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We propose a method to segment the ground plane from a mobile robot’s visual field of view and then measure the height of
nonground plane features above the mobile robot’s ground plane. Thus a mobile robot can determine what it can drive over, what
it can drive under, and what it needs to manoeuvre around. In addition to obstacle avoidance, this data could also be used for
localisation and map building. All of this is possible from an uncalibrated camera (raw pixel coordinates only), but is restricted
to (near) pure translation motion of the camera. The main contributions are (i) a novel reciprocal-polar (RP) image rectification,
(ii) ground plane segmentation by sinusoidal model fitting in RP-space, (iii) a novel projective construction for measuring affine
height, and (iv) an algorithm that can make use of a variety of visual features and therefore operate in a wide variety of visual

environments.
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1. INTRODUCTION

1.1. Robust, multifeature, multicue vision systems

In order to operate reliably over extended periods of time
(i.e., hours/days/weeks rather than seconds/minutes), com-
puter vision systems must use of all the information in the
image stream that is pertinent to the current task. This re-
quires that the system can make this pertinent information
explicit by employing a range of feature extractors and visual
cues opportunistically, namely, as and when they are avail-
able in the image stream and deemed to provide useful con-
straints to solve task-related problems and resolve any ambi-
guities. In this way, visual interpretation and decision making
can be maximally informed.

We believe that this principle is particularly important
in unconstrained environments when the visual environ-
ment regularly changes because the disambiguating infor-
mation content in the image stream is continually chang-
ing. Thus if we rely on a single feature/cue combination,
such as corners/corner-motion, the application will fail in
scenes with few corners, or poorly distributed corners in im-
age space.

We have focused on mobile robot visual navigation as a
challenging computer vision problem because the nature of
the application suggests that the visual environment is likely
to be variable as the robot moves, for example, from room
to room. Indeed, we make no assumptions in the work pre-
sented here, other than having a reasonably flat floor. This
makes the work applicable to mainly indoor mobile robot ap-
plications, but also outdoor applications which traverse rea-
sonably flat man-made structures such as pedestrian walk-
ways.

Various visual features (corners, edges, color, texture)
and visual cues (e.g., feature motion, parallax) have been em-
ployed to facilitate navigational functions with uncalibrated
cameras. These include navigation down corridors both by
using the focus of expansion of nonvertical scene lines [15]
and wide field peripheral flow [3]. Obstacle detection us-
ing the projective invariants associated with three horizontal
tracked lines and the vanishing lines of planes (ground plane
and obstacle planes) has been applied to road scenes success-
tully [5]. Other approaches to navigation have used time-to-
contact from image divergence [14], a combination of cen-
tral flow divergence and peripheral flow [2], and quantitative
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planar region detection using point correspondences [12].
Most of these techniques work in some types of scene, but
will fail when a particular type of feature/cue combination
is not well supported within the image data. We believe the
solution is to employ multifeature, multicue approaches.

A point to note is that systems that use this multifea-
ture, multicue philosophy will be highly compute-intensive,
due to having a range of processes with a high-bandwidth
data input (raw video data). We envisage that the high-
bandwidth low-level feature extractors will be implemented
as a hardware layer with parallel processing pipelines, either
via field-programmable gate arrays (FPGAs) or special pur-
pose DSPs, which output a feature stream. Higher-level layers
of software will be able to access the much lower-bandwidth
feature stream and select/combine/fuse those parts of the
stream, thus providing information or constraints relevant
to the particular visual task (in our case robot navigation).
Of course, how best to design a framework that allows a
computer vision system to understand how to combine fea-
tures and cues in the context of the current visually-driven
task and in the context of the current visual environment is
a difficult, open, cross-disciplinary research question. What
we aim to do is less ambitious: we aim to develop computer
vision applications that are robust, because they are able to
make use of multiple features/cues. There is no explicit scene
understanding as such, but we need to understand how to
build multifeature, multicue algorithms manually before we
can develop systems that learn and adapt the way in which
they integrate features and cues.

The algorithm that we describe in the following section is
able to provide (i) the segmentation of the ground plane or,
equivalently, grouping of the ground plane pixels, (ii) a mea-
surement of the height of all other features (corners, edges,
or even pixels) above the extracted ground plane. Obviously,
such information may be fed directly into a range of obstacle
avoidance algorithms (both behavioral and planned path),
but may also be used as an input into robot localisation and
mapping algorithms.

The algorithm can make use of ground plane and non-
ground plane corner features, but if those are scarce (we need
at least two corner correspondences), it can make use of any
region that has some local intensity variation. If there is no
local intensity variation (i.e., if the region is smooth), it can
make use of the motion/deformation of the boundary of the
smooth region, where boundaries are extracted using a seg-
mentation algorithm based on color-texture properties.

1.2. Outline of a multifeature, multicue robot
visual navigation

In this paper, we focus on the application of mobile
robot (uncalibrated, monocular) obstacle avoidance and we
present a system that can construct an affine height landscape
of the robots visible (indoor) environment. The height re-
covered is termed an affine height as it is a height ratio (affine
invariant property) referenced to the height of the camera
optical center above the ground plane or alternatively some
known height measurement in the scene. The term landscape

is used as the other two dimensions are view-based (i.e., un-
transformed pixel coordinates). Affine height (h,) measure-
ments allow potential obstacles to be classified as either small
enough to be driven over (we require h, < 0.1), high enough
to be driven under (we require h, > 1.25), or true obstacles
to be avoided.

There are several different methods to determine scene
structure in the computer vision literature. For example, 3D
world structure can be computed from uncalibrated views
of a scene given sufficient correspondences in general posi-
tion and this has already been used to answer specific, met-
ric questions about the scene. The approach by Tomasi and
Kanade [8] is known as the factorization method; Triggs [9]
extends the factorization method to the projective camera
model by using epipolar constraints to calculate depth scale
factors; Heyden et al. [11] upgrade the affine approximations
to projective results by iterative optimization. Others use the
camera-centered approach where the first view is used as
the reference camera to determine the projection matrices of
other cameras in a projective frame under multiple view geo-
metric constraints. Criminisi et al. [6] proposed methods to
make measurements of world planes from their (single) per-
spective images. Reid and Zisserman [4] give a method for
locating 3D position of a soccer ball from monocular image
sequence of soccer games.

An important part of our algorithm is that it can use
a wide range of features, but, in addition, we present three
significant new results: first, by expressing images in a
reciprocal-polar (1/r,«) form with the origin on the focus
of expansion (FOE),! the image motion of a set of coplanar
points along the 1/r direction is a pure shift, when the trans-
lation is parallel to the plane. This allows image motion to be
accurately recovered by 1D correlation, even over large im-
age distortions caused by large camera motion. Second, we
show that the magnitude of these shifts follows a sinusoidal
form along the « direction over a maximum of 7 radians.
Simultaneous ground plane pixel grouping and recovery of
the ground plane homography thus amounts to finding the
FOE and then robustly fitting a sinusoid, whose phase corre-
sponds to the orientation of the vanishing line of the ground
plane and whose amplitude is related to the magnitude of the
robot/camera translation. The method allows every ground
plane pixel in a locally textured region to contribute to the
estimation of the ground plane homography, thus giving a
highly accurate result. Finally, our third new result shows
that given the homography associated with the ground plane,
the affine height of remaining nonground plane pixels, refer-
enced to the height of the camera optical center above the
ground plane, can be determined using the virtual parallax
cue computed using a construction based on the cross-ratio.

Our algorithms require camera motion that is (near)
pure translation. Obviously, it can be argued that this is re-
strictive, but such motions are common, can be deliberate

I'The FOE is the point where the direction of the translation vector, pass-
ing through the camera optical center, intersects the image plane. It is where
all image motion emanates from under pure camera translation.
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in mobile robot applications, and can easily be detected over
an image pair, particularly when corner correspondences are
available. Also, given that an affine height landscape has been
computed, it can be tracked through robot motions which
have a rotational component, and new unlabelled areas of
the scene that enter the field of view can be probed by fur-
ther translation motions.

In the following sections, we first discuss ground plane
motion (and hence homography) recovery, which simultane-
ously gives a ground plane segmentation. We then show how
the recovered homography can be used to measure affine
height.

2. GROUND PLANE SEGMENTATION AND GROUND
PLANE MOTION/HOMOGRAPHY RECOVERY

Early work on exploiting coplanar relations has been pre-
sented by Tsai and Huang [1], Longuet-Higgins [7], and
Faugeras and Lustman [10]. We summarise the coplanar re-
lation as follows: if a set of feature points in the scene lie in
a plane, and they are imaged from two viewpoints, then the
corresponding points in the two images are related by a pla-
nar homography, H, such that Ax; = Hx;, where x represents
a homogenous image coordinate (x, y, DT, Hisa3 X 3 ma-
trix representing the homography, and A is a scalar. Since this
equation is valid up to a scale factor, H has only eight degrees
of freedom.

Suppose that a mobile robot (and therefore camera) at-
tempts to move under pure translation. Due to an uneven
floor surface and hysteresis in the robot’s mechanics, the mo-
tion is unlikely to be pure translation. However, if rotation
is relatively small with respect to the translation, assuming
pure translation and enforcing a homography correspond-
ing to pure translation allows correlation-based techniques
to be used. The key point here is that this allows all ground
plane pixels which have local intensity/color variation to be
used in the simultaneous estimation of the ground plane ho-
mography and grouping of ground plane pixels.

Under pure translation, not necessarily parallel to the
plane, a planar homography is often termed a planar homol-
ogy [16], which has five degrees of freedom (dof) and takes
the form

H=I—ka1$, (1)

where x; = [x7, yf, 1]T is the focus of expansion (FOE) for
the two frames, 1, = [a,, by, 1]7 is the vanishing line (or hori-
zon line) of the plane, and k is a constant associated with the
magnitude of the translation.

Firstly, we check if (near) pure translation is detected,
by intersecting all lines defined by all corner correspon-
dences from the image pair. If most lie in a small area (95%
of intersections should lie within a circle of small radius),
then translation is assumed and the FOE is computed us-
ing random sample consensus (RANSAC [13]) and least
squares (LS). Once the FOE has been computed, we shift im-
age coordinates so that each image is centered on the FOE.

Thus we apply the centering translation T, where

1 0 —xf
To=[01 —ys]|. (2)
00

After this translation, the FOE is at homogenous coordinates
x} = [0,0,1]7 and the vanishing line becomes I, = T; 1, =
[ay, by, X};lv] T, Thus, the homography relating points in FOE
centered coordinatesis H' = I — kx}lVT ', and substituting this
in the equation Ax) = H'x] and expanding gives

x5 1 0 0 X
AMysf=1] 0 1 0 i (3)
1 —ka, —kb, (1-kq)||1

where g = ijflv. We note that for translation parallel to the
ground plane, g = 0 since the FOE lies on the vanishing line.
In this specialisation, the homography has four dof and is
sometimes called an elation [16]. Otherwise, the FOE is at a
distance d = q/4/aZ + b2 from the vanishing line. To simplify
notation, we now drop the “prime” notation from (3) and

assume that (x, y) are image measurements made relative to
the FOE. Thus, we have

(—kayx; — kbyy1 +1 = kq)xa = x1,
(4)
(= kayx; —kbyy1 +1—kq)y> = y1.

Squaring both sides and adding,

(= k(avx +byyr) + (1= k) > (3 +y3) = (xF +y3). (5)

If we define r; as the Euclidean distance between an image
point and the FOE in frame i, then, taking square roots of
(5),
(—k(ayx1 +byy1) + (1 —kq))r, =11,
rl= fk(avxl+bvy1)r1‘1+(lfkq)rfl, (6)
1

ry' = —k(a,cosa+b,sina) + (1 — kq)r; ',

where «a is the angular position of a pixel in a frame centered
on the FOE. Now the gradient of the vanishing line is given
astan«a, = —a,/b,, so

a, = —/(a2 +b2)sina,, b, =+/(a2+b2)cosa,. (7)
Hence
r; ' =ky(—sina, cosa+ cosa, sina) + kgri',  (8)

where

ky = —k\(a2+b2), k,=1-kq. (9)
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Hence, we arrive at the key equation which defines a function
of the angle a, s(«), as

s(a) = p2 — kgp1 = kp sin (a — a, ), (10)

where we define p = 1/r. Equation (10) indicates that we
need to find three constants (kg, kj, @) in order to recover
the homography and that the computation should be imple-
mented in (p, «) image space. (Note that a planar homology
has five dof, but two have been recovered in the FOE com-
putation.) We call I(p, «) reciprocal-polar (RP) image space.
Thus, after computing the FOE, an interpolation procedure
is used to generate a (possibly scaled) RP image for each im-
age in the image pair.

For the set of planes parallel to the translation direction
(which includes the ground plane), the expected value of k,
will be unity, as the expected value of g is zero. For certain
applications (hard flat floor, hard robot wheels), it may be
reasonable to assume k, is unity, as we do. In other appli-
cations, it may be preferable to estimate this value, although
any estimated value is likely to be very close to unity. For each
pixel in image 1, its position in RP image space is computed,
and a 1D window is created around this position along the
p dimension. We then correlate this window along the p di-
mension in RP image 2, at the same value of a. The posi-
tion of the maximum value of the correlation is retained as
a value of s;(«). Equation (10) indicates an important result:
coplanar motions in RP image space lie on a sinusoid and the
constants (kp, «,) may be recovered by fitting a sinusoid to the
RP motion data, s(«). Suppose that we have two values of s,
s;,j measured at two angles, a; ;, so that

si = kpsin (0 — &), sj = kpsin (¢ — o), (11)

hence

S sin a; COS &, — COS &; Sin «,,

sj  sinajcosa, — Cosa; sina,’
. (12)
Si sin «; — Cos &; tan «,,

Sj Sinaj — Cos & tan «,
Collecting terms in tan «, and rearranging gives

sisina; — s;sin«;
tana, = 2 L. (13)
S]‘ COS «; —SiCOSOCj

Thus a pair of s values, at different angular positions, for pix-
els belonging to the same plane, allows us to estimate the ori-
entation of the vanishing line of that plane. Given the phase
angle, a,, corresponding to the orientation of the vanishing
line, we can compute k,, from (11). By selecting random pairs
of angles a;; and computing the associated magnitude and
phase of the sinusoid upon which both s; and s; lie, a random
sample consensus (RANSAC) procedure [13] can be used to
determine the best set of inliers in the s(«) data to a puta-
tive sinusoid. This putative sinusoid is used to initialise an

iterative procedure where an LS estimate of the sinusoid pa-
rameters and the associated set of inliers are computed un-
til the inlier distribution, represented by a binary tag string,
stabilises or the maximum number of iterations is reached.
In this way, coplanar pixels may be grouped without explicit
construction of a homography matrix. Now, let

si = kp sin (a; — &) = msina; — ncos i, (14)

where m = k,cosa, = —kb,, n = kysina, = —ka,. Thus,
for the inliers of the sinusoid model, we can write

[— sina; cosa; sl}

We use singular value decomposition (SVD) to solve for
Alm, n, 1] and normalise the solution to obtain the parame-
ters, (m,n). From (3), we substitute n = —ka,, m = —kb,,
and k; = 1 — kg, to recover the homography in an FOE
centered frame. The parameters defining s(«) can be com-
puted as k, = /(m? +n?), a, = tan"!(—n/m) and the ho-
mography in the original image frames can be computed as
H=T,'HT..

How do we know that the recovered homography and
grouped pixels are associated with the ground plane? A weak
assumption regarding the pose of the camera with respect
to the ground plane suggests that the sinusoid phase should
be close to zero (near horizontal vanishing line). Also, since
translation is roughly parallel to this plane, the FOE should
lie very close to the vanishing line.

To test whether we can recover the sinusoidal model sug-
gested by the analysis, k; = 1 was assumed and two frames
were captured before and after the robot moved in the trans-
lation mode. The images were then converted using an inter-
polation process (this may be a simple linear interpolation
or based on cubic splines) to RP (p, a) form. Figure 1a shows
one of the original images which has its FOE sixteen pixels
above the top center edge of its image. Its RP transform is in
Figure 1b and shows the angular («) axis and lines of con-
stant (reciprocal) radius in the vertical direction. The axis
representing (scaled) reciprocal distance from the FOE (p)
and reciprocal radial lines (constant angle) are in the hori-
zontal direction. For a more intuitive viewing, the horizontal
rendering of the RP image is such that r increases from left
to right, thus p increases from right to left. In this render-
ing of the RP image, the FOE is out at infinity to the left of
the image. In order to usefully constrain the size of the RP
image, any pixels less than 64 pixels from the FOE are not in-
cluded in the RP plot. In any case, the motion near the FOE is
so small that it is not possible to make accurate height mea-
surements in this image region. In terms of implementation
details, we used VGA-sized images (640 X 480) as the raw in-
put images and we generated RP images such that there was
no information loss due to pixel compression.

For each pixel in the original image (2nd of pair), we find
its position in RP-space, and find the maximum correlation

s 3
[

0. (15)

—
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FIGURE 1: (a) shows an original image I(x, y) and (b) shows the corresponding RP image I(p, «).

value by correlating along a line of constant « (i.e., horizon-
tally) in the first RP image of the pair. (We map the second
to the first rather than vice versa, due to field of view con-
siderations.) The maximum value of correlation is retained
as a value for s(a). A correlation window size of 64 pixels
was used in the RP image, with a search window of 150 pix-
els. Due to the high-frequency repetitive structure of the car-
pet microtexture shown in Figure 1a, often many local max-
ima are generated in the correlation process. However, due to
low-frequency components of spatial frequency, the global
maximum, in most cases, corresponds to the correct image
motion that we wish to recover. Even if this is not the case, it
is possible to include pixels with significant local maxima, if
these strong local maxima are consistent with the extracted
planar motion, that is, they lie sufficiently close to the ex-
tracted sinusoid model.

The plot of s(«) against « is shown in Figure 2a for all
pixels. Those pixels motions that correspond to the ground
plane can clearly be seen to lie on a sinusoid and ground
plane pixels can be segmented as inliers to this sinusoid
and used to compute the ground plane homography. The
inliers of the recovered sinusoid are then plotted in 3D in
Figure 2b, with the third dimension representing p. This in-
dicates that the same sinusoidal form captures image motion
in RP-space, irrespective of a pixel’s distance from the FOE,
as expected.

3. AFFINE HEIGHT MEASUREMENT

The approach described above allows pixels to be classified as
either belonging to the ground plane or not. For those non-
ground plane regions, we would like to know whether we can
drive over/under them or whether they form part of an ob-
stacle which should be avoided. We now develop a method
of affine height measurement referenced to the height of the
camera optical center above the ground plane.

Our aim is to recover the height of feature point A shown
in Figure 3 when the robot undergoes pure (forward) trans-
lation, t (and thus the scene point translates ¢ units towards
the robot). Point A is the actual position of the feature point

relative to the camera before the translation and point C is
the position of the feature after the translation. Points A’
and C’ are the projections of these actual feature positions
onto the ground plane. Points a and ¢ are the image posi-
tions of the feature at positions A and C, respectively, and
b is the predicted image position of the feature point, if the
feature point were to lie in the ground plane. Image point b
is computed from the recovered homography induced by the
ground plane as b = Ha. Referring to Figure 3, the height of
the feature point relative to the height of the camera optical
center, the affine height, is

h D
ha—h—c—l—h—c. (16)

Using similar triangles, and denoting the distance between
points x and y as d(x, y), we note that

D d(0C)  d(AC)

h = d(0C) ~ d(aCy (17)
For pure translation, d(A, C) = d(A’, B’), so that
L d(A'B’)
h,=1 AACH (18)

Now, the four image points (a, b, ¢, xf), where xy is the fo-
cus of expansion (FOE), and the corresponding four ground
plane points (A’, B’, C’, c0) are collinear. The cross-ratio for
this set of points remains invariant under projection and so
we can write

d(A'B)  d(a,b)d(c,xs)

d(A’,C")  d(a,c)d(b,xs)’ (19)

Hence, for features below the vanishing line, we can compute
affine height as

d(a,b)d(c,xy)

ha =1~ Ja 0d(bxg)”

(20)
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In general, we find that

d(a,b)d(c,xy)

ha =148 40,00 (b x,)”

(21)

where y = —1 for features below the vanishing line and
u = +1 for features above the vanishing line. (Obviously
h, = 1 for features on the vanishing line.) This can be in-
terpreted as the height of point A in units of height .. Note
that this approach only needs the ground plane homography,
H, and the image correspondences a and c of the feature to
determine the height above the ground plane. By threshold-
ing the measured height above the plane, the method can be
used to check for areas which can be driven over, and for suf-
ficiently high features, which can be driven under. Note that
this is achieved without camera calibration.

4. EXPERIMENTAL RESULTS

4.1. Ground plane segmentation by ground plane

pixel grouping

In the two experiments shown in Figure 4, the ground plane
was segmented on a pixel-by-pixel basis, as the robot trans-
lated forwards. Those pixels that fit the ground plane sinu-
soid in RP image space are retained and plotted as ground
plane pixels, all other pixels are removed from the image
(rendered as zero intensity, or black). Comparing the seg-
mentations with their original images, it can be seen that the
pixel-by-pixel grouping gives an accurate ground plane seg-
mentation. For example, the small, black door stop on the
center-right of the first sequence is clearly and correctly ex-
cluded. Also, the small piece of carpet at the foot of the door
in the center-left of the second sequence is clearly and cor-
rectly included. Note also that the extracted FOE is shown as
a small circle in both sequences and the vanishing line of the
ground plane, whose orientation is extracted as the phase of
the RP sinusoid is also shown as a near horizontal line (near
zero sinusoid phase).

4.2. Height measurement experiments

Two experiments (one indoor, one outdoor) are presented to
validate the projective construction used to measure height.
In both experiments, g = 0 and equivalently k; = 1 was as-
sumed, since two VGA frames (640 x 480 resolution) were
captured with the translation direction parallel to the ground
plane. In both cases the height A-B was used as the refer-
ence height to correctly scale affine (relative) height measure-
ments to Euclidean (absolute) height measurements. For the
indoor experiment, we computed the orientation of the van-
ishing line as tana, = 0, and for the outdoor experiment
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(a)
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FIGURE 4: Image sequences showing ground plane segmentation. (a) Image sequence 1. (b) Image sequence 2.

we computed tan &, = —0.03. Results are shown in Figure 5
and in Table 1, where “TM” are the manual (tape measure)
measurements and “VM” are the results from our automatic
height measurement method. We find a mean absolute error
of 6.9 mm and mean relative error of 0.35%. If we remove
the two rather inaccurate measurements (a)EF and (a)PQ,
the remaining measurements have a mean absolute error of
1.5mm and a 0.1% mean relative error.

4.3. Using height profiles of smooth regions to
segment the ground plane

The final experiment presented in this paper uses both the si-
nusoid fitting process (to simultaneously recover the textured

TaBLE 1: Height measurement results in centimetres.

Segment ™ VM Segment ™ VM
(a)CD 30.0 29.88 (b)CD 2331 233.08
()EF 2277  229.36 (b)EF 149.8 14951
(LM 2084  208.23 (b)GH 258.7  258.55
(@) GH 2525  252.73 (b)MN 2331 232.67
(a)NO 121.1 120.94 (b)OP 149.8 149.82
(a)PQ 210.3 214.91 (b)QR None 651.51

regions of the ground plane and the associated ground plane
homography) and the affine height measurement method
to determine whether the contours of nontextured regions
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(a) (b)

FIGURE 6: (a) Raw image. (b) Boundaries to be matched using recovered FOE.
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FIGURE 7: (a) Height profile of coplanar white paper. (b) Height profile of small box.
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(a)

FIGURE 8: Two frames of the extracted ground plane. (a) Height profile of white paper. (b) Height profile of small box.

belong to the ground plane or not. Note that an additional
process is required, not described in this paper, which is a
quadtree split-merge region segmentation algorithm which
extracts homogenous regions of color-texture. Textureless re-
gions cannot be classified as ground plane or nonground
plane as they cannot be matched across an image pair. Their
boundaries, however, can be and, in the case of pure transla-
tion, this is easily done by casting rays from the FOE recov-
ered in the homography estimation process.

Figure 6a shows an image with two regions on the floor
which have little texture. The first is a circular piece of white
paper which can be driven over, and the second is a small
cardboard box, which can not. Figure 6b shows the extracted
boundaries and the FOE used to cast a ray in order to match
intersections between corresponding boundaries. The cross-
ratio construct to measure affine height is applied to the cor-
respondences, thus allowing a height profile to be extracted
as we “walk around” the closed contours associated with the
two low-texture regions. If the height profile remains close
to zero, then the region can be classified as belonging to the
ground plane, as in Figure 7a. Otherwise it is classified as an
obstacle, as in Figure 7b. The final image in Figure 8, shows
two frames of the extracted ground region where the textured
carpet has been classified on a pixel-by-pixel basis, and the
textureless white paper region has been included by virtue
of the height profile of its boundary. Obviously, this could
have been done by determining whether the contour motions
in reciprocal-polar space lay close to the extracted sinusoid
defining the homography, but this does not give any quan-
titative information about height which may be necessary if
we wanted to allow the robot to drive over obstacles of small
height compared to the robot wheel diameter.

5. CONCLUSIONS

We have described a method which allows a mobile robot’s
ground plane to be segmented and an affine height land-
scape constructed by probing the environment with trans-
lation manoeuvres. A key point is that all ground plane pix-
els which have some local variation in intensity/color can be

used to contribute to the ground plane homography compu-
tation and also, we can classify the (transformed) image to
be ground plane or nonground plane at pixel level. The al-
gorithm uses 1D correlations and the robust LS fitting of si-
nusoids to the resulting shift data to simultaneously recover
the ground plane homography and classify pixels. Results
have confirmed the validity of both the sinusoid model ex-
traction and affine height measurement procedure. The ap-
proach may be used for a range of feature types including
corners, edges, region boundaries, and even raw pixels if they
have some local color-intensity variation.
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