
EURASIP Journal on Applied Signal Processing 2005:14, 2229–2240
c© 2005 Wei Geng et al.

Caenorhabditis elegans Egg-Laying Detection
and Behavior Study Using Image Analysis

Wei Geng
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla,
CA 92093-0407, USA
Email: wei geng@yahoo.com

Pamela Cosman
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla,
CA 92093-0407, USA
Email: pcosman@code.ucsd.edu

Megan Palm
Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0349, USA
Email: mpalm@ucsd.edu

William R. Schafer
Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0349, USA
Email: wschafer@ucsd.edu

Received 15 January 2004; Revised 26 July 2004

Egg laying is an important phase of the life cycle of the nematode Caenorhabditis elegans (C. elegans). Previous studies examined
egg-laying events manually. This paper presents a method for automatic detection of egg-laying onset using deformable template
matching and other morphological image analysis techniques. Some behavioral changes surrounding egg-laying events are also
studied. The results demonstrate that the computer vision tools and the algorithm developed here can be effectively used to study
C. elegans egg-laying behaviors. The algorithm developed is an essential part of a machine-vision system for C. elegans tracking
and behavioral analysis.
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1. INTRODUCTION

The nematode Caenorhabditis elegans (C. elegans) is widely
used for genetic studies of development, cell biology, and
gene regulation. In particular, because of its facile genet-
ics, well-described nervous system, and complete genome se-
quence, it is particularly well suited to analysis of the molec-
ular and cellular basis of nervous system function and devel-
opment. The ability to functionally map the influence of par-
ticular genes to specific behavioral phenotypes makes it pos-
sible to use genetic analysis to functionally dissect the molec-
ular mechanisms underlying poorly understood aspects of
nervous system function such as addiction, learning, and
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sensory perception. However, many genes with critical roles
in neuronal function have effects on behavior that are diffi-
cult to describe precisely, or occur over time scales too long
to be compatible with real-time scoring by a human observer.
Therefore, to fully realize the potential of C. elegans for the
genetic analysis of the nervous system function, it is neces-
sary to develop sophisticated methods for the rapid and con-
sistent quantitation of mutant phenotypes, especially those
related to behavior.

One of the most important behaviors for the analysis of
neuronal signal transduction mechanisms is egg laying. Egg
laying in C. elegans occurs when embryos are expelled from
the uterus through the contraction of 16 vulval and uter-
ine muscles [1]. In the presence of abundant food, wild-
type animals lay eggs in a specific temporal pattern: egg-
laying events tend to be clustered in short bursts, or active
phases, which are separated by longer inactive phases during
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which eggs are retained. This egg-laying pattern can be accu-
rately modeled as a three-parameter probabilistic process in
which animals fluctuate between discrete inactive, active, and
egg-laying states [2]. Egg laying has also been shown to be
coordinated with locomotion: specifically, animals undergo
a transient increase in global speed immediately before each
egg-laying event [3]. Many neurotransmitters and neuronal
signal transduction pathways have been shown to have spe-
cific effects on egg-laying behavior; thus it has become an
important behavioral assay for the analysis of many neuro-
biological problems in C. elegans.

Computer vision tools [4, 5, 6] have been used success-
fully in recording, tracking, defining, and classifying C. el-
egans morphology and locomotion behaviors. Because egg
laying is infrequent, it is well suited for analysis by au-
tomated imaging methods. In previous egg-laying studies
[2, 3, 7, 8], individual worm movements were videotaped
and the centroid location and time information were saved at
1-second intervals during recording. The entire videos were
later played back and each video frame was examined by ex-
pert observers to look for egg and egg onset frames. In this
paper, we present an algorithm that can identify eggs and egg
onsets automatically. In addition, by combining this infor-
mation with the features (locomotion, morphology, behav-
ior, shape) extracted using our previously developed com-
puter vision methods, we are able to uncover relationships
between egg-laying events and other characteristics.

2. IMAGE ACQUISITION AND SEGMENTATION

2.1. Acquisition of the video images

Routine culturing of C. elegans was performed as described
in [9]. All worms analyzed in these experiments were young
adults; fourth-stage larvae were picked the evening before the
experiment and tracked the following morning after cultiva-
tion at 22◦. All animals used in this study were from the wild-
type Bristol (N2) strain.

C. elegans locomotion was tracked with a stereomicro-
scope mounted with a CCD video camera [4, 5, 6]. The
video camera used only a single eyepiece, and so did not have
stereo data; the system is equivalent to a conventional bright-
field microscope. A computer-controlled tracker was used to
maintain the worms in the center of the optical field of the
microscope during observation. To record the locomotion of
an animal, an image frame of the animal was snapped every
0.5 second for at least five minutes (20 minutes or more in
the longer recordings). Among those image pixels with val-
ues less than or equal to the average value minus three times
the standard deviation, the largest connected component was
found. The image was then trimmed to the smallest axis-
aligned rectangle that contained this component, and saved
as eight-bit grayscale data. The dimensions of each image and
the coordinates of the upper-left corner of the bounding box
surrounding the image were also saved simultaneously as the
references for the location of an animal in the tracker field at
the corresponding time point when the images are snapped.
The microscope was fixed to its largest magnification (50 X)

during operation. Depending on the type and the posture
of a worm, the number of pixels per trimmed image frame
varied. The number of pixels per millimeter was fixed at
312.5pixel/mm for all worms.

2.2. Segmentation and tracking of the worm body

The segmentation process is presented in [6]. Briefly, an
adaptive local thresholding algorithm with a 5 × 5 moving
window was used followed by a morphological closing oper-
ator (binary dilations followed by erosions). A correspond-
ing reference binary image was also generated by filling the
holes inside a worm body based on image content informa-
tion. The difference between these two binary images pro-
vided a good indication of which image areas are worm body
and which are background.

Following binarization, a morphological skeleton was
obtained by applying a skeletonizing algorithm. Redundant
pixels on the skeleton were eliminated by thinning. To avoid
branches on the ends of skeletons, the skeleton was first
shrunk from all its end points simultaneously until only two
end points were left. These two end points represent the
longest end-to-end path on the skeleton. A clean skeleton can
then be obtained by growing out these two remaining end
points along the unpruned skeleton by repeating a dilation
operation.

The tracking algorithm is presented in [6], and included
automatic recognition of the head and tail for the worm in-
side each frame.

3. MODEL-BASED ATTACHED EGGDETECTION

3.1. Image analysis

To find the possible egg locations and limit the search area
for deformable template matching, we developed a series of
morphological image analysis algorithms to limit our search
area to around 2% of a typical region that a worm body cov-
ers. The search is greatly expedited andmatch accuracy is im-
proved by effectively eliminating potential false alarms. The
flowchart of attached egg detection is shown in Figure 1. For
each input video frame, the worm body is first segmented
from the background and the skeleton (medial axis) is ob-
tained by algorithms described in [6]. The laying of an egg
changes the shape of the binarized worm body (Figure 2),
which can be captured by examining the width profile in
the middle part of the worm body in the following way. For
each pixel in the skeleton pixel list, a straight line travers-
ing the worm body that passes through that skeleton pixel
is calculated. Seventy one additional lines are also calcu-
lated at 5-degree intervals to cover a 360-degree radius. The
worm body width at that skeleton pixel is the shortest of
the 72 lines, which has the shortest distance traversing the
binary image through the skeleton pixel. In the case where
the abnormal width is caused by an attached egg, one of
the two end point locations on the shortest-distance line is
enclosed by that egg. By abnormal width, we mean a dif-
ference greater than 7.5 pixels/24 µm between median and
peak width in the middle part of the body, indicating a
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Figure 1: Flowchart of the egg detection process.

potential egg event. Figure 2a shows the frame immediately
prior to an egg-laying event. Figure 2b shows the egg-laying
frame. The corresponding width profiles are shown in Fig-
ures 2c and 2d, respectively. The solid curves show the width
measured along the worm skeletons. The horizontal dotted
lines in Figures 2c and 2d show the median width for the
middle part of the worm body. A second horizontal line in
Figure 2d shows the threshold (7.5 pixels above the median
width value) that defines abnormal width. The width-profile

curves are normalized to 300 pixels for comparison. Since
egg laying is a rare event, over 90% of the frames are quickly
passed through and not subject to further analysis.

Since the abnormal width measure cannot tell us on
which side the egg is (which end point the egg encloses),
we extract the boundary from both sides of the worm body
and consider the side that has higher k-curvature values to
be the egg side. This way, the search area is constrained to
only one side of the worm body and half of the search area
is effectively eliminated. The process starts with isolating the
body area containing the abnormal width by cutting off the
worm body area, that is, 25 pixels/80 µm before and after us-
ing the minimal-distance straight lines passing through the
skeleton pixels. This cutoff area is 51 pixels/160 µm in me-
dial axis and has four boundaries. Two of the boundaries are
the straight cutoff lines, and the other two are the two sides
of the worm body (Figure 3b). A boundary-following algo-
rithm similar to the one in [10] is then used to extract the
two boundaries along the sides of the worm body (Figure 3c).
The k-curvature (k = [3, 7]) [11] of these two boundaries
is calculated, and the boundary that has higher (for all 5
k-curvature measurements) values is designated as the egg
side. If neither boundary has all the 5 measurements higher,
both sides are checked for eggs. The k-curvature is defined as
R = {(1/(n− 1))

∑n−1
i=1 θi}, where

θi = arctan
yi+2 − yi+1
xi+2 − xi+1

− arctan
yi+1 − yi
xi+1 − xi

, (1)

and (xi, yi), (xi+1, yi+1), . . . are the locations of consecutive
points that are k pixels apart along the worm side bound-
aries.

Once the location of the maximal peak is decided, the
search region Ω can be obtained by the region growing out
of the egg-side end point to enclose the egg center. A direc-
tional dilation algorithm such as the one in [12] can be used
for this purpose. Here we once again take advantage of the
worm skeleton. The directional dilation is achieved by ap-
plying two constraints in the dilation process: (1) dilation
starts from the end point and should remain inside the bi-
nary worm body; (2) dilation remains outside skeleton area
(dilated 4 times from skeleton) (Figure 3d). The dilation pro-
cess stops when more than 200 pixels are inside the region.
The directional dilation forces the search area to be inside
the worm body close to the side boundaries rather than close
to the skeleton. The final search region Ω (Figure 3e) typi-
cally contains between 200 and 250 pixels for each frame. In
the case that both sides are checked, a total of 400 pixels is
checked. Figure 3 illustrates the process.

3.2. Deformable templatematching

Deformable template matching models have been applied to
a variety of image recognition and analysis applications with
success [13, 14, 15, 16, 17]. They not only enjoy the flexibil-
ity of a parameterized model, but also can be explained in
a Bayesian framework. Even though the attached eggs could
be partially obscured by shadows and/or by the worm body,
or partially laid, they share many common characteristics.
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Figure 2: Width profile change on egg onset. (a) Gray image right before egg onset. (b) Gray image right after egg onset. (c) Width profile of
(a). The dotted line is the median value of the middle part of the width profile. (d) Width profile of (b). The lower dotted line is the median
value of the middle part of the width profile. The upper dotted line is 7.5 pixels above the lower dotted line.

They tend to have oval shapes, and are generally brighter in
the middle and darker around the boundary. The eggs are
more or less similar in size. These characteristics make them
ideal for the elliptic deformable templates.

In an ideal case, the shape of the attached eggs can be
modeled by an elliptic model such as the one shown in
Figure 4 with 7 parameters v = (x, y, a, b, θ, ρ1, ρ2), where
(x, y) are the coordinates of the center, a and b are the semi-
axes, and θ is the rotation angle. Together, these 5 parameters
control the geometric shape and location of the inner ellipse
that captures the bright center part of the egg. ρ1 equals the
ratio between the area of the middle band and the inner el-
lipse, ρ2 equals the ratio between the area of the outer band
and the middle ellipse. The middle band encloses the dark
exterior part of the egg. The outer band covers part of the
worm body and part of the background. By studying the ho-
mogeneity of the pixels enclosed, the outer band can be used
to suppress noise and find the best location for the egg. For
example, if (x, y) is mistakenly inside the worm body, then
the outer band will have similar brightness to the worm body
(dark). If (x, y) is in the background area, the outer band
has similar brightness to the background (light). Half worm
body and half background inside the outer band indicate

a perfect attached egg location. To reduce model complexity,
we opt to use a simplifiedmodel (Figure 5) that does not have
the outer band, and use image analysis to restrain the search
area. The outer band in Figure 4 is only used for deletion pur-
poses when multiple eggs/peaks are detected. In these cases,
the pixels inside the entire outer ellipse are deleted and the
process is repeated to detect additional eggs. The outer band
is also shown in Figures 3, 7, and 8 to mark the location of
the best-fit ellipse. There are 6 parameters characterizing the
shape of the simplified elliptic model v = (x, y, a, b, θ, ρ).

From a Bayesian framework, we have p(v|E) =
p(v)p(E|v)/p(E), where E is the event that the image con-
tains an egg, and p(v|E) is the probability density function of
parameter configuration given that an egg is present. There
are many ways to define the likelihood function. We propose
the following model:

p(E|v) = 1
z
exp

{− (αµin(v) + βµout(v)
)}
, (2)

where µin(v) is the mean pixel value inside the inner ellipse,
µout(v) is the mean pixel value in the band around the inner
ellipse (Figure 5), and α, β are weights to be selected to give
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Figure 3: Illustration of egg-detection image analysis. (a) Grayscale image. (b) The cutoff portion containing egg. (c) Two boundaries. (d)
The highlighted area (gray) shows the dilation of the skeleton four times. This area is not searched for eggs. (e) The highlighted area (white)
shows final search region. (f) Best-fit ellipse.
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Figure 4: Ellipse egg model.

a proper weight for inside and outside areas. For calculating
the mean values, the pixel intensities are linearly rescaled to
go from −1 to +1. z is a normalization constant to ensure
that p(E|v) is a proper probability density of unit area.

The egg-finding problem can then be modeled as finding
the most likely parameter configuration vopt given that there
is an egg in the image. Using a maximum a posteriori (MAP)
estimator,

vopt = argv max p(v|E) = argv max
p(v)p(E|v)

p(E)
. (3)

Since the egg can occur in any orientation and location in

ρ

ab

θ

[x, y]

Figure 5: Simplified ellipse egg model.

the search space, it is reasonable to assume a uniform prior.
For simplicity, we also assume that a and b are uniformly
distributed in a narrow range. So (3) is identical to

vopt = argv max p(E|v)
= argv max

1
z
exp

{− (αµin(v) + βµout(v)
)}
.

(4)

Furthermore, because z is a constant, and we can absorb the
minus sign into the parameters α and β, (4) is identical to

vopt = argv max
{
αµin(v) + βµout(v)

}
. (5)
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Figure 6: A plot of the receiver operating characteristic (ROC) curve with threshold t varying from −1.5 to 1.5.

The optimal parameter configuration is the parameter v that
maximizes the function

U(v) = αµin(v) + βµout(v). (6)

We chose α = 0.5, β = −1, and ρ = 8 by feeding a small set
of training samples of egg and nonegg values of µin, µout into
the classification and regression tree (CART) algorithm [18].
The final model for locating eggs is as follows.

For a specified search space Ω in the image, find

vopt =
(
xopt, yopt, aopt, bopt, θopt

) = argv maxU(v), (7)

where U = 0.5µin(v)− µout(v). Notice U ∈ [−1.5, 1.5].
For every pixel (xc, yc) inside the search region Ω, U is

calculated for each configuration with a range (a = [3.4, 3.6],
b = [1.9, 2.1], θ = [0, 180]). IfUopt is greater than a threshold
value t, the location (xopt, yopt) is marked as the egg location
and an egg is declared found.

3.3. Experimental results

The egg detection algorithm was tested on 1 600 5-minute
video sequences from 16 different mutant types (100 videos
for each type) and five 20-minute video sequences of wild-
type animals treated with serotonin, which causes an increase
in egg laying. The data were collected over a 3-year period
by different individuals. A laborious manual check found
9 000 frames containing 200 different eggs. These eggs cover
a wide variety of recording conditions, mutant types, sizes,
and shapes. 100 000 nonegg frames were randomly selected
from the rest of the 800 000 frames as nonegg cases. By apply-
ing the above algorithmwith the decision threshold t varying
from−1.5 to 1.5, the performance result is shown as an ROC
curve [19] in Figure 6 and Table 1. The true positive fraction
is over 98% when the false positive fraction is 1%. Figure 7
shows some examples of the locations and best-fit ellipses
identified by the algorithm. Some failure examples are shown
in Figure 8.

4. EGG ONSET DETECTION AND BEHAVIOR STUDY

4.1. Egg onset detection

Egg detection algorithms can be readily incorporated into a
broader scheme for egg onset event detection (identifying the
frames in which the egg first appears). Figure 9 shows one
algorithm to accomplish it. The main functions of the egg
onset detection routine are to use the single-frame egg detec-
tion result for a sequence. First, we decide whether the cur-
rent egg is a newly laid or a previously laid egg (worms some-
times crawl back to previous eggs). This is accomplished by
maintaining a list of all existing locations of eggs. When the
new location is not on the list, an egg onset event is detected.
Secondly, there are occasions when multiple eggs are laid at
the same time. Also, there are cases when multiple width ab-
normalities are detected for a single frame due to multiple
newly laid and previous laid eggs that remain near the worm
body. The egg onset detection routine runs the single-frame
egg detection routine repeatedly in the search regions after
the detected egg area (outer ellipse in the template model)
is removed from the image in each run. This way, clusters
of eggs can be detected. The egg onset detection routine also
runs the abnormal width detection routine repeatedly to find
out new search regions to detect all the eggs attached to the
worm body.

The onset detection algorithm was tested on 25 videos
of 20-minute recordings (500 minutes, 60 000 total frames).
These recordings include 5 serotonin videos previously used
for the egg detection test and 20 new normal wild-type
videos. By setting the thresholds conservatively (t = 0.5) and
declaring that an egg onset has occurred if one or more new
eggs are detected in three or more consecutive frames, our
algorithm is able to pick up all 88 egg onsets in one pass
through the videos. There are 131 false-alarm onset frames
for the entire data set of 60 000 frames. The false-alarm on-
sets are easily eliminated by inspecting each onset frame vi-
sually. Among the 88 onsets detected, there are 6 onsets that
are delayed from true onsets by 1, 2, 3, 4, 10, 18 frames, re-
spectively.
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Table 1: The false positive, true positive, false negative, and true negative values for part of the ROC curve. The boldface row is the final
threshold used in the egg onset detection.

Rate of nonegg
frames detected as
egg (false positive)

Rate of egg frames
detected as egg
(true positive)

Rate of egg frames
detected as nonegg
frames (false negative)

Rate of nonegg frames
detected as nonegg
frames (true negative)

Threshold t

0.0967 0.9985 0.0015 0.9033 0.35

0.0947 0.9983 0.0017 0.9053 0.36

0.0924 0.998 0.002 0.9076 0.37

0.0893 0.9977 0.0023 0.9106 0.38

0.0857 0.9972 0.0028 0.9143 0.39

0.0814 0.9964 0.0036 0.9186 0.4

0.0769 0.9961 0.0039 0.9231 0.41

0.072 0.9955 0.0045 0.928 0.42

0.0663 0.9946 0.0054 0.9337 0.43

0.0597 0.9927 0.0073 0.9403 0.44

0.0524 0.9915 0.0085 0.9476 0.45

0.044 0.9902 0.0098 0.956 0.46

0.0354 0.9893 0.0107 0.9646 0.47

0.027 0.9883 0.0117 0.973 0.48

0.0194 0.9865 0.0135 0.9806 0.49

0.0131 0.9851 0.0149 0.9869 0.5

0.0101 0.9826 0.0174 0.9899 0.51

0.0082 0.9785 0.0215 0.9918 0.52

0.0065 0.9729 0.0271 0.9935 0.53

0.0052 0.9658 0.0342 0.9948 0.54

0.0042 0.9531 0.0469 0.9959 0.55

4.2. Behavior study

Previous study [3] indicated significantly increasing loco-
motion activity prior to egg onset. We studied the behav-
ior changes before and after 55 wild-type egg onsets (a fresh
10-hour recording) detected by our onset detection algo-
rithm. The behavioral characteristics can be summarized by
extracting features proposed by the feature extraction sys-
tem [4, 5, 6]. For each feature, we looked for a significant
difference in that feature before and after the onset frame
by using the nonparametric rank sum test on paired data.
For each of the 55 eggs, we paired the data obtained from
the 40 seconds before the onset frame with data after the
onset frame. The 253 features examined include 131 mor-
phological features (thickness, fatness, MER, angle change
rate, etc.), 75 speed features (min, max, average speed over
1, 5, 10, 20, 30, 40 seconds, etc.), 35 texture features (head,
tail, center brightness, etc.), and 12 other behavioral features
(rate of reversals, omega shape, looping, etc.). Out of these
253 features, 14 were found to be significant at the 0. 01 sig-
nificance level as shown in Table 2. We also considered the
possibility that some features may be significantly different
both before and after egg laying compared to the values for a
worm that is not near an egg-laying time. So we also looked
at the paired data where the values obtained from the 40 sec-
onds before an egg-laying onset were paired with the values
from an equal number of frames starting from a randomly

selected nonegg frame, and similarly where the values after
an egg-laying onset were paired with the values from an equal
number of frames starting from a randomly selected nonegg
frame. There were 32 (Table 3) comparisons that were sig-
nificant at the 0. 01 significance level before egg onset and
32 after, respectively. We note that, by random chance alone,
out of 253 comparisons, we would expect to see 2.5 features
showing a significant difference at the 0. 01 significance level.

Most of the features found to be significantly different
were related to speed, confirming earlier results that were de-
termined manually. In particular, we found that the global
centroid movement as well as the local movement of the tail
and head were all significantly larger before the onset com-
pared to after (see Figure 10). Previous results only consid-
ered global movement. Local head movement is often re-
lated to foraging behavior. We also found some differences
in brightness parameters. Due to the multiplicity of compar-
isons being made, these remain to be verified when further
data are collected.

5. CONCLUSION

We have presented a computer analysis method for attached
egg detection and egg onset event detection. The testing re-
sults of egg detection on 100 000 frames and 200 eggs from a
variety of mutant types and recording conditions illustrate
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Figure 7: Some best-fit results of deformable template matching. Some figures are rotated for plotting. (a) A fully laid egg in perfect condi-
tion. (b) A half laid egg. (c), (d) Stacked eggs, identified by repeating the search. (e), (f) Two eggs laid together with close distance.

(a) (b)

(c) (d)

Figure 8: Some nonegg frames that are identified as eggs.

the effectiveness of our proposed algorithm. The behavior
study of egg onsets confirms the result from previous studies
and shows promise for new findings.

The algorithm proposed is flexible to suit differ-
ent needs. First, the abnormal width criteria (currently
7.5 pixels/24 µm) can be adjusted accordingly if prior
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Figure 9: Flowchart of egg onset event detection.

Table 2: The features which changed significantly 40 seconds before and after egg onsets.

Features Description

TLMV10MIN Minimal tail movement in 5 s

TLMV10AVG Average tail movement in 5 s

HDMV10AVG Average head movement in 5 s

TLMVHFMIN Minimal tail movement in 0.5 s

HDMV10MAX Maximal head movement in 5 s

REVSALTIM Total percentage of time the worm stays in reversal position

HTBRDMIN Minimal head and tail area brightness difference

HTBRRMIN Minimal head/tail brightness

BANGCRMIN Minimal whole-body-area angle change rate

LNWDRMAX Maximal length-to-width ratio of the bounding box

BANGCRAVG Average whole-body-area angle change rate

TLAMPMAX Maximal amplitude in the tail area

AMPMAX Maximal amplitude of worm skeleton wave

HDTLANMIN Minimal head-to-tail angle

knowledge of certain egg size and shape for a particular mu-
tant is present, or the purpose is to obtain a rough idea of
whether an egg is present. Secondly, the same applies to the
decision criterion t according to the expectation of the false
positive and the false negative rate. Third, the current algo-
rithm was applied on videos with frame rate of 2Hz. The
same algorithms can be applied to videos that have different
frame rates. With increased frame rates, we anticipate an im-
proved detection result.

With more accurate and complex computer vision sys-
tems [4, 5, 6] being developed, we anticipate that many more
behavior features will be discovered. Therefore, we will be
able to combine the automatic egg onset detection and be-
havior studies together and explore the temporal correlation
between egg laying and other behavioral characteristics more
effectively. Moreover, the ability to automatically detect egg-
laying events will make it possible to use these correlations
between other behaviors and egg laying, which previously

could only be assayed through time-consuming human anal-
ysis of videotapes [3] as automatically-evaluated features for
use in phenotype classification and clustering studies [5].

More generally, egg laying has historically been an ex-
tremely useful assay for genetic analysis of diverse aspects of
neuromuscular function. For example, egg laying has pro-
vided a behavioral measure for the activity of the Go/Gq sig-
naling network in neurons andmuscle cells [20] and for neu-
romodulation by serotonin, acetylcholine, and neuropep-
tides [7, 21, 22]. The egg-laying assays typically used in ge-
netic studies are generally indirect measures of overall egg-
laying rate, and consequently allow limited inference about
the functions of specific mutant genes in the behavior. Quan-
titative assays of the temporal pattern of egg laying can in
principle make it possible to distinguish effects on differ-
ent egg-laying signal transduction pathways [2, 7]. The au-
tomated methods for egg detection described here should
greatly facilitate these more detailed behavioral analyses.
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Table 3: The features which changed significantly between 40 seconds before an egg onset and 40 seconds starting from a randomly selected
nonegg frame.

Features Description Features Description

HDMVHFMIN Min. head movt. in 1/2 s WHRATMIN Min. width-to-height ratio of MER
HDMVHFMAX Max. head movt. in 1/2 s MAJORMIN Min. length of major axis
HDMVHFAVG Avg. head movt. in 1/2 s AMPRMIN Min. amplitude ratio
HDMV10MAX Max. head movt. in 5 s AMPRMAX Max. amplitude ratio
HDMV10AVG Avg. head movt. in 5 s ANCHRMAX Max. angle change rate
HDMV20MAX Max. head movt. in 10 s ANCHSMAX Max. angle change standard deviation
HDMV20AVG Avg. head movt. in 10 s CANGCRMIN Min. angle change rate in middle sect.
TLMV10MAX Min. tail movt. in 5 s CANGCRMAX Max. angle change rate in middle sect.
TLMV10AVG Avg. tail movt. in 5 s CANGCRAVG Avg. angle change rate in middle sect.
TLMV20AVG Avg. tail movt. in 10 s BANGCRMAX Max. body angle change rate
RV20MAX Max. reversals in 10 s HDAMPMIN Min. amplitude in head
RV20AVG Avg. reversals in 10 s TLAMPMAX Max. amplitude in tail
TOTRV Total reversals in 5min CNTAMPMIN Min. amplitude in center

REVSALTIM
Total percentage of time the
worm stays in reversal position AVGAMPMIN Avg. amplitude

TAILBRMIN Min. tail brightness HDTLANMAX Max. head-to-tail angle
TAILBRAVG Avg. tail brightness TLANGMAX Max. head-angle change rate

10050050100

Time (s)

20
25
30
35
40

V
el
oc
it
y
(µ
m
/s
)

(a)

10050050100

Time (s)

10

15

20

V
el
oc
it
y
(µ
m
/s
)

(b)

10050050100

Time (s)

10

15

20

V
el
oc
it
y
(µ
m
/s
)

(c)

Figure 10: Velocity change 125 seconds before and after egg onset. The velocity is a moving average of 10-second interval. (a) Centroid
velocity. (b) Head velocity. (c) Tail velocity.
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