E(M̃, H̃ , σ2, p). Therefore, a
change of the anomaly location can imply a drastic variation

of the probability of nondetection for the test δ̂. In particu-
lar, according to the choice of the angle of view and the phys-
ical nature of the environment, some “valleys” of good (or
“plateaus” of bad) detection (see Figure 3a) can appear.

Second, we compute the probability of nondetection
1 − βδ̂ of the disk as a function of its radius r and con-
stant contrast (i.e. local variation of the anomaly attenua-
tion coefficient) fg,µ(x, y) = fd with respect to the environ-
ment. The numerical results are shown in Figure 4 by using
a base 10 logarithmic scale. The radius r varies from 0.1 cm
to 0.45 cm and the contrast varies from 102 to 104 for the
X-ray attenuation coefficient varying from−6×105 to 4×105.
Obviously, the probability of nondetection 1 − βδ̂(r, fd) de-
creases with the increasing radius r and/or contrast fd of the
disk.

3.5. Computational cost of the anomaly
detection algorithm

To evaluate the computational cost of the decision procedure,
the number of floating-point operations (flops) of different
steps of the anomaly detection algorithm (14), (16), (17), and
(18) is summarized in Table 1. The singular value decom-
position (SVD) is the most costly computational operation.
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Figure 4: The probability of nondetection Prθ 
=0(δ̂(Y) = H0) as
a function of the radius r and the contrast fd characterizing the
anomaly.

For example, if the full-column-rank matrix H is chosen so
that n = 200 and m = 6, the decision function calculation
takes about 0.01 second on a personal computer with a 2GHz
processor and 256MB RAM by using the Matlab computing
software.

4. STATISTICAL HYPOTHESES TESTING:
NONLINEAR CASE

We consider now a more realistic experimental context when
the geometry of the acquisition system and/or imaged object
is partially unknown. First, it is assumed that the nonlinear
parsimonious decomposition hµ perfectly fits the unknown
environment: hµ(x, y) = h(x, y). The nonlinear GLR test is
introduced and the difficulties induced by the nonlinear de-
composition hµ are discussed. Finally, some remarks of the
applicability and limits of the nonlinear parsimonious de-
composition are discussed.

4.1. Nonlinear nuisance parameters and GLR test

In the previous sections, we have considered a linear model
of observations with respect to the nuisance parameter given
by (5). From the practical point of view, this means that the
geometry of the acquisition system and/or original scene is
perfectly known. A more realistic experimental context cor-
responds to a partially unknown geometry. Hence, we con-
sider the nonlinear parameterized parsimonious model

Y =Mθ +H(µ) + ξ, (21)

where µ �→ H(µ) is a known vector function of the unknown
parameter µ ∈ Rm. The anomaly detection problem consists
in testing between H0 andH1 defined by (13) while consid-
ering µ as an unknown vector. In the case of nonlinearmodel,
a simple algebra shows that the statistics Λ̂ of the GLR test

(14) can be rewritten as follows:

Λ̂(Y) =2 log
supθ∈Rp ,µ∈Rm ϕθ,µ(Y)

supµ∈Rm ϕθ=0,µ(Y)

= − 1
σ2
∥∥Y −Mθ̂1 −H

(
µ̂1
)∥∥2

2 +
1
σ2
∥∥Y −H

(
µ̂0
)∥∥2

2,

(22)

where {
µ̂0
} = arg min

µ∈Rm

∥∥Y −H(µ)
∥∥2
2,{

θ̂1, µ̂1
} = arg min

θ∈Rp ,µ∈Rm

∥∥Y −Mθ −H(µ)
∥∥2
2.

(23)

As it follows from (22) and (23), the calculation of the statis-
tics Λ̂(Y) is based on two nonlinear LS algorithms. Under
some regularity conditions (see [17, 18] for details), the es-

timates µ̂0, θ̂1, and µ̂1 exist and are unique. In the case of a
small anomaly θ detection and/or slightly nonlinear model,
the minimization methods based on the model linearization
are usually used. The impact of the termMθ on the lineariza-
tion working point is very limited and, exactly as in the lin-
ear case, the statistics Λ̂(Y) is computed by using a single
minimization problem argminµ∈Rm ‖Y −H(µ)‖22 and a stan-
dard Gauss-Newton algorithm [18, page 619]. It is assumed
that the starting point µ0 initializing the algorithm is good
enough to ensure the convergence of this method. These two
conditions are verified in the practical example of Section 5.

4.2. Difficulties induced by a nonlinear nuisance
parameter: biased residuals

In contrast to the linear case, where the ML estimation of the
nuisance parameter µ is unbiased under the hypothesis H0,
the nonlinear parameterization leads to a biased estimation
of µ and, hence, to a positive noncentrality parameter of the
χ2 law of the statistics Λ̂(Y) under the hypothesis H0. The
same difficulty takes place under the hypothesis H1. These
biases could considerably modify the statistical properties of
the test. For example, it may increase the probabilities of false
alarm or nondetection. As it follows from [17], [18, page
127], if the number n of sensors by projection becomes large

then the bias b̂ = E(ε̂) of the residuals, ε̂ = Y −Mθ̂ −H(µ̂)
can be estimated. To quantify the nonlinearity (curvature) of
the regressionmodel, two different measures are usually used
[18, page 127]: the intrinsic curvature and the parameter-
effect curvature, which describes the degree of curvature in-
duced by the choice of the parameterization µ. In particular,

the bias b̂ is essentially connected to the intrinsic curvature.
When the number n becomes large, a practical method of the

bias b̂ estimation consists in a second-order expansion of b̂,

namely, it is possible to estimate b̂ by considering second-
order derivatives of µ �→ H(µ). More details can be found in
[17, page 116].

As it follows from [19], if the nuisance parameter µ be-
longs to a compact set, then the impact of the nonlinearity
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Table 1: Computational cost of the anomaly detection algorithm.

Step Action Number of flops

(1) Initialize:

– H(n×mmatrix ), σ (real), γα (real) Negligible

(2) Compute the decision function Λ̂(Y) = YTPHY

σ2
:

– compute the SVD of H : H = UDVT 4n2m + 22m3

– designW by extracting n−m columns of V Negligible

associated to singular value 0,

– compute Z =WY 2n(n−m)

– compute Λ̂(Y) = ZTZ

σ2
2(n−m) + 2

(3) Check:

– if Λ̂(Y) ≥ γα, then declare anomaly Negligible

µ �→ H(µ) can be estimated by an additional bias of residu-
als. Therefore, the noncentrality parameter λ of the statistics
Λ̂(Y) is equal to the sum of two components:

λ = λ(θ,µ) = λr(θ) + ∆λ(θ,µ), (24)

where λr(θ) is the regular component due to the lineariza-
tion of the parsimonious model around a “working point”
and ∆λ(θ,µ) is the component due to the nonlinearity of
the model. In the case of a linear parsimonious model (see
Section 3), the GLR test is optimal (invariant UBCP). We
consider the potential loss of optimality of the nonlinear GLR
test given by (22) and (23). The upper and lower bounds of
the power function β(θ) of the nonlinear GLR test have been
established in [19]. Therefore, the potential loss of optimality
can be bounded that leads to the so-called ε-optimality of the
proposed solution. In Section 5, such an approach is applied
to the problem of solid rocket motor examination in order to
check that an additional bias ∆λ(θ,µ) due to the nonlinearity
of the parsimonious model is negligible.

4.3. Parameterized parsimonious approximation:
applicability and limits

We finish the theoretical discussion of the proposed method
with some remarks on the applicability of the (non-) lin-
ear parameterized parsimonious approximation (x, y) �→
hµ(x, y) of the unknown environment (x, y) �→ h(x, y).
First, in the case of linear parsimonious approximation of
the environment h (see (5)), the choice of basic functions
{h1, . . . ,hm} is crucially important but there is no general
way tomake this choice. In practical cases, a tradeoff between
the quality of approximation and its complexity should be
established: some guiding principles can be found in [20].
For example, it is natural to approximate a rotation invariant
scene by radial functions.

Second, we assume that the environment is approxi-
mated with a certain error (x, y) �→ ψ(x, y), that is, h(x, y) =
hµ(x, y) + ψ(x, y). Because of mismatches between hµ and h,
the line integral projection of ψ(x, y) leads to an additional

term in the measurement model given by (11), namely,

Yω =
Hω(µ) + Rω(ψ) + ξ underH0,

Rω(g,µ) +Hω(µ) + Rω(ψ) + ξ underH1,
(25)

where Rω(ψ) = Rω,τ(ψ) is the discrete Radon transform of
the approximation error ψ. It follows from (25) that the non-
linear parameterized parsimonious approximation (21) has
to be rewritten in the following way:

Y =Mθ +H(µ) +Ψ + ξ, (26)

where the vector Ψ ∈ Rn represents the discrete Radon
transform of approximation errors. To simplify the presen-
tation, we assume that H(µ) = Hµ. By rejecting the nui-
sance (see Appendices A and B) in the above model, we get
Z =WY =WMθ+WΨ+ ζ (compare with (B.1)). The mis-
matches between hµ and h lead to the noncentrality param-
eters λ0 = (1/σ2)ΨTPHΨ under H0 and λ1 = (1/σ2)[Mθ +
Ψ]TPH[Mθ+Ψ] underH1. Therefore, the negative impact of
mismatches between hµ and h on the statistical performances
of the GLR test consists in increasing the probability of false
alarms (with respect to a prescribed level α) and in the re-
duction of the test power β(θ). Putting together the above-
mentioned expressions for the noncentrality parameters and
the approximation error projectionΨ = Ψ(ψ(x, y)) provides
a means to estimate the applicability of the proposed de-
tection method and to define its limits. If in some practical
cases, the unknown environment h can be perfectly defined
by a parameterized function, which is not necessarily a parsi-
monious decomposition, or it can be accessible via a discrete
sample on a compact support, then a linear approximation
with a limited impact on the probabilities of false alarm and
nondetection can be found (see details in [19]).

5. PRACTICAL EXAMPLES: SOLID ROCKET
MOTOR EXAMINATION

To illustrate the developed theory, the problem of solid rocket
motor examination is discussed now. First, the geometry
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Figure 5: (a) Tomosynthesis tangential geometry. (b) Horizontal slice of the rocket motor.

of the acquisition system/object is supposed to be perfectly
known. The linear measurement model and the GLR test are
used. Next, the geometry of the acquisition system/object is
assumed to be partially unknown. The nonlinear GLR test
is used here and the impact of nonlinearity is shown to be
negligible.

5.1. Description of the practical problem
A typical scenario of the solid rocket motor examination
can be described as follows (see details in [21]). During the
monitoring process, the rocket motor turns around its ver-
tical axis ∆ and it is imaged slice by slice along the vertical
axis. The projection image is the radiograph of a tangential
area of the cylindrical object (see Figure 5a). Hence, the to-
mographic system provides the researchers only with “local”
projections of a tangential part of the motor. The revolution
axis of the motor is outside of the field of view. Such a pro-
cedure is also known as a tangential tomosynthesis. Using
cylindrical coordinates denoted by (ρ, ϑ, z) (see Figure 5a), it
is natural to parameterize the motor, namely h(ρ, ϑ, z), as fol-
lows:

h(ρ, ϑ, z) =



0 if 0 ≤ ρ < r1,

µ1 if r1 ≤ ρ < r2,

µ2 if r2 ≤ ρ < r3,

µ3 if r3 ≤ ρ < r4,

0 if ρ ≥ r4,

z ∈ [0;L], ϑ ∈ [0, 2π[,

(27)

where µ1, µ2, and µ3 are the attenuation coefficients of the
propellant, thermal protection, and metallic structure, re-
spectively (see Figures 6a and 6b). The radiuses r1 = 50 cm,
r2 = 146 cm, r3 = 149 cm, and r4 = 150 cm define the cylin-
drical boundaries of each homogeneous part of the rocket
motor (see Figure 6). The X-source is assumed to be in-
finitely far from the rocket motor and, hence, the tangen-
tial radiographies can be considered as parallel-beam line-
integral X-ray projections (defined by (2)).

5.2. Anomaly detectionwith a known
motor/acquisition system geometry

For this simulation, it is assumed that the center of revolution
coordinates (x0, y0), the radiuses r1, r2, r3, r4, and the detector
position are perfectly known but the attenuation coefficients
µ1, µ2, and µ3 are unknown for the algorithm. We define the
function hi, for 1 ≤ i ≤ m = 3, as follows:

hi(ρ, ϑ, z) =
1 if ri ≤ ρ < ri+1, 0 ≤ z ≤ L,

0 else.
(28)

Hence, the background can be linearly parameterized by us-
ing the decomposition:

h(ρ, ϑ, z) =
3∑
i=1

µihi(ρ, ϑ, z). (29)

First, the efficiency of the proposed statistical tools is studied
in the case of a single projection (linear X-ray detector) by
using numerical simulations and, next, in the case of several
projections.

5.2.1. Detectionwith a single projection

The goal is to detect a “delamination,” that is, a lack of ma-
terial into the thermal protection (the delamination atten-
uation coefficient is µ = 0), between the metallic struc-
ture and the peripheral thermal protection of the motor (see
Figure 6b). The delamination is assimilated to a limited por-
tion (� 5◦) of circle centered at the revolution axis. Its radial
size is about 0.3mm. It is assumed that the decision is directly
based on a single projection (see Figure 6b). The linear X-ray
detector is composed of n = 200 elementary sensors. The
known geometry allows us to use the linear GLR test (14),
(16), (17), and (18) developed in Section 3.

The typical behavior of a single tangential projection
(without and with delamination) and its “parity vector”
Z = WY is depicted in Figure 7 to show the capacity of the
proposed test to eliminate the unknown background corre-
sponding to the metallic structure, thermal protection, and
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Figure 6: (a) Attenuation coefficient h(ρ, ϑ, z) as a function of the radius ρ for z ∈ [0,L] and ϑ ∈ [0, 2π[. (b) Typical tangential projection
of rocket motor.

propellant. The threshold γα of the GLR test (14), (16), (17),
and (18) is chosen to satisfy a preassigned level of false alarms
α = 0.01. We define the signal-to-noise ratio (SNR) in the
following manner (typical for CT): SNR = ‖Yt‖2/(σ√n),
where Yt is the theoretical projection of the scene without
any noise. It is assumed that the variance σ2 is preliminarily
estimated with a high precision during the calibration pro-
cedure of the acquisition system: test object is imaged and
the variance is calculated from repetitive resulting radiogra-
phies. The power βδ̂ of the GLR test (14), (16), (17), and (18)
as a function of the SNR is depicted in Figure 8 (see the line
K = 1).

5.2.2. Detectionwith several projections

We suppose now that several projectionsY1, . . . ,YK forK dif-
ferent view angles ωi or horizontal motor slices are available.
To assure the comparison between the results of detection
with different numbers K , it is assumed that the theoretical
profile Yt holds constant for all tangential projections. As it
follows from Section 2.4, it is possible to design a “cumu-
lated” projection Y1, . . . ,YK . The power βδ̂ of the GLR test
(14), (16), (17), and (18) as a function of the SNR for dif-
ferent numbers K of “cumulated” projections is depicted in
Figure 8. It is easy to see that the accumulation of several pro-
jections considerably increases the power βδ̂ of the test.

5.3. Anomaly detectionwith an unknown
motor/acquisition system geometry

We assume now that the center of revolution coordinates
(x0, y0) and the detector position are perfectly known, but
the radiuses r1, r2, r3, and r4 are only approximately known.
The measurement model is then nonlinear. The efficiency of
the statistical tools proposed in Section 4 is examined now in

the case of planar detector. Due to the quality of the motor
production process, the radiuses ri vary into confidence in-
tervals Ii = [r̄i− εi; r̄i + εi], where r̄i is the “prescribed” radius
and εi is a small positive constant provided by the designer
of rocket motors. Let X = (µ1,µ2,µ3, r2, r3, r4)

T be the vector
of unknown nuisance parameters (the radius r1 is out of the
field of the projection). The nonlinear measurement model
is defined as follows:

Y =Mθ +H(X) + ξ, (30)

where the projection H(X) = Rω,τ(hX) is defined for a par-
ticular angle of view ω and a family of sampling coordinates
τ (see (2)), hX is a nonlinear model of the motor, parame-
terized by X , θ is a vector corresponding to a delamination,
and ξ is a zero-mean Gaussian white noise, ξ ∼ N (0, σ2In)
with σ2 known. It is assumed that M = WT

0 and the ma-
trixW0 =W(JH(X0)) satisfies the conditions given by (A.4),
where H is replaced by the Jacobian matrix of size (n × m)
JH(X0) = ∂H/∂X|X=X0 calculated at the working point X0.

Assuming that the height of the planar detector is small
enough relatively to the height of the motor, it is assumed
that all the lines of the planar detector correspond to the
same radiuses r2, r3, and r4, which vary into confidence inter-
vals I2, I3, and I4, respectively. To warrant the existence of a
nonlinear detection problem solution [17, 18], the nonlinear
LS estimate X̂ of the parameter X is calculated from the vec-
tor of observations Y = (Gs(t1,ω),Gs(t2,ω), . . . ,Gs(tn,ω))

T

(see (2)) limited to the components Gs(ti,ω) such that ti ∈ Î
with Î = [ρ; ρ] \ (∪4

i=2Ii), where ρ and ρ are the minimal
and maximal radiuses corresponding to the X-ray detector.
The capacity of the proposed method to estimate the non-
linear model and to eliminate the unknown background cor-
responding to the metallic structure, thermal protection, and
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propellant by using a planar X-ray detector is depicted in Fig-
ures 9 and 10. Here the simulation results for a planar de-
tector of 40 cm × 40 cm composed of 400 × 400 elementary
sensors are presented. The delamination’s width and height
are chosen 390 × 60mm, respectively. For the illustration
purpose, to make the delamination more visible by eyes on
the projection (see Figure 10), its radial size has been cho-
sen of 3mm. But the proposed algorithm is able to stably
detect a delamination of 0.3÷ 1mm. The threshold γα of the
nonlinear GLR test (14), (22), and (23) is chosen to satisfy a
preassigned level of false alarms α = 0.01.

To examine the impact of nonlinearity, the mean bias b̂
of the residual vector ε̂ = Y −H(µ̂) has been computed. The
decision function Λ̂(Y) (22) asymptotically follows the non-
central χ2 law with n−m degrees of freedom (n = 4002 and
m = 6) and the noncentrality parameter λ. The component
of this parameter ∆λ due to the nonlinearity of the parsi-
monious model (see (24)) constitutes the main degradation
of the optimality properties of the nonlinear GLR test with
respect to the linear one. A numerical study shows that the
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Figure 9: Detection with a planar detector of 40 cm× 40 cm: (a) typical projection of a tangential part of the motor without delamination,
(b) parity vectors calculated from (a) (H0 is accepted: Λ̂(Y) = 1.6 · 105 < γα(= 1.657 · 105)).

ratio ∆λ/λ is very small (� 7.1 · 10−5) underH1. Hence, the
variation of the power function of the test is negligible.More-
over, underH0, the parameter ∆λ is also very small (less than
0.01) and, therefore, the probability of false alarm practically
does not change.

6. CONCLUSION

The problem of anomaly detection in a parameterized par-
simonious environment has been stated as a composite hy-
potheses testing problem with nuisance parameters. It has
been shown that the GLR test coincides with an optimal
UBCP invariant test in the linear case. The robustness of the
GLR test for a nonlinearly parameterized environment has
been numerically studied when the dimension of the projec-
tion is large. It has been shown that the impact of the non-
linearity on the detector optimality can be estimated by us-
ing the variation of the χ2 noncentrality parameter with re-
spect to its regular value due to the linearized model. The
same noncentrality parameter has been used to estimate the
impact of the approximation errors when the (non-) linear
parsimonious decomposition does not perfectly fit the un-
known environment. The relevance of the proposed method
has been illustrated with the numerical simulation of the
solid rocket motor examination.

APPENDICES

A. NUISANCE PARAMETERS REJECTION

The presence of the nuisance parameters certainly compli-
cates the statistical decision problem. As it follows from

(12), the vector of observations Y is an additive sum of the
nuisance Hµ and a possibly hidden anomalyMθ. In the case
of anomaly detection, we need to detect the anomaly θ while
considering the “environment” µ as an unknown vector (or
nuisance parameter). Since the nuisance parameter µ ∈ Rm

is completely unknown, the test δ should be independent of
its value. To obtain a statistics which is independent of the
nuisance parameter, the theory of invariance is used [13]. We
consider now the hypotheses testing problem (12) and (13).
We define two parameter sets

Ω0 =
{
N = Hµ +Mθ, θ = 0, µ ∈ Rm

}
,

Ω1 =
{
N = Hµ +Mθ, µ ∈ Rm, θ 
= 0

} (A.1)

in the parameter (expectation) N = E(Y) space Rn corre-
sponding to the hypothesesH0 andH1, respectively. First of
all, we note that the family of distributions Y ∼ N (Mθ +
Hµ, σ2In) remains invariant (see [13] for details and defini-
tions) under the group of translations

G = {g : g(Y) = Y +HC, C ∈ Rm
}
, (A.2)

which induces the group

G = {g : g(N) = N +HB, B ∈ Rm
}
, (A.3)

inRn, whereN = E(Y) is the expectation that preserves both
Ω0 and Ω1, that is, gΩ0 = Ω0 and gΩ1 = Ω1. Hence, the
hypotheses testing problem (12) and (13) remains invariant
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Figure 10: Detection with a planar detector of 40 cm × 40 cm: (a) a tangential projection with a delamination of 390 × 60× 3mm, (b) the
parity vectors calculated from (a) with the signature of the delamination (H1 is accepted: Λ̂(Y) = 1.702 · 105 > γα(= 1.657 · 105)).

under G. The optimal invariant tests are based on the max-
imal invariants (principle of invariance) [13]. We define the
column space R(H) of the matrix H with rankH = q. First,
it is supposed that q = m (H is a full-rank matrix). The
standard solution is the projection of Y on the orthogonal
complement R(H)⊥ of the column space R(H). The space
R(H)⊥ is well known under the name “parity space” in the
analytical redundancy literature (see details in [15, 16]). The
parity vector Z =WY is the transformation of the measured
output Y into a set of n − m linearly independent variables
by projection onto the left null space of the matrix H . The
matrix WT = (w1, . . . ,wn−m) of size n × (n − m) is com-
posed of the eigenvectors w1, . . . ,wn−m of the projection ma-
trix PH = In−H(HTH)−1HT corresponding to eigenvalue 1.
The matrixW satisfies the following conditions:

WH = 0, WTW = PH , WWT = In−m. (A.4)

It follows from the first of the above conditions that the
transformation by W completely removes the interference
of the nuisance parameter µ. It can be shown [15, 22] that
the function M(Y) = Z = WY is maximal invariant to the
group of translations G = {g : g(Y) = Y + Hµ}. For this
reason, all invariant tests depend on Y only via the vector
Z =WY . Second, we assume that rankH = q < m (H is not
a full-rank matrix). The matrix WT = (w1, . . . ,wn−q) of size
n× (n−q) is then composed of the eigenvectors w1, . . . ,wn−q
of the projection matrix PH = In −H(HTH)−HT , where A−

is a generalized inverse of A [23, Chapter 1.5.3], correspond-
ing to eigenvalue 1.

B. OPTIMAL INVARIANT TEST

As it follows from Appendix A, the measurement model Y =
Mθ +Hµ + ξ can be rewritten in the following manner:

Z =WY =WMθ + ζ , (B.1)

where ζ ∼ N (0, σ2In−q), σ2 > 0. As it follows from [15, 16,
22], the test δ∗ given by

δ∗(Y) =
H0 if Λ(Y) < γα,

H1 else,
(B.2)

where the decision function is (under assumption that the
matrixMTPHM is invertible)

Λ(Y) = 1
σ2

YTPHM
(
MTPHM

)−1
MTPHY , (B.3)

and the threshold γα is chosen to satisfy the definition of the
classKα:

sup
µ∈Rm

Pr0,µ
(
δ∗(Y) =H1

) = Pr0
(
Λ(Y) ≥ γα

) = α, (B.4)

is invariant and UBCP over the family of surfaces

S =
{
Sλ :

1
σ2

θTMTPHMθ = λ, λ ∈]0; +∞[
}
. (B.5)
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The statistics Λ is distributed according to the χ2 law with
n − q degrees of freedom. This law is central under H0

and noncentral under H1 with the noncentrality parameter
λ = (1/σ2)θTMTPHMθ. Hence, the power function of δ∗ is
directly given by

βδ∗(λ) = Prλ
(
Λ(Y) ≥ γα

) = ∫ +∞

γα
ϕλ(x)dx, (B.6)

where ϕλ(x) is the pdf of the noncentral distribution χ2 with
n− q degrees of freedom and the noncentrality parameter λ.
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