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Video surveillance in outdoor areas is hampered by consistent background motion which defeats systems that use motion to
identify intruders. While algorithms exist for masking out regions with motion, a better approach is to develop a statistical model
of the typical dynamic video appearance. This allows the detection of potential intruders even in front of trees and grass waving in
the wind, waves across a lake, or cars moving past. In this paper we present a general framework for the identification of anomalies
in video, and a comparison of statistical models that characterize the local video dynamics at each pixel neighborhood. A real-time
implementation of these algorithms runs on an 800MHz laptop, and we present qualitative results in many application domains.

Keywords and phrases: anomaly detection, dynamic backgrounds, spatio-temporal image processing, background subtraction,
real-time application.

1. INTRODUCTION

Computer vision has had the most success in well-
constrained environments. Well constrained environments
allow the use of significant prior expectations, explicit or
controlled background models, easily detectable features,
and effective closed-world assumptions. In many surveil-
lance applications, the environment cannot be explicitly con-
trolled and may contain significant and irregular motion.
However irregular, the natural appearance of a scene as
viewed by a static video camera is often highly constrained.
Developing representations of these constraints—models of
the typical (dynamic) appearance of the scene—will allow
significant benefits to many vision algorithms. These models
capture the dynamics of video captured from a static cam-
era of scenes such as trees waving in the wind, traffic patterns
in an intersection, and waves over water. This paper devel-
ops a framework for statistical models to represent dynamic
scenes.

The approach is based upon spatio-temporal image anal-
ysis. This approach explicitly avoids finding or tracking im-
age features. Instead, the video is considered to be a 3D func-
tion giving the image intensity as it varies in space (across
the image) and time. The fundamental atoms of the image
processing are the value of this function and the response to
spatio temporal filters (such as derivative filters), measured
at each pixel in each frame. Unlike interest points or features,
these measurements are defined at every pixel in the video se-
quence. Appropriately designed filters may give robust mea-
surements to form a basis for further processing. Optimality

criteria and algorithms for creating derivative and blurring
filters of a particular size and orientation lead to significantly
better results than estimating derivatives by applying Sobel
filters to raw images [1]. For these reasons, spatio-temporal
image processing is an ideal first step for streaming video
processing applications.

Calculating (one or more) filter responses centered at
each pixel in a video sequence gives a representation of the
appearance of the video. If these filters have a temporal com-
ponent (such as a temporal derivative filter), then the joint
distribution of the filter responses can model dynamic fea-
tures of the local appearance of the video. Maintaining the
joint distribution of the filter responses gives a statistical
model for the appearance of the video scene. When the same
filters are applied to new video data, a score is computed that
indicates how well they fit the statistical appearance model.
This is our approach to finding anomalous behavior in a
scene with significant background motion.

Four facts make this approach possible. First, appropri-
ate representations of the statistics of the video sequence can
give quite specific characterizations of the background scene.
This allows the theoretical ability to detect a very large class
of anomalous behavior. Second, these statistical models can
be evaluated in real time on nonspecialized computing hard-
ware to make an effective anomaly detection system. Third,
effective representations of very complicated scenes can be
maintained with minimal memory requirements—linear in
the size of the image, but independent of the length of the
video used to define the background model. Fourth, for an
arbitrary video stream, the representation can be generated
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and updated in real time, allowing the model the freedom (if
desired) to adapt to slowly varying background conditions.

1.1. Streaming video

The emphasis in this paper is on streaming-video algo-
rithms—autonomous algorithms that run continuously for
very long time periods that are real time and robust.
Streaming-video algorithms have specific properties and
constraints that help characterize their performance, includ-
ing (a) the maximum memory required to store the inter-
nal state, (b) per-frame computation time that is bounded
by the frame-rate, and, commonly (c) an output structure
that is also streaming, although it may be either a stream of
images or symbols describing specific features of the image.
These constraints make the direct comparison of streaming
algorithms to offline image analysis algorithms difficult.

1.2. Roadmap to paper

Section 2 gives a very brief overview of other representa-
tive algorithms. Section 4 presents our general statistical ap-
proach to spatio-temporal anomaly detection, and Section 5
gives the specific implementation details for the filter sets and
nonparametric probability density representations that have
been implemented in our real-time system. Qualitative re-
sults of this real-time algorithm are presented for a number
of different application domains, and quantitative results in
terms of ROC plots for the domain of traffic pattern analysis.

2. PRIORWORK

The framework of many surveillance systems is shown in
Figure 1. This work is concerned with the development and
analysis of the background model. Each background model
defines an error measure that indicates if a pixel is likely to
come from the background. The analysis of new video data
consists of calculating this error for each pixel in each frame.
This measure of error is either thresholded to mark objects
that do not fit the background model, enhanced with spatial
or temporal integration, or used in higher-level tracking al-
gorithms. An excellent overview and integration of different
methods for background subtraction can be found in [2].

Surveillance systems generate a model of the background
and subsequently determine which parts of (each frame of)
new video sequences fit that model. The form of the back-
groundmodel influences the complexity of this problem, and
can be based upon (a) the expected color of a pixel [3, 4]
(e.g., the use of blue screens in the entertainment industry),
or (b) consistent motions, where the image is static [5] or
undergoing a global transformation which can be affine [6]
or planar projective [7]. Several approaches exploit spatio-
temporal intensity variation for more specific tasks than gen-
eral anomaly detection [8, 9]. For the specific case of gait
recognition, searching for periodicity in the spatio-temporal
intensity signal has been used to search for people by detect-
ing gait patterns [10].

This paper most explicitly considers the problem of de-
veloping backgroundmodels for scenes with consistent back-
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Figure 1: The generic framework of the front end of visual surveil-
lance systems. This work focuses on exploring different local back-
ground models.

ground motion. A very recent paper [11] considers the same
question but builds a different kind of background model.
These background models are global models of image varia-
tion based on dynamic textures [12]. Dynamic textures rep-
resent each image of a video as a linear combination of basis
images. The parameters for each image define a point in a pa-
rameter space, and an autoregressive moving average is used
to predict parameters (and therefore the appearance) of sub-
sequent frames. Pixels which are dissimilar from the predic-
tion are marked as independent and tracked with a Kalman
filter. Our paper proposes a starkly different background
model that models the spatio-temporal variance locally at
each pixel. For dynamic scenes, such as several trees wav-
ing independently in the wind, water waves moving across
the field of view, or complicated traffic patterns, there is no
small set of basis images that accurately captures the de-
grees of freedom in the scene. For these scenes, a background
model based on global dynamic textures will either provide a
weak classification system or require many basis images (and
therefore a large state space).

Finally, qualitative analyses of local image changes have
been carried out using oriented energy measurements [13].
Here we look at the quantitative predictions that are possible
with similar representations of image variation. This paper
does not develop or present a complete surveillance system.
Rather, it explores the statistical and empirical efficacy of a
collection of different background models. Each background
model produces a score for each pixel that indicates the likeli-
hood that the pixel comes from the background. Classical al-
gorithms that use the difference between a current pixel and a
background image pixel as a first step can simply incorporate
this new background model and become robust to consistent
motions in the scene.

3. A REPRESENTATION OF DYNAMIC VIDEO

In this section we present a very generic approach to anomaly
detection in the context of streaming video analysis. The con-
crete goal of this approach has two components. First, for
an input video stream, develop a statistical model of the
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appearance of that stream. Second, for new data from the
same stream, define a likelihood (or, if possible, a probabil-
ity) that each pixel arises from the appearance model. We as-
sume that the model is trying to represent the “background”
motion of the scene, so we call the appearance model a back-
ground model.

In order to introduce this approach, we start with several
definitions which make the presentation more concrete. The
input video is considered to be a function I , whose value is
defined for different pixel locations (x, y), and different times
t. The pixel intensity value at pixel (x, y) during frame t will
be denoted by I(x, y, t). This function is a discrete function,
and all image processing is done and described here in a dis-
crete framework. However, the justification for using discrete
approximations to derivative filters is based on the view of I
as a continuous function.

A general form of initial video processing is computing
the responses of filters at all locations in the video. The filters
we use are defined as an n×n×m array, and F(i, j, k) denotes
the value of the (i, j, k) location in the array. For simplicity,
we assume that n is odd. The response to a filter F will be
denoted by IF , and the pixel location x, y, t of IF is defined to
be

IF(x, y, t)

=
∑

i=1,...,n

∑
j=1,...,n

∑
k=1,...,m

I
(
x + i− n− 1

2
, y

+ j − n− 1
2

, t − k + 1
)
F(i, j, k).

(1)

This filter response is centered around the pixel (x, y), but
has the time component equal to the latest image used in
computing the filter response. Defining a number of spatio-
temporal filters and computing the filter response at each
pixel in the image captures properties of the image variation
at each pixel. Which properties are captured depends upon
which filters are used—the next section picks a small num-
ber of filters and justifies why they are most appropriate for
some surveillance applications. However, a general approach
to detecting anomalies at a specific pixel location (x, y) may
proceed as follows:

(i) define a set of spatio-temporal filters {F1,F2, . . . ,Fs};
(ii) during training, capture the vector of measure-

ments �mt at each frame t as 〈F1(x, y, t), F2(x,
y, t), . . . ,Fs(x, y, t)〉. The first several frames will have
invalid data until there are enough frames so that the
spatio-temporal filter with greatest temporal extent
can be computed. Similarly, we ignore edge effects for
pixels that are close enough to the boundary so that
the filters cannot be accurately computed;

(iii) individually for each pixel, consider the set ofmeasure-
ments for all frames in the training data {�m1, �m2, . . .}
to be samples from some probability distribution. De-
fine a probability density function P on the measure-
ment vector so that P(�m) gives the probability that
measurement �m comes from the background model.

We make this abstract model more concrete in the fol-
lowing section; however, this model encodes several explicit
design choices. First, all the temporal variation in the system
is captured explicitly in the spatio-temporal filters that are
chosen. It is assumed that the variation in the background
scene is independent of the time, although in practice the
probability density function can be updated to account for
slow changes to the background distribution. Second, the
model is defined completely independently for each pixel and
therefore may give very accurate delineations of where be-
havior is independent. Third, it outputs probabilities or like-
lihoods that a pixel is independent, exactly like prior back-
ground subtraction methods, and so can be directly incor-
porated into existing systems.

4. MODELS OF BACKGROUNDMOTION

For simplicity of notation, we drop the (x, y) indices, but we
emphasize that background model presented in the follow-
ing section is independently defined for each pixel location.
The filters chosen in this case are spatio-temporal deriva-
tive filters. The images are first blurred with a 5-tap discrete
Gaussian filter with standard deviation 1.5. Then we use the
optimal 7-tap directional derivative filters as defined in [1]
to compute the spatial derivatives Ix, Iy , and frame-to-frame
differencing of consecutive (blurred) images to compute the
temporal derivative It. Thus every pixel in every frame has
an image measurement vector of the form 〈I , Ix, Iy , It〉, the
blurred image intensity, and the three derivative estimates,
computed by applying the directional derivative filters to this
blurred image.

This filter set is chosen to be likely to contain much of the
image variation because it is the zeroth- and first-order ex-
pansion of the image intensity around each pixel. Also, one
mode of common image variation is consistent velocity mo-
tion at a given pixel. In this case, regardless of the texture
of an object moving in a particular direction, the 〈Ix, Iy , It〉
components lie on a plane in the spatio-temporal derivative
space (which plane they lie on is dependent upon the ve-
locity). Representing this joint distribution accurately means
that any measured spatio-temporal derivative that is signifi-
cantly off this plane can be marked as independent. That is,
we can capture, represent, and classify a motion vector at a
particular pixel without ever explicitly computing optic flow.
Using this filter set, the following section defines a number
of different methods for representing and updating the mea-
surement vector distribution.

Each local model of image variation is defined with four
parts: first, the measurement—which part of the local spatio-
temporal image derivatives the model uses as input; second,
the score function which reports how well a particular mea-
surement fits the background model; third, the estimation
procedure that fits parameters of the score function to a set
of data that is known to come from the background; fourth,
if applicable, an online method for estimating the param-
eters of the background model, so that the parameters can
be updated for each new frame of data within the context of
streaming video applications.
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4.1. Known intensity

The simplest background model is a known background.
This occurs often in the entertainment or broadcast televi-
sion industry in which the environment can be engineered to
simplify background subtraction algorithms. This includes
the use of “blue screens,” backdrops with a constant color
which are designed to be easy to segment.

Measurement

Themeasurement �m is the color of a given pixel. For the gray-
scale intensity, the measurement consists just of the intensity
value: �m = I . For color images, the value ofm is the vector of
the color components 〈r, g, b〉, or the vector describing the
color in the HSV or another color space.

Score

Assuming Gaussian zero-mean noise with variance σ2 in
the measurement of the image intensity, the negative log-
likelihood that a given measurement �m arises from the back-
ground model is f (�m) = (�m − �mbackground)2/σ2. The score
function formany of the subsequentmodels has a probabilis-
tic interpretation, given the assumption of Gaussian noise
corrupting the measurements. However, since the assump-
tion of Gaussian noise is often inaccurate and since the score
function is often simply thresholded to yield a classification,
we do not emphasize this interpretation.

Estimation

The background model �mbackground is assumed to be known a
priori.

4.2. Constant intensity

A common background model for surveillance applications
is that the background intensity is constant, but initially un-
known.

Measurement

The gray-level intensity (or color) of a pixel in the current
frame is the measurement �m = I or �m = 〈r, g, b〉.

Score

The independence score for this model is calculated as the
Euclidean distance of the measurements from the mean
f (�m) = ||�m− �mµ||22.

Parameter estimation

The only parameter is the estimate of the background inten-
sity.mµ is estimated as the average of themeasurements taken
of the background.

Online parameter estimation

An online estimation process maintains a count n of the
number of background frames and the current estimate of
mµ. This estimate can be updated: �mµnew = ((n− 1)/n)�mµ +
(1/n)�m.

4.3. Constant intensity and variance

If the background is not actually constant, then modeling
both the mean intensity at a pixel and its variance gives an
adaptive tolerance for some variation in the background.

Measurement

The gray-level intensity (or color) of a pixel in the current
frame is the measurement �m = I or �m = 〈r, g, b〉.

Model parameters

The model parameters consist of the mean measurement �mµ

and the variance σ2.

Score

Assuming Gaussian zero-mean noise with variance σ in
the measurement of the image intensity, the negative log-
likelihood that a given measurement �m arises from the back-
ground model is f (�m) = ||�m− �mµ||22/σ2.

Parameter estimation

For the given set of background samples, the mean intensity
�mµ and the variance σ2 are computed as the average and vari-
ance of the background measurements.

Online parameter estimation

The online parameter estimation for each of the models can
be expressed in terms of a Kalman filter. However, since we
have the same confidence in each measurement of the back-
ground data, it is straightforward and instructive to write out
the update rules more explicitly. In this case, we maintain a
count n, the current number of measurements. The mean �mµ

is updated so that �mµnew = (1/(n + 1))�m + (n/(n + 1))�mµ. If
each measurement is assumed to have variance 1, the vari-
ance σ2 is updated as follows: σ2new = (1/σ2 + 1)−1.

4.4. Gaussian distribution in 〈I , Ix, Iy , It〉-space
The remainder of themodels use the intensity and the spatio-
temporal derivatives of intensity in order to make a more
specificmodel of the background. The first model of this type
uses a Gaussian model of the distribution of measurements
in this space.

Measurement

The 4-vector consisting of the intensity and the x, y, t deriva-
tives of the intensity is �m = 〈I , Ix, Iy , It〉.

Model parameters

The model parameters consist of the mean measurement �mµ

and the covariance matrix Σ.

Score

The score for a given measurement �m is

f
(
�m
) = (�m− �mµ

)T
Σ−1

(
�m− �mµ

)
. (2)
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Estimation
For a set of backgroundmeasurementsm1, . . . ,mk, themodel
parameters can be calculated as

�mµ =
∑

i=1,...,k mi

k
,

Σ =
∑

i=1,...,k
(
mi − �mµ

)(
mi − �mµ

)T
k − 1

.

(3)

Online estimation

Themean value �mµ can be updated bymaintaining a count of
the number of measurements so far as in the previous model.
The covariance matrix can be updated incrementally:

Σnew = n

n + 1
Σ +

n

(n + 1)2
(
�m− �mµ

)(
�m− �mµ

)T
. (4)

4.5. Multiple Gaussian distribution
in 〈I , Ix, Iy , It〉-space

Using several multidimensional Gaussian distributions al-
lows a greater freedom to represent the distribution of mea-
surements occurring in the background. An EM algorithm is
used to fit several (the results in Section 5 use three) multi-
dimensional Gaussian distributions to the measurements at
a particular pixel location [14, 15].

Model parameters

The model parameters are the mean value and covariance for
a collection of Gaussian distributions.

Score

The score for a givenmeasurement �m is the distance from the
closest of the distributions:

f
(
�m
) = min

i

(
�m− �mµi

)T
Σ−1i

(
�m− �mµi

)
. (5)

Online estimation

We include this model because its performance was often
the best among the algorithms considered. To our knowl-
edge, however, there is no natural method for an incremental
EM solution which fits the streaming video processing model
and does not require maintaining a history of all prior data
points.

4.6. Constant optic flow

A particular distribution of spatio-temporal image deriva-
tives arises at points which view arbitrary textures which al-
ways follow a constant optic flow. In this case, the image
derivatives should fit the optic-flow constraint equation [16]
Ixu + Iyv + It = 0, for an optic-flow vector (u, v) which re-
mains constant through time.

Measurement

The 3-vector consisting of the x, y, t derivatives of the inten-
sity is �m = 〈Ix, Iy , It〉.

Model parameters
The model parameters are the components of the optic-flow
vector u, v.

Score

Any measurement arising from an object in the scene which
satisfies the image brightness constancy equation and is mov-
ing with a velocity u, v will satisfy the optic-flow constraint
equation: Ixu + Iyv + It = 0. The score for a given mea-
surement �m is the squared deviation from this constraint:
f (�m) = (Ixu + Iyv + It)2.

Estimation

For a given set of k background samples, the optic flow is de-
termined by the solution to the following linear system (note
that here the optic flow is assumed to be constant over time,
not over space—the linear system uses the values of Ix, Iy , It
for the same pixel in k different frames):

Ix1 Iy1
Ix2 Iy2
...

...
Ixk Iyk


[
u
v

]
= −


It1
It2
...
Itk

 . (6)

The solution to this linear system is the values of (u, v) which
minimize the sum of the squared residual error. The mean
squared residual error is a measure of how well this model
fits the data, and can be calculated as follows:

mean squared residual error =
∑

i=1,...,k
(
Ixiu + Iy i + It i

)2
n

.

(7)

A map of this residual at every pixel is shown for a traffic
intersection scene in Figure 2.

Online estimation

The above linear system can be solved using the pseudo-
inverse. This solution has the following form:

(
u
v

)
= −

( ∑
I2x

∑
IxIy∑

IxIy
∑
I2y

)−1 (∑
IxIt∑
IyIt

)
. (8)

The components of the matrices used to compute the
pseudo-inverse can be maintained and updated with the
measurements from each new frame. The best-fitting flow
field for the “intersection” dataset is plotted in Figure 2.

4.7. Linear prediction based upon time history

The following model does not fit the spatio-temporal im-
age processing paradigm exactly, but is included for the sake
of comparison. The fundamental background model used in
[2] was a one-stepWiener filter. This is linear predictor of the
intensity at a pixel based upon the time history of intensity at
that particular pixel. This can account for periodic variations
of pixel intensity.
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Figure 2: (a) The best-fitting optic-flow field, for a 19 000 frame video of a traffic intersection. (b) The residual error of fitting a single-
optic-flow vector to all image derivative measurements at each pixel. (c) Residual error in fitting a single intensity value to each pixel. (d)
Residual error in fitting a Gaussian distribution to the image derivative measurements. (e) The error function, when using the optic-flow
model, of the intersection scene during the passing of an ambulance following a path not exhibited when creating the background model.
The deviation scores are 3 times greater than the deviations for any car.

Measurement

Themeasurement includes two parts, the intensity at the cur-
rent frame I(t), and the recent time history of intensity values
at a given pixel I(t− 1), I(t− 2), . . . , I(t− p), so the complete
measurement is �m = 〈I(t), I(t − 1), I(t − 2), . . . , I(t − p)〉.

Score

The estimation procedure gives a prediction Î(t) which is cal-
culated as follows:

Î(t) =
∑

i=1→p

aiI(x, y, t − i). (9)
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Then the score is calculated as the failure of this predic-
tion:

f
(
�m
) = (I(t)− Î(t)

)2
. (10)

Estimation

The best-fitting values of the coefficients of the linear esti-
mator (a1, a2, . . . , ap) can be computed as the solution to the
linear system defined as follows:



I(1) I(2) · · · I(p)
I(2) I(3) · · · I(p + 1)
I(3) I(4) · · · I(p + 2)
...

...
...

...
· · · · · · · · · I(n− 1)




a1
a2
...
ap

 =


I(p + 1)
I(p + 2)
I(p + 3)

...
I(n)

 (11)

Online estimation

The pseudo-inverse solution for the above least squares esti-
mation problem has a p× p and a 1× pmatrix with compo-
nents of the form ∑

i

I(i)I(i + k), (12)

for values of k ranging from 0 to (p + 1). These p2 + p com-
ponents are required to compute the least squares solution. It
is only necessary to maintain the pixel values for the prior p
frames to accurately update all these components. More data
must be maintained from frame to frame for this model than
previous models. The amount of data is independent, how-
ever, of the length of the video input, so this fits with a model
of streaming video processing.

5. EXPERIMENTAL RESULTS

We captured video imagery from a variety of natural scenes,
and used the online parameter estimation processes to cre-
ate a model of background motion. Each model produces
a background score at each pixel for each frame. The mean
squared deviation measure, calculated at each pixel, gives a
picture of how well a particular model applies to different
parts of a scene. Figure 2 shows the mean deviation function
at each pixel for different background models.

By choosing a threshold, this background score can be
used to classify that pixel as background or foreground. How-
ever, the best threshold depends upon the specific applica-
tion. One threshold independent characterization of the per-
formance of the classifier is a receiver operator characteristic
(ROC) plot. The ROC plots give an indication of the trade-
offs between false positive and false negative classification er-
rors for a particular pixel.

5.1. Receiver operator characteristic plots

ROC plots describe the performance (the “operating charac-
teristic”) of a classifier which assigns input data into dichoto-
mous classes. An ROC plot is obtained by trying all possi-
ble threshold values, and for each value, plotting the sen-
sitivity value (fraction of true positives correctly identified)

1

0

Se
n
si
ti
vi
ty

0 1

1-specificity

Random performance

A

B

Figure 3: Receiver operator characteristic (ROC) curves describe
the performance characteristics of a classifier for all possible thresh-
olds [17, 19]. A random classifier has an ROC curve which is a
straight line with slope 1. A curve like that labeled A has a threshold
choice which defines a classifier which is both sensitive and specific.
The nonzero y-intercept in the curve labeled B indicates a threshold
exists where the classifier is somewhat sensitive, but gives zero false
positive results.

on the y-axis against the (1-specificity) value (fraction of
false positive identifications) on the x-axis. A classifier which
randomly classifies input data will have an ROC plot which
is a line of slope 1, and the optimal classifier (which never
makes either a false positive or false negative error) is char-
acterized by an ROC curve passing through the top left cor-
ner (0, 1), indicating perfect sensitivity and specificity (see
Figure 3). The plots have been used extensively in evaluation
of computer vision algorithm performance [17]. This study
is a technology evaluation in the sense described in [18], in
that it describes the performance characteristics for different
algorithms in a comparative setting, rather than defining and
testing an end-to-end system.

These plots are defined for five models, each applied
to four different scenes (shown in Figure 4) for the full
length of the available data (300 frames for the tree se-
quences and 19 000 frames for the intersection sequence).
Portions of the video clip with no unusual activity were se-
lected by hand and background models were created from
all measurements taken at that pixel, using the methods de-
scribed in Section 4. Creating distributions for anomalous
measurements was more difficult, because there was insuf-
ficient anomalous behavior at each pixel to be statistically
meaningful and we lacked an analytic model of a plausible
distribution of the anomalous measurements of image inten-
sity and derivatives. Lacking an accepted model of the distri-
bution of anomalous 〈I , Ix, Iy , It〉 measurements in natural
scenes, we choose to generate anomalous measurements at
one pixel by sampling randomly from background measure-
ments at all other locations (in space and time) in every video
tested.
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I SG MG OF ARFit Sample

Figure 4: Each ROC plot represents the trade-offs between the sensitivity of the classifier on the (y-axis), and 1-specificity on the x-axis. The
model is defined at one pixel (x, y position marked by dots on each image), and plots are shown for a model based upon (I) intensity, (SG)
Gaussian distribution in (I , Ix, Iy , It)-space, (MG) multiple Gaussian, (OF) optic flow, and (ARfit) linear prediction based upon intensity in
prior frames. The comparison between the first and second rows shows that all models perform better on parts of the intersection with a
single direction of motion rather than a point that views multiple motions, except the auto-regressive model (from [2]), for which we have
no compelling explanation for its excellent performance. The third and fourth rows compare the algorithms viewing a tree branch, the top
is a branch moving slowly in the wind, the bottom (a dataset from [2]), is being shaken vigorously. For the third row, the multiple-Gaussian
model is the basis for a highly effective classifier, while the high speed and small features of the data set on the fourth rowmake the estimation
of image derivatives ineffective, so all the models perform poorly.

The ROC plots are created by using a range of different
threshold values. For each model, the threshold value defines
a classifier, and the sensitivity and specificity of this classifier
are determined using measurements drawn from our distri-
bution. The plot shows, for each threshold, 1-specificity ver-
sus sensitivity. Each scene illustrated in Figure 4merits a brief
explanation of why the ROC plot for each model takes the
given form.

(i) The first scene is a traffic intersection, and we con-
sider the model for a pixel in the intersection that sees
two directions of motion. The intensity model and the
single Gaussian effectively compare new data to the
color of the pavement. The multiple-Gaussian model
has very poor performance (below chance for some

thresholds). There is no single-optic-flow vector which
characterizes the background motions.

(ii) The second scene is the same intersection, but we con-
sider a pixel location which views objects with a con-
sistent motion direction. Both the multiple-Gaussian
and the multiple-optic-flow models have sufficient ex-
pressive power to capture the constraint that the mo-
tion at this point is consistently in one direction with
different speeds.

(iii) The third scene is a tree with leaves waving naturally in
the wind. The model which uses EM to fit a collection
of Gaussians to this data is clearly the best, because it
is able to specify correlations between the image gradi-
ent and the image intensity (it can capture the specific
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Figure 5: Every tenth frame of a video of ducks swimming over a lake with waves and reeds moving in the wind. Marked in red are pixels
for which the likelihood that spatio-temporal filter responses arose from the background model fell below a threshold. These responses are
from a single set of spatio-temporal filter measurements, that is, no temporal continuity was used to suppress noise. The complete video is
available at http://www.cse.wustl.edu/∼pless/ind.html.

changes of a leaf edge moving left, a leaf edge moving
right, the static leaf color, and the sky). The motions
do not corresponds to a small set of optic-flow vectors,
and are not effectively predicted by recent time history.

(iv) The final test is the tree scene from [2], a tree which
was vigorously shaken from just outside the field of
view. The frame-to-frame motion of the tree is large
enough that it is not possible to estimate accurate
derivatives, making spatio-temporal processing inap-
propriate.

5.2. Real-time implementation

Except for the linear prediction based upon time history,
each of the above models has been implemented on a fully

real-time system. This system runs on an 800MHz Sony Vaio
laptop with a Sony-VL500 firewire camera. The system is
based on Microsoft Direct X and therefore has a great deal
of flexibility in camera types and input data sources. With
the exception described below, the system runs at 640-by-
480 resolution at 30 fps, for all models described in the last
section. The computational load is dominated by the image
smoothing and the calculation of image derivatives.

Figure 5 shows the results of running this real-time sys-
tem on a video of a lake with moving water and reeds moving
in the wind. Every tenth frame of the video is shown, and in-
dependent pixels are marked in red. The model uses a single
Gaussian to represent the distribution of the measurement
vectors at each pixel, and updates the models to overweight

http://www.cse.wustl.edu/~pless/ind.html
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the newest data, effectively making the background model
dependent primarily on the previous 5 seconds. The fifth,
sixth, and seventh frames shown here indicate the effect of
this. The duck in the top left corner remained stationary for
the first half of the sequence. When the duck moves, the wa-
ter motion pattern is not initially represented in the back-
ground model, but by the eighth frame, the continuous up-
dates of the background model distribution have incorpo-
rated the appearance of the water motion.

Themultiple-Gaussianmodel most often performed best
in the quantitative studies. However, iterative expectation
maximization algorithm requires maintaining all the train-
ing data, and is therefore not feasible in a streaming video
context. Implementing the adaptive mixture models exactly
as in [20] (although their approach was modeling a distri-
bution of a different type of measurements) is a feasible ap-
proach to creating a real-time system with similar perfor-
mance.

The complete set of parameters required to implement
any of the models defined in Section 4 are the choice of the
model, image blurring filter, exponential forgetting factor
(over-weighting the newest data, as discussed above), and a
threshold to interpret the score as a classifier. The optimal
image blurring factor and the exponential forgetting factor
depend on the speed of typical motion in the scene, and the
period over which motion patterns tend to repeat—for ex-
ample, in a video of a traffic intersection, if the forgetting fac-
tor is too large, then every time the light changes, the motion
will appear anomalous. The choice of model can be driven
by the same protocol used in the experimental studies, as the
only human input is the designation of periods of only back-
ground motion. However, to be most effective, the choice of
foreground distribution should reflect any additional prior
knowledge about the distribution of image derivatives for
anomalous objects that may be in the scene.

6. CONCLUSION

The main contributions of this paper are the presentation of
the image derivative models of Sections 4.4 and 4.5, which
are, to the authors knowledge, the first use of the distribution
of spatio-temporal derivative measurements as a background
model, as well as the optic-flow model of Section 4.6, which
introduces new techniques for online estimate of the optic
flow at a pixel that best fits image derivative data collected
over long time periods. Additionally, we have presented a
framework which allows the empirical comparison of differ-
ent models of dynamic backgrounds.

This work focuses on the goal of expanding the set of
background motions that can be subtracted from video im-
agery. Automatically ignoring common motions in natural
outdoor and pedestrian or vehicular traffic scenes would im-
prove many surveillance and tracking applications. It is pos-
sible to model much of these complicated motion patterns
with a representation which is local in both space and time
and efficient to compute, and the ROC plot gives evidence
for which type of model may be best for particular applica-

tions. The success of the multiple-Gaussian model argues for
further research in incremental EM algorithms which fit in a
streaming video processing model.
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