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Joint source-channel coding has been introduced recently as an element of QoS support for IP-based wired and wireless multime-
dia. Indeed, QoS provisioning in a global mobility context with highly varying channel characteristics is all the most challenging
and requires a loosening of the layer and source-channel separation principle. Overcomplete frame expansions have been intro-
duced as joint source-channel codes for erasure channels, that is, to allow for a signal representation that would be resilient to
erasures in wired and wireless channels. In this paper, we characterize a class of frames for error correction besides erasure recov-
ery in such channels. We associate the frames with complex number codes and characterize them based on the BCH-like property
of the parity check matrices of the associated codes. We show that, in addition to the BCH-type decoding, subspace-based al-
gorithms can also be used to localize errors over such frame expansion coefficients. When the frame expansion coefficients are
quantized, we modify these algorithms suitably and compare their performances in terms of the accuracy of error localization and
the signal-to-noise ratio of the reconstructed signal. In particular, we compare the frames associated with lowpass DFT, DCT, and
DST codes, which belong to the defined class, in terms of their error correction efficiency.
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1. INTRODUCTION

The development of “Beyond 3G” (B3G) or “4G” networks
and applications with all-IP-based seamless and ubiqui-
tous service provisioning across heterogeneous infrastruc-
tures presents a number of technological challenges. Provid-
ing IP-based audio and video communications at the same,
or at least comparable, “carrier class” and bandwidth effi-
ciency as the corresponding circuit-switched subsystems of
3G and 2G remains an issue to be solved. There is a growing
awareness and understanding that efficient QoS provision-
ing in a global mobility context with highly varying chan-
nel characteristics (bandwidth, throughput, error rates, fad-
ing, and erasure characteristics, etc.) requires a loosening and
a rethinking of the end-to-end and layer separation princi-
ple. In particular, it is becoming a common understanding
that vertical cross-layer cooperation may be beneficial be-
cause of both of the error and erasure resilience capabilities of
emerging coding technology and of the idiosyncrasies of the
wireless links. Both the link layer including the radio bearer

system and the higher layers will indeed benefit from QoS-
related information exchange.

The robust header compression (ROHC) framework [1],
and the new UDP-Lite protocol—possibly delivering erro-
neous packets to the application layer [2]—are strong steps
towards a loosening and a rethinking of the end-to-end and
the layer separation principle. Situated between link and IP
layers, the ROHC [1] framework addresses the problems of
spectrum and bandwidth scarcity and of packet header cor-
ruption due to bit errors characterizing wireless links. The
fact that, for some applications, erroneous packet payloads
can be valuable and better to cope with than the lost ones, has
inspired the introduction of the UDP-lite transport protocol
[2]. Assuming ROHC, UDP-lite, and an appropriate inter- or
cross-layer signaling mechanism in action, this paper consid-
ers a joint source-channel coding scheme in the application
layer which is based on the use of a certain class of frames.

Overcomplete frame expansions have been introduced
recently as a signal representation that would be resilient to
erasures in wireless channels [3, 4]. Frames are sets of vectors
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in a Hilbert space which span the space but may contain
larger number of vectors than a basis. The redundancy in-
herent in a frame makes the expansion resilient to additive
and quantization noise and imparts stability to reconstruc-
tion. Overcomplete frame expansions for providing robust-
ness to erasures in communication networks can be regarded
as joint source-channel codes.

In this paper, we characterize a class of discrete frames
which can be used for error correction besides erasure re-
covery. We associate the frames with complex number codes
[5] and characterize them based on the structure of the par-
ity check matrices of the associated codes. The structure of
the codes is a generalization of that of the BCH-DFT codes
[6, 7, 8]. We show that there are also other codes such as
the discrete cosine transform (DCT) [9] and the discrete sine
transform (DST) codes which have the same structure. Un-
like DFT codes, DCT and DST codes are neither cyclic nor
BCH. However, we show that a BCH-like decoding algo-
rithm can be applied to localize and decode errors in such
codes. We stress on the frame-theoretic formulation rather
than the coding-theoretic approach because the codevectors
need to be quantized before being transmitted. Introduction
of quantization leads to errors beyond the error correcting
capability of the codes and thus makes the underlining the-
ory inefficient. In this context, the frame theory comes in
hand since it can analyze the reconstruction errors and study
the usefulness of the particular frame.

The second contribution of the paper is the introduction
of subspace algorithms for localizing errors in the frame ex-
pansion coefficients. Subspacemethods are popular in the di-
rection of arrival (DOA) estimation [10, 11] and they can be
applied to localize errors in DFT codes [12]. Here the sub-
space methods are extended to the generalized codes case.
In the case of DFT codes, the locations of errors correspond
to discrete frequencies and, therefore, the adaptation of sub-
space algorithms [12] seem straightforward. However, for the
generalized codes defined here, the locations of errors may
not correspond to any frequency, and hence the application
of subspace methods is not so obvious. The motivation for
introducing subspace methods is to increase the localization
accuracy of errors when the coefficients are quantized. We
compare the performances of the proposed subspace algo-
rithm and the BCH decoding with lowpass DFT, DCT, and
DST frames when they are used for transmitting a Gauss-
Markov source and images.

2. FINITE FRAMES REVISITED

Consider the K-dimensional Euclidean complex space, that
is,CK . A set of K-dimensional vectorsΦG ≡ {ϕk}Nk=1 is called
a frame if there exist B1 > 0 and B2 <∞ such that

B1‖x‖2 ≤
N∑
k=1

∣∣〈x,ϕk
〉∣∣2 ≤ B2‖x‖2, ∀x ∈ CK , (1)

where 〈x,ϕk〉 denotes the inner product of x and ϕk, and ‖x‖
denotes the Euclidean norm of x [4]. B1 and B2 are called the
frame bounds. The inner product 〈x,ϕk〉 gives the kth frame

expansion coefficient of x. Any finite set of vectors that spans
CK is a frame. Therefore a frame will always have N ≥ K .
The ratio N/K is normally referred to as the redundancy of
the frame. The frame ΦG is associated with a frame operator
G which is defined as follows:

(Gx)k ≡
〈
x,ϕk

〉
, for k = 1, 2, . . . ,N. (2)

Thus the frame expansion coefficients of x are given byGx. A
frame is called tight if its bounds are equal, that is, B1 = B2.
Hence ΦG is tight if and only if GhG = BIK , where B =
B1 = B2. This implies that the columns of G are orthogo-
nal. A frame is called normalized or uniform if each frame
vector has length equal to 1 [4]. Associated with the frame
ΦG, there exists a dual frame whose frame operator is given
as G̃ = G(GhG)−1. Given the frame expansion coefficients of
any vector x, the vector can be reconstructed using the dual
frame operator as x̂ = G̃h(Gx). The conjugate transpose of
the dual frame operator is the pseudoinverse of the frame op-
erator, and it minimizes the reconstruction error [4]. For de-
tails about frame theory and signal representation with over-
complete sets, the reader is referred to [13].

3. ERROR CORRECTING FRAMES

Frames provide redundant representations of signals. The re-
dundancy of the representation can be utilized for various
purposes such as providing stable reconstructions, enhanc-
ing the quality of the reconstructions, and providing robust-
ness against additive noises. Recently frames have been pro-
posed for use in communication channels for providing ro-
bustness to erasures [3, 4]. Even if some of the frame expan-
sion coefficients are lost during the transmission, the mes-
sage signal can still be reconstructed from the received co-
efficients. In addition, the quality of the reconstruction im-
proves as the number of lost coefficients decreases. This is
contrary to the case with classical critical representation of
a signal when the loss of a coefficient cannot be recovered
without the help of error control coding.

The frames used for providing robustness to erasures
must possess certain desired properties. For example, with
a frame expansion in CK , in order to reconstruct the message
with anyK received coefficients, the set of frame vectors asso-
ciated with the received coefficients must also be a frame [4].
Further, in order to minimize the reconstruction error due to
quantization of the coefficients, this frame must be tight [4].
Not all frames do possess these properties. In the following
we characterize a class of frames which cannot only recover
erased coefficients but also correct additive errors in frame
coefficients.

Consider the frame ΦG. It is associated with an (N ,K)
complex block code whose generator matrix is the frame op-
erator G. Since the frame vectors span CK , the columns of G
are linearly independent and they define a subspace which is
the codespace associated with the frame ΦG. A parity check
matrix of the code, denoted by H , can be obtained from the
singular value decomposition (SVD) of G. Let the SVD of G
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be given as

G = V1ΣV
h
2 , (3)

where V1 is an N × N unitary matrix, V2 is a K × K uni-
tary matrix, and Σ is an N × K matrix having N − K null
row vectors. H can be obtained by taking those columns of
V1 which have the same indices as those of the null row vec-
tors of Σ. Since V1 is unitary, the columns of H are linearly
independent and HhG = 0(N−K)×K .

Notice that, in the frame-theoretic formulation, the rows
of the matrix G are the basic elements; they form a span-
ning set for a K-dimensional space. This is in contrast with
the coding-theoretic formulation where the columns of the
matrix G are the basic elements; they form a basis for a
K-dimensional subspace of an N-dimensional space. For a
given message vector, the vector of frame expansion coeffi-
cients and the codevector are one and the same.

The number of complex errors that this frame can detect
and correct depends on the minimum distance of the associ-
ated code. The Hamming distance between two codewords is
defined as the number of positions or indices in which they
differ from each other [5]. In the following, we characterize a
class of codes which are BCH-like: their parity checkmatrices
have similar properties as those of BCH codes so that a BCH
decoding algorithm can be applied to correct errors. This will
equivalently characterize a class of frames which are associ-
ated with those codes.We consider the “errors only” case here
since the extension to errors with erasures is straightforward.

3.1. BCH-like complex codes

For notational convenience, we set d = N − K , where d
is a positive integer. Let there be d complex polynomials
p1(x), p2(x), . . . , pd(x) of order d−1 each, where the ith poly-
nomial is defined as

pi(x) = ai1 + ai2x + · · · + aidx
d−1. (4)

Let the polynomials be such that the coefficient matrix A,
which is given as

A ≡


a11 a12 · · · a1d
a21 a22 · · · a2d
...

...
...

...
ad1 ad2 · · · add

 , (5)

is nonsingular. Let f be a one-to-one nonzero complex func-
tion defined on the index set {0, 1, . . . ,N − 1}. Let the ele-
ments of Hh be specified as hi j = uj pi( f ( j − 1)), 1 ≤ i ≤ d,
1 ≤ j ≤ N , where u1, . . . ,uN are nonzero scalars. ThenH is a
parity checkmatrix of a maximum distance separable (MDS)
complex code. Such a code can correct up to 
d/2� errors and
can recover up to d erasures.

To prove the above assertion, we see that the conjugate
transpose of the parity check matrix can be expressed as

Hh = AXU , (6)

where X is d × N with ith column equal to [1, f (i −
1), . . . , f d−1(i − 1)]t and U is a diagonal matrix with the
ith diagonal entry equal to ui. Since f is one-to-one and
nonzero, any k, k ≤ d, columns of X are linearly indepen-
dent. As a result, any k, k ≤ d, columns of H are also linearly
independent. Therefore the minimum distance of the code is
d + 1 and the code is MDS [5].

3.2. Examples

3.2.1. DFT codes

An (N ,K) DFT code is a linear block code whose generator
matrix consists of any K columns from the inverse DFT ma-
trix of orderN [6]. A parity check matrix of the code consists
of the remaining N − K columns of the inverse DFT matrix.
Since the DFT matrix is unitary, the frames associated with
DFT codes are tight. If the parity frequencies are spaced by α,
where α is relatively prime to N , then the DFT code is a BCH
code in the complex field [6]. Let the parity frequencies be
denoted by 0,α, . . . , (d − 1)α. Then the conjugate transpose
of the parity check matrix is given as

Hh
f =


1 1 · · · 1
1 wα · · · w(N−1)α
...

...
...

...

1 w(d−1)α · · · w(d−1)(N−1)α

 , (7)

where w = e− j2π/N . It is easy to see that Hh
f has a similar

structure as that of Hh with X = Hh
f , A = Id, and U = IN .

Id and IN denote identity matrices of order d and N , re-
spectively. Clearly, the function f is defined as f (i) = wiα,
0 ≤ i ≤ N − 1. Real BCH-DFT codes are special cases of
complex BCH-DFT codes [6]. If the parity frequencies of a
complex BCH-DFT code are such that the complex conju-
gate of every column of the generator matrix also belongs
to it, then, through elementary column operations, the DFT
code can be made real. For example, a real BCH-DFT code is
defined by the following generator matrix [7, 8, 14, 15]:

G =
√

N

K
Wh

NΣWK , (8)

whereWK is the DFTmatrix of order K ,Wh
N is the conjugate

transpose of the DFT matrix of order N , and Σ is an N × K
binary matrix with 1’s given as Σ00 = 1, Σii = ΣN−i,K−i = 1,
for i = 1, . . . , (K − 1)/2. Here K is assumed to be odd. For
this code, the parity check matrix is given by

Hh
f = XU , (9)

where

X =


1 1 · · · 1
1 w · · · w(N−1)
...

...
...

...

1 w(d−1) · · · w(d−1)(N−1)

 , (10)
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and U is a diagonal matrix with the ith diagonal entry
equal to w((K+1)/2)i, i = 0, . . . ,N − 1. Obviously, here A =
Id and the function f is given as f (i) = wi, 0 ≤ i ≤
N − 1. Since the parity frequencies correspond to the high-
frequency indices, this code can also be termed as a lowpass
code [6]. We can have similar formulation for a highpass
DFT code.

3.2.2. DCT codes

An (N ,K) DCT code is a linear block code whose generator
matrix consists of any K columns from the inverse DCT ma-
trix of orderN [9]. Here we use the inverse DCTmatrix in or-
der to be consistent with the definition of DFT codes. A par-
ity check matrix of the code consists of the remaining N −K

columns of the inverse DCTmatrix. DCT codes are real block
codes. Since the DCT matrix is orthogonal, the frames as-
sociated with DCT codes are tight. Consider the DCT code
whose parity frequencies correspond to the highest N − K
frequencies. Here we consider the type-II DCTmatrix whose
(i, j)th element is given as

θ(i, j) =
√

2
N
α(i) cos

(2 j + 1)iπ
2N

, 0 ≤ i, j ≤ N − 1,

α(0) = 1√
2
, α(i) = 1, i 
= 0.

(11)

The parity check matrix of this code can be given as

Ht
c =



cos
(N − d)π

2N
cos

(N − d)3π
2N

· · · cos
(N − d)(2N − 1)π

2N
...

...
...

...

cos
(N − 2)π

2N
cos

(N − 2)3π
2N

· · · cos
(N − 2)(2N − 1)π

2N

cos
(N − 1)π

2N
cos

(N − 1)3π
2N

· · · cos
(N − 1)(2N − 1)π

2N


. (12)

By rearranging the rows in reverse order and using basic
trigonometric relations, it can be expressed as

Ht
c =



sin
π

2N
− sin

3π
2N

· · · (−1)N−1 sin (2N − 1)π
2N

sin
2π
2N

− sin
6π
2N

· · · (−1)N−1 sin (2N − 1)2π
2N

...
...

...
...

sin
dπ

2N
− sin

3dπ
2N

· · · (−1)N−1 sin (2N − 1)dπ
2N


.

(13)

Using the identity [16]

sin(nβ) = sinβ

{
(2 cosβ)n−1 −

(
n− 2
1

)
(2 cosβ)n−3

+

(
n− 3
2

)
(2 cosβ)n−5 − · · ·

}
,

(14)

this can be factorized as

Ht
c = AXU , (15)

where

A =



1
0 2
−1 0 4
...

. . .
. . .

. . .

· · · − (d − 2)2d−3 0 2d−1


d×d

,

X =



1 1 · · · 1

cos
π

2N
cos

3π
2N

· · · cos
(2N − 1)π

2N
...

...
...

...

cosd−1
π

2N
cosd−1

3π
2N

· · · cosd−1
(2N − 1)π

2N


,

(16)

and U is a diagonal matrix with ith diagonal entry (−1)i ×
sin (2i + 1)π/2N , i = 0, . . . ,N − 1. A is a lower triangular
nonsingular matrix. Obviously, the function f is given as
f (i) = cos(2i + 1)π/2N , 0 ≤ i ≤ N − 1. Therefore, the
above DCT code is BCH-like and can correct up to 
d/2� er-
rors. This is a lowpass DCT code since the parity frequencies
are the higher frequencies. We can similarly have a highpass
DCT code which is BCH-like. Note that, unlike DFT codes,
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if the parity frequencies are spaced by α, where α is relatively
prime to N , the DCT code may not be BCH-like because A
may not be nonsingular.

3.2.3. DST codes

An (N ,K) DST code is a linear block code whose generator
matrix consists of any K columns from the inverse DST ma-
trix of order N . A parity check matrix of the code consists of
the remainingN−K columns of the inverse DSTmatrix. Like
DCT codes, DST codes are real block codes. The frames as-
sociated with the DST codes are also tight. Consider the DST

code whose parity frequencies are the highestN−K frequen-
cies. Here we consider the type-II DST matrix whose (i, j)th
element is given as

θ(i, j) =
√

2
N
α(i) sin

(2 j + 1)(i + 1)π
2N

, 0 ≤ i, j ≤ N − 1,

α(N − 1) = 1√
2
, α(i) = 1, i 
= N − 1.

(17)

The parity check matrix can be given as

Ht
s =



sin
(N − d + 1)π

2N
sin

(N − d + 1)3π
2N

· · · sin
(N − d + 1)(2N − 1)π

2N
...

...
...

...

sin
(N − 1)π

2N
sin

(N − 1)3π
2N

· · · sin
(N − 1)(2N − 1)π

2N

1√
2
sin

π

2
1√
2
sin

3π
2

· · · 1√
2
sin

(2N − 1)π
2


. (18)

By rearranging the rows in reverse order, the matrix can be expressed as

Ht
s =



1√
2

− 1√
2

· · · (−1)N−1 1√
2

cos
π

2N
− cos

3π
2N

· · · (−1)N−1 cos (2N − 1)π
2N

...
...

...
...

cos
(d − 1)π

2N
− cos

3(d − 1)π
2N

· · · (−1)N−1 cos (2N − 1)(d − 1)π
2N


. (19)

Using the identity [16]

cos(nβ) = 1
2

{
(2 cosβ)n − n(2 cosβ)n−2

+
n

2

(
n− 3
1

)
(2 cosβ)n−4 − · · ·

}
,

(20)

this can be factorized as

Ht
s = AXU , (21)

where

A =



1√
2

0 1

−1 0 2
...

. . .
. . .

. . .

· · · − (d − 1)2d−4 0 2d−2


, (22)

U is a diagonal matrix with ith diagonal entry (−1)i, i =
0, . . . ,N − 1, and X is as defined for the lowpass DCT code.
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A is a lower triangular nonsingular matrix. Therefore the
above DST code is BCH-like and can correct up to 
d/2� er-
rors. This is a lowpass DST code since the parity frequencies
are the higher frequencies. We can similarly have a highpass
BCH-like DST code whose parity frequencies correspond to
the low-frequency indices. Similar to DCT codes, parity fre-
quencies spaced by α, where α is relatively prime to N , may
not result in a BCH-like DST code.

4. DECODINGOF ERRORSWITH UNQUANTIZED
FRAME EXPANSIONS

The class of complex codes defined in the previous section
is a generalization of the complex BCH codes. In the special
case when A = Id and U = IN , they are BCH. It is easy to see
that the DFT codes defined by the parity check matrixHh

f are
BCH whereas the DCT and the DST codes are not BCH. In
fact, the DCT and the DST codes are not even cyclic. Never-
theless, the BCH decoding algorithm can still be applied to
decode the errors provided the number of erroneous coeffi-
cients is less than or equal to 
d/2�. In the following, we first
present a syndrome decoding algorithm which is analogous
to the syndrome decoding algorithm for complex BCH codes
[17]. Then we present a subspace-based algorithm which fol-
lows the lines of MUSIC algorithm for DOA estimation in
array signal processing.

4.1. Syndrome decoding

Let r denote the received vector of coefficients when the ac-
tual coefficient vector y is corrupted by the error vector e.
Hence r = y + e. We assume that e has ν nonzero compo-
nents where ν ≤ 
d/2�. The syndrome of the received vector
is given as

s = Hhr = Hh(y + e) = Hhe, (23)

where s ≡ [s(1), s(2), . . . , s(d)]t. Substituting the expression
for Hh, we get

s = AXUr, or XUr = A−1s ≡ z, (24)

where z ≡ [z(1), z(2), . . . , z(d)]t denotes the modified syn-
drome vector. Recall that A is invertible by definition. Since
r = y + e, we get

XU(y + e) = XUe = z. (25)

The above relation follows since XU is also a parity check
matrix for the same code resulting in XUy = 0d×1.

Let d be equal to 2l or 2l + 1 for some positive integer l if
it is even or odd, respectively. Hence ν ≤ l. Let i1, i2, . . . , iν de-
note the indices of the erroneous coefficients. Let Xk ≡ f (ik),
k = 1, . . . , ν, and let ek and Uk denote, respectively, the er-
ror in the coefficient having index ik and the ikth diagonal
entry of U . Note the difference between uk (kth diagonal en-
try of U) and Uk, and between X (d × N matrix with ith
column [1, f (i − 1), . . . , f d−1(i − 1)]t, 0 ≤ i ≤ N − 1) and
Xk, k = 1, . . . , ν. Since the components of e are equal to zero

at the indices of nonerroneous coefficients, (25) can be ex-
panded as


1 1 · · · 1

X1 X2 · · · Xν

...
...

...
...

Xd−1
1 Xd−1

2 . . . Xd−1
ν



e1U1

e2U2

...
eνUν

 =

z(1)
z(2)
...

z(d)

 . (26)

Let S denote the modified syndrome matrix defined as

S ≡


z(1) z(2) · · · z(d − l)
z(2) z(3) · · · z(d − l + 1)
...

...
...

...
z(l + 1) z(l + 2) · · · z(d)

 . (27)

Using (26), S can be factorized as S = VeDV
t
2, where

Ve ≡


1 1 · · · 1
X1 X2 · · · Xν

...
...

...
...

Xl
1 Xl

2 · · · Xl
ν

 , D ≡


e1U1

. . .
eνUν

 ,

V2 ≡


1 1 · · · 1
X1 X2 · · · Xν

...
...

...
...

Xd−l−1
1 Xd−l−1

2 · · · Xd−l−1
ν

 .
(28)

Since Xi’s are distinct and ν ≤ l, the columns of Ve are lin-
early independent and the columns of V2 are also linearly
independent. Therefore the rank of S is ν. This means that
the number of coefficient errors can be found from the rank
of S, or equivalently, by finding the order of the largest non-
singular submatrix of S.

Let Λ(x) denote the error locator polynomial defined as

Λ(x) ≡
ν∏

i=1

(
1− Xix

−1) = Λ0 +Λ1x
−1 + · · · +Λνx

−ν, (29)

where Λ0 = 1. We assert that the coefficients of the error
locator polynomial satisfy the following set of equations:

z( j)Λν + z( j + 1)Λν−1 + · · · + z(ν + j)Λ0 = 0,

j = 1, . . . ,d − ν.
(30)

To prove the assertion, from (26) we get z( j) =∑ν
k=1 ekUkX

j−1
k , j = 1, . . . ,d. Substituting in the left-hand

sides of the above equations and then rearranging the terms,
we get

e1U1X
j−1
1

ν∑
k=0

Λν−kXk
1 + e2U2X

j−1
2

ν∑
k=0

Λν−kXk
2

+ · · · + eνUνX
j−1
ν

ν∑
k=0

Λν−kXk
ν .

(31)
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This can be further simplified as

e1U1X
ν+ j−1
1

ν∑
k=0

ΛkX
−k
1 + e2U2X

ν+ j−1
2

ν∑
k=0

ΛkX
−k
2

+ · · · + eνUνX
ν+ j−1
ν

ν∑
k=0

ΛkX
−k
ν .

(32)

Since Xi’s are the roots of Λ(x), the summation terms are
equal to zero, and hence the sum of the terms is zero. Con-
versely, it is easy to see that the solutions of (30) are the error
locator polynomial coefficients whose roots are Xi’s.

Equation (30) is similar to the convolution relation be-
tween the syndrome coefficients and the locator polynomial
coefficients in the case of DFT codes [5, 18]. In the lat-
ter, the equations can also be derived from the relationship
between the error vector e and the inverse DFT of Λ ≡
[Λ0,Λ1, . . . ,Λν, 01×(N−1−ν)]. The elementwise multiplication
of e and the inverse DFT of Λ is equal to the null vector,
and hence the circular convolution of Λ and the DFT of e
is also a null vector. The DFT of e over the parity frequen-
cies gives the syndrome, and hence the relationship follows.
Here the same relationship holds for the defined generalized
case. Now these equations can be solved for the locator poly-
nomial coefficients throughmatrix inversion [17] or iterative
schemes [17, 18]. The roots of the error locator polynomial
giveXi’s, and the inverse mapping f −1 finds the indices of the
erroneous coefficients. Since the number of equations in (30)
is d−ν, the maximum number of errors that can be localized
is equal to l. Once the errors are localized, their magnitudes
can be determined by solving the first ν syndrome equations
in (23), or equivalently, by solving the first ν modified syn-
drome equations in (26).

4.2. A subspace decoding approach

Subspace-based algorithms such as the MUSIC, the
minimum-norm method, and the ESPRIT are very popular
for estimating the DOAs of plane waves in array signal
processing [10]. The basic idea in those algorithms is to
estimate the signal subspace and its orthogonal comple-
ment, the noise subspace, from the eigendecomposition
of the data covariance matrix. Usually, the received data
is corrupted by some background noise which is assumed
to be white. Here we first develop an error localization
algorithm which is based on the subspace concept but
without the presence of quantization noise. The decoding
algorithm for quantized coefficients, which is similar to
the classical MUSIC, is developed in Section 5.2.2. Earlier
we have shown that analogous subspace algorithms can
be developed to localize sample errors in DFT codes [12].
They localize errors with better accuracy due to the higher
degrees of freedom associated with the subspaces [12]. In the
following, we develop the subspace algorithm for the class
of frames defined in the previous section along the same
line. Though the development looks apparently the same as
those for DFT codes, the generalized structure of the defined
class must be borne in mind. In the case of DFT codes, the
syndrome coefficients are sums of complex sinusoids whose

frequencies are determined by the error locations. For the
class of codes defined here, the syndrome depends on the
matrices A, U , and the function f , and hence the error
localization may not have an interpretation of frequency
estimation. For the convenience of understanding, we have
used the same notations for error locator vectors, syndrome
matrix, eigenvectors, and so forth, as in [12].

Consider the matrix Ve whose ith column is [1,Xi,
. . . ,Xl

i ]
t , i = 1, . . . , ν (refer to the factorization of modified

syndromematrix S). Since Xi’s determine the error locations,
we will refer to the columns of Ve as the error locator vectors
and to Ve as the error locator matrix. Since Xi’s are distinct
and ν < l + 1, the error locator vectors are linearly indepen-
dent. They define a ν-dimensional subspace of the (l + 1)-
dimensional vector space, which we will refer to as the chan-
nel error subspace. The orthogonal complement of this sub-
space has dimension l + 1 − ν, and we will refer to it as the
noise subspace.

Let R ≡ (1/(d− l))SSh. We will refer to R as the syndrome
covariance matrix. Since the rank of S is ν, the number of
sample errors, the rank of R is also equal to ν. Therefore it
has ν nonzero eigenvalues. The eigenvalues are all real since
R is Hermitian. The eigendecomposition of R can be given as

R=
[
U (l+1)×ν

e U (l+1)×(l+1−ν)
n

][∆ν×ν
e 0
0 0(l+1−ν)×(l+1−ν)

][
Ue Un

]h
,

(33)

where ∆e contains the nonzero eigenvalues, Ue contains the
eigenvectors corresponding to the nonzero eigenvalues, and
Un contains the eigenvectors corresponding to the eigenvalue
zero. Note that the notations here have no relations with the
N × N diagonal matrix U defined in Section 3.1 for char-
acterizing the frames. The following proposition establishes
the relationship between the eigenvectors of R and the error
locator vectors.

Proposition 1. The columns of Ue span the channel error sub-
space.

This proposition can be proved using a similar method
as for DFT codes [12].

Because of this result, the error locator vectors are or-
thogonal to the eigenvectors inUn, which span the noise sub-
space. That is, Vh

e Un = 0ν×(l+1−ν). Let Φi(x) denote the poly-
nomial associated with the ith column ofUn. From the above
orthogonality relation, it follows that X∗1 , . . . ,X∗ν are com-
mon roots of Φ1(x), . . . ,Φl+1−ν(x). Further, since ν < l + 1,
they are the only common roots. For DCT and DST frames,
X∗i = Xi, because the function f (i) is real. Therefore the er-
rors are localized by finding the common roots of the poly-
nomials Φi(x) and then applying the inverse mapping f −1.
The common roots can be determined by finding the zeros
of the following function over the range of f :

E(x) ≡ vhxUnU
h
nvx, (34)

where vx ≡ [1, x, x2, . . . , xl]t .



236 EURASIP Journal on Applied Signal Processing

It is obvious that both the syndrome decoding and the
subspace decoding produce perfect error localizations so
long as there is no quantization and the number of coef-
ficient errors is less than or equal to 
d/2�. In fact, it can
be shown that the minimum-norm vector lying in the noise
subspace is nothing but the vector consisting of the error lo-
cator polynomial coefficients appended by (l − ν) zeros, that

is, Λl ≡ [1,Λ1, . . . ,Λν,

l−ν︷ ︸︸ ︷
0, . . . , 0]t [12]. Observe that the syn-

drome matrix dimension can be any of m × (d − m + 1),
ν + 1 ≤ m ≤ d − ν + 1, so that the error subspace has di-
mension ν and the noise subspace has dimension at least 1.
However, we have observed that taking m equal to l + 1 pro-
duces the best localization results when the coefficients are
quantized. Therefore, we have chosen m to be equal to l + 1.
When the number of coefficient errors is equal to l, the noise
subspace has dimension equal to one, and, in this case, the
single-column vector in Un is the normalized Λl.

5. DECODINGOF QUANTIZED FRAME EXPANSIONS

The transmission of the frame expansion coefficients in a
digital form requires all coefficients to be quantized. As a re-
sult, every coefficient vector contains N coefficient errors ir-
respective of any channel error. Therefore the decoding al-
gorithms described in the previous section cannot be ap-
plied directly in order to correct the errors. The problem
of error correction now becomes a problem of estimation.
The decoding algorithms will aim at localizing and finding
the channel errors having large magnitudes compared to the
quantization noise.

Let q denote the quantization noise of coefficient vector
y. With channel error e, the received vector is given as r̂ =
y + q + e. We will denote the terms defined earlier with a hat
to indicate the presence of quantization noise. Therefore the
syndrome is given as

ŝ = Hhr̂ = Hhq +Hhe = sq + se, (35)

where sq ≡ Hhq and se ≡ Hhe. It is easy to see that sq denotes
the contribution of the quantization noise to the syndrome.
Therefore a nonzero syndrome does not imply the presence
of channel errors. Note that the receiver can compute ŝ, but
not sq and se since q is not known. The modified syndrome
can be computed analogously as ẑ = A−1ŝ.

The error correction involves three steps: estimating the
number of erroneous coefficients, estimating the locations of
those coefficients, and estimating the error values and decod-
ing the message.

5.1. Estimation of the number of channel errors

We assume that the quantization noise q is white and is un-
correlated with the channel errors. Each component of q is
assumed to have mean zero and variance σ2. The channel er-
ror magnitudes are assumed to be large compared to σ2.

Consider themodified syndrome coefficient matrix Ŝ. Let
Se and Sq denote the parts due to the channel error and the

quantization noise, respectively, that is, Ŝ = Se+Sq. Therefore
the syndrome covariance matrix is given as

R̂ = R +
1

d − l

(
SqS

h
q + SeS

h
q + SqS

h
e

) ≡ R + Rn, (36)

where Rn denotes the quantization noise term on the right-
hand side. The presence of Rn will perturb the eigenvectors
and the eigenvalues of R. The statistical behaviour of this per-
turbation depends on the statistical properties of Rn. Since q
is assumed to be uncorrelated with e, E(SeShq) = E(SqShe ) = 0,
where E denotes themathematical expectation operator. Fur-
ther, since q is white and has variance σ2, it is easy to prove
that E(SqShq) = σ2TTh, where T is a (l + 1)×N full row-rank
matrix whose elements are functions of elements of X andU .

Let the eigendecomposition of TTh be given as

TTh = Uc∆cU
h
c , (37)

where Uc denotes the matrix of eigenvectors and ∆c denotes
the diagonal matrix of eigenvalues. Since TTh is positive-
definite and Hermitian, all its eigenvalues are real and pos-
itive. Let ∆1/2

c denote the diagonal matrix with the square
roots of the eigenvalues on the diagonal, and let ∆−1/2c denote
its inverse. Then premultiplying and postmultiplying (36) by
∆−1/2c Uh

c and Uc∆−1/2c , respectively, we obtain

R̂w = Rw + Rwn, (38)

where R̂w ≡ ∆−1/2c Uh
c R̂Uc∆−1/2c , Rw ≡ ∆−1/2c Uh

c RUc∆−1/2c , and
Rwn denotes the quantization noise term on the right-hand
side. It is easy to see that E(Rwn) = σ2Il+1. If λ1 ≥ λ2 ≥
· · · ≥ λν are the nonzero eigenvalues of Rw, then the ex-
pected eigenvalues of R̂w are λ1 + σ2 ≥ λ2 + σ2 ≥ · · · ≥
λν +σ2, σ2, . . . , σ2. Since the channel errors are assumed to be
large compared to the quantization step size, λi’s are relatively
large compared to σ2. Therefore the number of errors can be
estimated by using a threshold as is done for DFT codes in
[7]. Observe that the transformation from R̂ to R̂w is required
because of the generalized structure of the code. In the case of
DFT codes, this is not required since E(SqShq) = σ2(d − l)Il+1
[12].

5.2. Estimation of error locations

5.2.1. Coding-theoretic approach

With quantization, the set of equations (30) no longer holds;
each equation contains a noise term on the right-hand side.
The coefficients of the error locator polynomial can be es-
timated from these equations by solving them in the least
square sense using the pseudoinverse operator. The locations
of the errors can be estimated by computing |Λ̂(x)|2, the
squared magnitude of Λ̂(x), at f (i), i = 0, . . . ,N − 1, and
then finding the ν indices which give the minimum values.
The above method is similar to the method applied to lo-
calize errors in quantized DFT codes [12], but the difference
here is that the minimization of |Λ̂(x)|2 is over the range of
function f .
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5.2.2. Subspace approach

Consider (38). The rank of Rw is equal to the rank of R, that
is, ν, and hence it has ν nonzero eigenvalues. The eigenvec-
tors of Rw corresponding to the nonzero eigenvalues span
the same subspace as spanned by the columns of ∆−1/2c Uh

c Ue.
This subspace is also spanned by the columns of ∆−1/2c Uh

c Ve

since the columns of Ue and Ve span the same subspace. The
eigendecomposition of R̂w gives

R̂w =
[
Ûwe Ûwn

][∆̂ν×ν
we 0
0 ∆̂(l+1−ν)×(l+1−ν)

wn

][
Ûwe Ûwn

]h
,

(39)

where ∆̂we contains the ν largest eigenvalues. The columns of
Ûwe span the subspace which is an estimate of the subspace
spanned by the columns of ∆−1/2c Uh

c Ve, and the columns of
Ûwn span its orthogonal complement. Thus the errors can
be localized by minimizing the following function over f (i),
i = 0, . . . ,N − 1:

Ê(x) ≡ vhxUc∆
−1/2
c ÛwnÛ

h
wn∆

−1/2
c Uh

c vx, (40)

where vx ≡ [1, x, x2, . . . , xl]t. Observe that the objective func-
tion Ê(x) defined above is different from that applied to
quantized DFT codes [12] because of the generalized struc-
ture of the code.

Earlier we have mentioned that, when there is no quanti-
zation, the (l + 1)-dimensional vector consisting of the error
locator polynomial coefficients, that is, Λl, lies in the noise
subspace and has the minimum norm. This may not be true
any longer when the coefficients are quantized, that is, the
estimated vector Λ̂l may not lie in the estimated noise sub-
space. Hence, the two approaches may not result in identical
estimations of error locations. Because of the higher degrees
of freedom, the perturbations of the subspaces will be less
compared to the perturbation of Λl, and hence, the subspace
approach is expected to result in more accurate estimations.

5.3. Message reconstruction

Once the erroneous coefficients are identified, there are two
ways to reconstruct the message vector [8]. One obvious
way is to decode the message vector directly from the un-
corrupted received coefficients using frame-theoretic prin-
ciples. If rR denotes the vector of uncorrupted received co-
efficients, and GR denotes the set of rows of frame opera-
tor G corresponding to those coefficients, then the message
can be decoded as x̂ = (Gh

RGR)−1Gh
RrR. The other way is

to decode the errors in the corrupted coefficients using the
coding-theoretic principles. When the coefficients are quan-
tized, the syndrome equations in (23) are no longer satis-
fied; each equation contains a noise term on the right-hand
side. The error values can be estimated by solving them in
the least square sense. The message vector can be estimated
by first subtracting the decoded error values from the cor-
rupted coefficients, and then applying the dual frame oper-
ator to all the coefficients. If ŷ denotes the vector of coef-

Table 1: SNR (dB) for different numbers of erasures.

No. of erasures DFT DCT DST

0 31.80 31.80 31.80

1 31.23 31.05 31.19

2 30.45 29.57 30.28

3 29.27 25.07 28.61

4 27.16 10.76 23.00

5 23.14 −1.64 6.99

6 15.19 −21.25 −14.74
7 2.64 −46.69 −41.84

8

7

6

5

4

3

2

1

0

−1

lo
g
(M

SE
(E
))

1 2 3 4 5 6 7

Number of errors E

DFT code
DCT code
DST code

Figure 1: Average MSE for different numbers of erasures.

ficients after error correction, then the message vector can
be estimated as x̂ = (GhG)−1Ghŷ. It can be shown that both
approaches result in the same reconstruction [8]. In addi-
tion, in either case, the mean square reconstruction error is
equal to (σ2/K) tr((Gh

RGR)−1), where tr(·) denotes the trace
of a matrix and σ2 is the variance of the quantization noise
[4].

6. SIMULATION RESULTS

We performed simulations with a Gauss-Markov source with
mean 0, variance 1, and correlation coefficient 0.9. The
source was divided into blocks of length 9 (K), and each
block was expanded to 16 (N) coefficients using frames as-
sociated with (16, 9) lowpass DFT, DCT, and DST codes. The
expansion coefficients were quantized with a 4-bit uniform
scalar quantizer.

First we considered only erasures of coefficients. With
a (16, 9)-BCH-like complex code, up to 7 erasures can be
recovered. Table 1 displays the average signal-to-noise ratio
(SNR) for different numbers of erasures. Figure 1 shows the
theoretical mean square error (MSE) for different numbers
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Figure 2: Relative frequency of correct detection of errors at differ-
ent channel error-to-quantization noise ratios.

of erasures with σ2 normalized to 1. The theoretical MSE val-
ues are computed by computing mean square reconstruction
errors for all possible erasure patterns for a given number of
erasures and then taking the average of them. Both results
show that the frame expansion with the DFT code performs
the best and that with the DCT code performs the worst.
This is a result of the fact that, for DFT codes, the frames
associated with the received coefficients have closer bounds
than those associated with the DCT and the DST codes. The
observation that the MSE increases with the increase in the
number of erasures is characteristic of quantized frame ex-
pansions.

Then we considered coefficient errors with varying chan-
nel error to quantization noise ratio. In the first step, we con-
sidered only the coding-theoretic approach to error localiza-
tion and compared the performances of the frames associ-
ated with lowpass DFT, DCT, and DST codes. With a (16, 9)-
BCH-like complex code, up to three errors can be corrected.
For a given number of errors, the locations of the erroneous
coefficients were chosen randomly. Figure 2 shows the rel-
ative frequency of the correct number of estimated errors.
Figure 3 shows the relative frequency of the correct localiza-
tion of errors assuming that the number of errors is estimated
correctly. We observe that, in both steps, the frame expansion
by the DFT code outperforms those by the DCT and the DST
codes. When there is no quantization noise, the roots of the
error locator polynomial for the DFT code are distinct Nth
roots of unity and they all lie on the unit circle. In the case
of the DCT and the DST codes, the roots are all real and dis-
tinct. When there is quantization, the roots for the DFT code
lie about the unit circle whereas, in the case of the DCT and
the DST codes, the roots can be real or complex conjugate
pairs. Recall that the errors are localized by minimizing the
absolute square of the estimated locator polynomial over the
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Figure 3: Relative frequency of correct localization of errors at dif-
ferent channel error-to-quantization noise ratios.

range of function f . It is easy to see that the roots for the
DFT code have more degrees of freedom for perturbation
than those for the DCT and the DST codes. Thus the DFT
code is expected to result in better localization results.

In the second step, we compared the error localization ef-
ficiencies of the coding-theoretic and the subspace decoding
approaches. The same Gauss-Markov source was expanded
with the frames associated with the (18, 9) lowpass DFT,
DCT, andDST codes.With a (18, 9)-BCH-like complex code,
up to four errors can be corrected. Figures 4 and 5 show
the relative frequency of correct localization of one and two
errors, respectively. The performance improvement of the
subspace algorithm over the locator polynomial approach is
clear from the displayed figures. We have observed that the
performance improvement decreases as the number of errors
is increased.When the number of errors is equal to 4, the per-
formances of the two approaches are similar. This is expected
because, as the number of errors is increased, the dimension
of the noise subspace is decreased, and when the number of
errors is equal to 4, the noise subspace has dimension one.
Higher noise subspace dimensionality provides greater de-
grees of freedom and thus lesser perturbations for the noise
subspace. The plots also show that the DFT code outper-
forms both the DCT and the DST codes. The better perfor-
mance of the DFT code is once again because of the similar
reason as stated in the previous paragraph.

Finally, we applied the lowpass DFT, DCT, and DST
frame expansions to the Lena image (grayscale, 512 × 512).
The image was divided into blocks of size 8×8, and the DCT
was applied to each block. Transform coefficients associated
with the same frequency from 8 consecutive blocks were ex-
panded to 16 coefficients using the (16, 8) lowpass DFT, DCT,
and DST frames. The coefficients were quantized using a
uniform quantizer having step size 16 and then fixed-length
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Figure 4: Relative frequency of correct localization of one error at
different channel error-to-quantization noise ratios.

encoded using 8 bits. This process was applied only to the
lowest ten frequency coefficients of each block. The remain-
ing frequency coefficients were quantized to zero. During the
decoding, we assumed that the number of coefficient errors
in a frame expansion was known.

Table 2 shows the PSNR of the reconstructed image at
different channel bit error rates (BERs) for both the coding-
theoretic and the subspace-based error localizations. The re-
sults are averaged over the same 20 channel realizations for
the three frames. We observe that, at very low BERs, the per-
formances of the three frames are similar. At higher BERs, the
DFT frame performs better than both the DCT and the DST
frames with coding-theoretic localization; however, when the
errors are localized using the subspace approach, surpris-
ingly, the DCT and the DST frames perform better than the
DFT frame. This could happen perhaps because of the large
quantization step size, which makes the error localization in-
efficient for larger number of errors. Moreover, this is appro-
priate to note here that, correct error localization does not
necessarily lead to the least reconstruction error. The SNR
of the reconstructed message depends on the number of the
erroneous coefficients as well as their locations [4, 8]. The
performance improvement of the subspace approach over
the coding-theoretic approach is evident from the two tables.
Figure 6 displays the reconstructed images at BER 0.001 for
one channel realization. We observe that the quality of the
reconstructed image is better with the subspace-based error
localization.

7. CONCLUSION

In this paper, we have characterized a class of finite frames
which can be considered for joint source-channel coding in
cross-layer-enabled wireless communication environments.
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Figure 5: Relative frequency of correct localization of two errors at
different channel error-to-quantization noise ratios.

Table 2: PSNR for Lena image for different frames at different
bit error rates. (a) Error localization by coding-theoretic approach.
(b) Error localization by subspace approach.

(a)

BER 10−4 5×10−4 10−3 5× 10−3 10−2

DFT31.89 31.60 31.17 24.59 19.27

DCT31.78 31.29 30.46 23.32 18.07

DST31.86 31.48 30.87 23.43 18.06

(b)

BER 10−4 5×10−4 10−3 5× 10−3 10−2

DFT31.90 31.83 31.50 26.43 20.45

DCT31.89 31.82 31.75 28.36 21.80

DST31.90 31.88 31.81 28.64 21.92

Evolving at the application layer, they allow for error correc-
tion besides erasure recovery. We have associated the frames
with complex number codes and characterized them based
on the BCH-like properties of the parity check matrices of
the associated codes. In particular, we have considered the
frames associated with the lowpass DFT, DCT, and DST
codes, which are shown to belong to this class. Besides the
standard BCH-like decoding approach, we have also pre-
sented a subspace-based algorithm for localizing the errors
in the frame expansion coefficients. We have compared the
performance of the subspace algorithm with the BCH de-
coding approach for the lowpass DFT, DCT, and DST frame
expansions. Simulation results show that the subspace al-
gorithm can improve the error localization accuracy with
quantized frame expansions, especially at fewer number of
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(a)

(b)

Figure 6: Reconstructed image with BER 0.001. (a) Error localization with coding-theoretic approach for DFT frame, DCT frame, and DST
frame (from left to right). (b) Error localization with subspace approach for DFT frame, DCT frame, and DST frame (from left to right).

coefficient errors. Among the lowpass DFT, DCT, and DST
frames, the DFT frame has the best performance with a
Gauss-Markov source. When the subspace algorithm is ap-
plied for image transmission, the DCT and DST frames are
observed to perform better than the DFT frame at high
BERs.

Utilization of frames for robust multimedia transmission
is relatively new. In that context, this paper has considered
only a class of frames and demonstrated their use in digital
communication. It is now clear that all frames belonging to
the same class do not result in the same reconstruction error
even though they are all tight. Thus finding the best frames
in the sense of minimum reconstruction error and numerical
stability is an open issue. Further, this paper has considered
only frames in CK andRK . Use of frames in l2(Z) for correct-
ing errors in message sequences is a much more challenging
problem.
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