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The automatic analysis of digital video scenes often requires the segmentation of moving objects from a static background. His-
torically, algorithms developed for this purpose have been restricted to small frame sizes, low frame rates, or offline processing.
The simplest approach involves subtracting the current frame from the known background. However, as the background is rarely
known beforehand, the key is how to learn and model it. This paper proposes a new algorithm that represents each pixel in the
frame by a group of clusters. The clusters are sorted in order of the likelihood that they model the background and are adapted
to deal with background and lighting variations. Incoming pixels are matched against the corresponding cluster group and are
classified according to whether the matching cluster is considered part of the background. The algorithm has been qualitatively
and quantitatively evaluated against three other well-known techniques. It demonstrated equal or better segmentation and proved
capable of processing 320× 240 PAL video at full frame rate using only 35%–40% of a 1.8GHz Pentium 4 computer.
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1. INTRODUCTION

As humans we possess an innate ability to decompose ar-
bitrary scenes and with only a casual glance we can recog-
nise a multitude of shapes, shades, and textures. In contrast,
computers require enormous amounts of processing power
and frequently fail if, for instance, the sun hides behind a
cloud. As a consequence, practical solutions often rely upon
domain-specific knowledge to make the problem tractable.
For instance, if we know that we are compressing a head-and-
shoulders sequence, then we also know that most of the in-
formation pertains to the participant. Hence, we can employ
differential bit allocation and encode their facial expressions
and gestures with a higher quality than the background. Al-
ternatively, we could try to fit a parameterised model to the
participant [1] or derive one from them [2] and thereby ob-
tain even greater compression. In either case, the first step is
to segment the participant from the background and we can
exploit their movements to help us do so.

Motion is a particularly important cue for computer vi-
sion. Indeed, for many applications, the simple fact that

something is moving makes it of interest and anything else
can be ignored. In such cases, it is common for moving ob-
jects to be referred to as the foreground and stationary ob-
jects as the background. A classic example from the litera-
ture is automatic traffic flow analysis [3] in which motion
is used to differentiate between vehicles (the foreground)
and the roadway (the background). Higher-level processing
could then be employed to categorise the vehicles as cars, mo-
torcycles, buses, or trucks. Such a system might be used for
determining patterns of traffic flow, or it could be adapted
to automatically identify traffic law violations. Other appli-
cations where motion is important include gesture tracking
[4, 5], person tracking [6, 7, 8], model-based video coding
[9, 10, 11], and content-based video retrieval [12]. In prac-
tice, the need to segment moving objects from a static back-
ground is so common, it has spawned a nichè area of research
where it is known as background subtraction, background
segmentation, or background modelling.

As a priori knowledge of a scene’s background does not
often exist, the key for any background segmentation algo-
rithm is how to learn and model it. The simplest approach
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involves calculating an average background frame whilst no
moving objects are present. Subsequently, when objects en-
ter the scene, they will cause the current frame to diverge
from the background frame and their presence can be eas-
ily detected by thresholding the difference between them
[13]. However, any background or illumination change will
severely and indefinitely degrade the accuracy of the algo-
rithm. Therefore, practical implementations must continu-
ously update the background frame to incorporate any per-
manent scene changes. Furthermore, assuming that the back-
ground is perfectly stationary is also flawed. For instance, a
tree branch waving in the windmoves but is typically not im-
portant and so should be incorporated into the background
model. We define pseudostationary backgrounds as having
constituent objects that are either motionless or that undergo
small repetitive motions. A single average background frame
is clearly incapable of correctly modelling pseudostationary
backgrounds. In practice, the stationarity assumption is of-
ten retained and subsequent processing is used to eliminate
errors.

Background segmentation is but one component of a po-
tentially very complex computer vision system. Therefore, in
addition to being accurate, a successful technique must con-
sume as few processor cycles and as little memory as possi-
ble. An algorithm that segments perfectly but is very compu-
tationally complex is useless because insufficient processing
power will remain to do anything useful with its results.

Seed and Houghton conducted one of the earliest studies
into background subtraction in 1988 [14]. They realised that
true background changes tend to occur gradually and hence
proposed a number of techniques that refined the back-
ground frame accordingly. Of the techniques, the two most
promising were random updating and slope limited updating.
Random updating replaces background pixels by the corre-
sponding pixels in the current frame according to a pseudo-
random sequence. As no reference is made to what data the
pixels actually contain, errors in the background frame will
occur. However, the errors are isolated and can be reduced
using conventional morphological operations. In contrast,
slope limited updating only adjusts the background frame
when it differs substantially from the current frame and even
then only by small amounts. Remarkably, given the level of
computer technology at the time, they further showed that
by using these techniques, it was possible to distinguish be-
tween vehicles and the roadway in real time.

More recently, Chien et al. have revisited background
subtraction [15]. They surmised that the longer a pixel re-
mained roughly constant, the more likely it is that it belongs
to the background. Pixels are classified as stationary when the
amount by which they change between consecutive frames
falls below a threshold. Once a pixel has remained stationary
for a sufficient number of frames, it is copied into the back-
ground frame.

Although the above algorithms succeed in learning and
refining the background frame, none of them is capable of
handling pseudostationary backgrounds. Stauffer and Grim-
son recognised that these kinds of backgrounds are inher-
ently multimodal and hence they developed a technique

which models each pixel by a mixture of Gaussians [16]. In-
coming pixels are compared against the corresponding mix-
ture in an effort to find a Gaussian that is within 2.5 stan-
dard deviations. If such a Gaussian exists, then its mean and
variance are refined according to the pixel. However, if no
match is found, then the minimum weighted Gaussian is re-
placed by a new one with the incoming pixel as its mean and
a high initial variance. Gaussians that are matched more fre-
quently are nearby often occuring pixels and hence they are
more likely to model the background. This algorithm has
since been updated to suppress shadows and to improve its
learning rate [17].

A less obvious advantage of Stauffer and Grimson’s tech-
nique is its ability to rapidly adapt to transient background
changes. For example, if an object enters the scene and stops
moving, it will eventually be incorporated into the back-
ground model. If it then moves again, the system should
recognise the original background as corresponding Gaus-
sians should still remain in the mixture. However, maintain-
ing these mixtures for every pixel is an enormous computa-
tional burden and results in low frame rates when compared
to the previous approaches. Our algorithm is most similar to
that of Stauffer and Grimson but with a substantially lower
computational complexity. As we will show, it has the capa-
bility of processing 320 × 240 video in real time on modest
hardware.

The remainder of the paper is organised as follows:
Section 2 introduces the new background segmentation
scheme and Section 3 details its implementation, including a
few subtle optimisations; the postprocessing algorithm is de-
scribed in Section 4; Section 5 compares our approach with
a few other published techniques and presents some results;
some real-world applications that have benefitted from this
work are outlined briefly in Section 6; and finally, Section 7
concludes the paper.

2. ALGORITHM

The premise of our approach is that the more often a pixel
takes a particular colour, the more likely it is that it belongs
to the background. Therefore, at the heart of our algorithm is
a very low complexity method for maintaining some limited
but important information about the history of each pixel.
To do this, we model each pixel by a group of K clusterswhere
each cluster consists of a weightwk and an average pixel value
called the centroid ck. A group is necessary because a sin-
gle cluster is incapable of modeling the multiple modes that
can be present in pseudostationary backgrounds. The size of
the group should therefore be set according to the expected
modality of the background. Empirically we have found that
3 to 5 clusters per group yield a good balance between accu-
racy and computational complexity.

In developing our algorithm, we also assumed that there
was no automatic gain or white balance variations and that
there is no global scene motion. This was a conscious de-
sign decision and is not a flaw as it may first appear. Auto-
matic gain control and automatic white balance are camera
features that are designed to make the captured video more
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visually pleasing. However, they can cause dramatic colour
variations between consecutive frames and hence are intol-
erable by almost all computer vision algorithms. Automatic
compensation is also not straightforward because different
cameras employ different algorithms and only a portion of
the frames may be affected. It is possible to compensate for
pan, tilt, and other global scene motions but we considered
that to be a preprocessing stage which would detract from the
key problem we were trying to solve. Furthermore, for many
popular applications, like security and videoconferencing, a
fixed camera is the norm. The interested reader may like to
consult one of the many optical flow algorithms [18, 19].

Step 1 (cluster matching). The first step in segmenting in-
coming frames is to compare each of their pixels against the
corresponding cluster group. The goal is to find the match-
ing cluster within the group that has the highest weight and
hence the clusters are searched in order of decreasing weight.
We define a matching cluster as one which has a Manhattan
distance (i.e., sum of absolute differences) between its cen-
troid and the incoming pixel below a user prescribed thresh-
old, T . A threshold greater than zero is required to tolerate
acquisition noise. Higher thresholds should be used with in-
expensive cameras, such as webcams, and lower thresholds
with more precise 3CCD cameras. Typically we used thresh-
olds in the range of [10, 25].

The Manhattan distance is a very useful metric as it is
evaluated using only additions and subtractions and can thus
be implemented very efficiently. In contrast, assuming RGB
video, the squared Euclidean distance metric would require
the evaluation of up to three multiplications and two addi-
tions for each of the K clusters and for every pixel in the
frame. Given the target of 320 × 240 video and setting K =
5 result in, on average, 576 000 multiplications per frame.
Clearly, eliminating these multiplications is very beneficial in
terms of reducing the computational complexity of the algo-
rithm.

Step 2 (adaptation). If, for a given pixel, no matching clus-
ter could be found within the group, then the cluster with
the minimum weight is replaced by a new cluster having the
pixel as its centroid and a low initial weight (0.01 in our im-
plementation). The initial weight corresponds with the likeli-
hood that a new cluster belongs to the background. As such,
it should be set according to how dynamic the background
is expected to be. Rapidly changing backgrounds can have a
higher initial weight, whereas it should be decreased if the
background is more stationary.

If a matching cluster was found, then the weights of all
clusters in the cluster group are updated using

w′k =




wk +
1
L

(
1−wk

)
, k =Mk,

wk +
1
L

(
0−wk

)
, k �=Mk,

(1)

where Mk is the cluster index of the matching cluster. The
parameter L is simply the inverse of the conventional learning

rate, α, and can be used to control how quickly scene changes
are incorporated into the background model. Smaller values
for L will result in faster adaptation and larger values result
in slower adaptation.

The centroid of the matching cluster must also be ad-
justed according to the incoming pixel. Previous approaches
have adjusted the centroid based on a fraction of the differ-
ence between the centroid and the incoming pixel. However,
doing so results in fractional centroids and inefficient im-
plementations. We chose instead to accumulate the error be-
tween the incoming pixel and the centroid. When the error
term exceeds L − 1, the centroid is incremented, and when
it is below −L, the centroid is decremented. This is approx-
imately equivalent to adjusting the centroid on every frame
using c′k = ck + (1/L)(xt − ck) but avoids the need for frac-
tional centroids and can be implemented very efficiently as is
detailed in Section 3.

Step 3 (normalisation). The weight of a cluster corresponds
with how many times it has been matched. Hence, it is from
these weights that we can infer information about the his-
tory of pixel values. If the weight is high, we know that the
pixel has often exhibited a colour similar to the centroid,
and according to our premise, the cluster is more likely to
model the background. Conversely, if the weight is low, the
centroid colour has not appeared very often and the clus-
ter probably models the foreground. This observation can be
formalised by ensuring the weights of the cluster group al-
ways total to one. Then the weights represent the proportion
of the background accounted for by each cluster and hence
can be treated somewhat like probabilities. Consequently, af-
ter adaptation, the weights are normalised according to

w′k =
wk

S
, ∀k, where S =

∑

k

wk. (2)

This is the same as dictating that the cluster group weight
vector, �w, must always be a unit vector (i.e., |�w| = 1).

Step 4 (classification). The incoming pixels are classified by
summing the weights of all clusters that are weighted higher
than the matched cluster. This calculation is simplified by
sorting the normalised clusters in order of increasing weight.
Sorting the clusters is also necessary for matching then with
pixels of the next frame. However, care must be taken to
remember the new location of the matched cluster. After
sorting, we employ the following trivial calculation:

P =
K−1∑

k>Mk

wk. (3)

The result, P, is the total proportion of the background ac-
counted for by the higher weighted clusters and is an esti-
mate of the probability of the incoming pixel belonging to the
foreground. Larger values of P are evidence that the pixel be-
longs to the foreground and smaller values are evidence that
it belongs to the background. This value can be thresholded
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Figure 1: The algorithm.

to obtain a binary decision or can be scaled to produce a
grayscale alpha map. A pictorial representation of the algo-
rithm is given in Figure 1.

3. IMPLEMENTATION

When implementing the algorithm of Section 2, we were
conscious of the fact that Y ′CBCR 4:2:2 video (where CB and
CR have been subsampled horizontally by a factor of 2) is fre-
quently used when acquiring live video. Fortunately, it is also
trivial to upsample to 4:2:2 the Y ′CBCR 4:2:0 video that is
found in popular compression standards like MPEG-2 and
H.263. Using Y ′CBCR 4:2:2 video necessitated making mi-
normodifications to the basic algorithm. Clusters are formed
with both a luminance centroid and a chrominance centroid.
The luminance centroid consists of two adjacent luminance
components (Y ′1, Y

′
2) and the chrominance centroid holds

the corresponding chrominance components (CB, CR). Our
implementation uses a cluster structure that is similar to that
of Algorithm 1. The use of two centroids is beneficial as it al-
lows the specification of different thresholds for luminance

typedef struct
{
/∗ The cluster weight. ∗/
double weight;

/∗ The luminance centroid. ∗/
int Y1, Y2;

/∗ The chrominance centroid. ∗/
int Cb, Cr;

} Cluster;
Algorithm 1: The cluster structure.

31 17 9 0

Centroid component Error
· · ·
· · ·

Figure 2: Centroid component bit assignment: [B = 9⇔ L = 512].

and chrominance. Given only a single threshold, it is likely
that luminance would dominate the matching process. With
this modification, a match is defined to occur only when the
Manhattan distance for both the luminance and chrominance
components is below their respective thresholds.

The update equations for the cluster weights are un-
changed but we employ a trick to efficiently accumulate the
error terms and update the centroids. As aforementioned, the
error term lies in the range [−L,L − 1]. We can equivalently
shift this range to [0, 2× L− 1] by the addition of L. That is,
we simply shift the origin of the error term from 0 to L. If we
now restrict L to be of the form L = 2B , then the entire range
of the error term can be specified in B + 1 bits. Furthermore,
adaptation of the centroid now occurs when accumulation of
the error term results in overflow or underflow of the B + 1
bits.

Only 8 bits are required to specify any of the components
of Y ′CBCR video. Consequently, if we represent the compo-
nents of the centroids (Y ′1,Y

′
2,CB,CR) by 32 bit integers, then

the remaining 24 bits can be used to accumulate the error
term. This gives a maximum range for B of [0, 23] or, equiv-
alently, L ∈ {1, 2, 4, 8, . . . , 8 388 608}. Recall that L is syn-
onomous with the inverse of the learning rate, α. Therefore,
by manipulating the number of bits that are used to store
L, the user can control the centroid adaptation rate. Accord-
ingly, we shift the components of the centroids upwards by
B+1 bits and use the lower bits to accumulate the error term,
which we initialise to the origin L (see Figure 2). By virtue
of this formulation, when overflow or underflow of the er-
ror term occurs, the centroid is neatly adjusted automatically.
The elegance of this approach is evident in Algorithm 2.

A careful examination of the cluster weight update (1)
reveals some further optimisations. As shown below, if the
weights of a cluster group sum up to one, then after applying
the update equation, they will still sum up to one:

∑

k

w′k =
∑

k

wk +
1
L

∑

k

Mk − 1
L

∑

k

wk

= 1 +
1
L
− 1

L
= 1.

(4)
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/∗ Calculate the number of bits to down-shift. ∗/
bits = B + 1;

/∗ For all clusters in the group. ∗/
for (k = K − 1; k >= 0; k = k − 1)
{
/∗ Compute the luminance distance. ∗/
y dist = abs(grp[k] · Y1− pix · Y1)

+ abs(grp[k] · Y2− pix · Y2);
y dist = y dist� bits;

/∗ Compute the chrominance distance. ∗/
c dist = abs(grp[k] · Cb− pix · Cb)

+ abs(grp[k] · Cr− pix · Cr);
c dist = c dist� bits;

/∗ Check for a match. ∗/
if ((y dist <= y thresh)&&(c dist <= c thresh))
{
/∗ Adapt the matched centroid. ∗/
grp[k] · Y1 += ((pix · Y1− grp[k] · Y1)� bits);
grp[k] · Y2 += ((pix · Y2− grp[k] · Y2)� bits);
grp[k] · Cb += ((pix · Cb− grp[k] · Cb)� bits);
grp[k] · Cr += ((pix Cr− grp[k] · Cr)� bits);
return k;
}
}
/∗ No matching cluster was found. ∗/
return −1;

Algorithm 2: FindMatch (ClusterGroup grp, pixel pix).

Therefore, the cluster weights do not need to be normalised
unless a matching cluster could not be found and a new clus-
ter had to be created. Furthermore, since the weights of the
unmatched clusters are downscaled by exactly the same fac-
tor (i.e., w′k = ((L− 1)/L)× wk), only matching clusters and
newly created clusters will ever be out of order. As the weights
of matched clusters will always increase, the sort operation
can be improved by only sorting in the direction of the higher
weighted clusters.

The core of our algorithm is the cluster matching opera-
tion, pseudocode for which is given in Algorithm 2. The code
for adapting the centroid of a matched cluster has been in-
corporated into the matching code as a subtle optimisation
but this is not mandatory. As described in Section 2, clus-
ter matching is based on the Manhattan distance metric be-
cause of its simplicity. In fact, it is used so frequently that
architecture-dependent optimisations often exist to assist in
its calculation. For example, the introduction of the stream-
ing SIMD (single instructionmultiple data) extensions (SSE)
to Intel’s x86 processors added the PSADBW instruction.
This instruction calculates the sum of the absolute values
of the differences between two packed unsigned byte integer
vectors of length eight. That is, it computes the Manhattan
distance between two unsigned byte integer vectors in one
step. More recently, SSE 2 was introduced which extended
this capability and allows the simultaneous computation of
two different Manhattan distances using 128 bit registers.

In order to understand our approach fully, it is useful
to visualise exactly what is being modeled by the clusters.

As aforementioned, each cluster consists of a centroid (i.e.,
average pixel value), an error term, and a weight, and within
their respective cluster groups they are sorted according to
their weight. Furthermore, those that are weighted higher
have been matched more frequently and consequently are
more likely to represent the background. Therefore, if we
form images from the centroids at the same position within
their cluster group, then intuitively the images should blend
from an image of just the background to an image contain-
ing the foreground and outdated or noise-ridden centroids.
Figure 3 clearly shows that although the blending is not
smooth, the images do transition from the background (k =
3) to a resemblance of the foreground (k = 0) and so inspect-
ing these images is a good method for verifying the correct-
ness of an implementation. Note, however, that this is not the
foreground that is returned by the segmenter as foreground
pixels are only present in clusters that were just replaced.

4. POSTPROCESSING

No practical background segmenter is omniscient. It does
not matter how we have formulated it, we cannot guaran-
tee that errors will not occur. In fact, due to the complexity
of the problem, the opposite is true: errors are likely. There-
fore, it is imperative that steps are taken to detect and elim-
inate these errors. If we consider background segmentation
to be a two-class problem, then logically two kinds of errors
can arise. We define false positives to be regions of the back-
ground that have been incorrectly labeled as the foreground.
Similarly, false negatives are regions of the foreground that
have been labeled as the background. The goal of postpro-
cessing is to reduce the number of false postives and false
negatives without appreciably degrading the speed of the seg-
menter.

As shown in Figure 4, false positives usually resemble
pepper noise and are often the result of noise in the cir-
cuitry of the camera. They are small (1-2 pixel), erroneously
classified regions surrounded by correctly classified back-
ground pixels. Fortunately, these kinds of errors can be very
easily and very quickly eliminated using the morphological
open operation. This operation has the additional benefit of
smoothing the contour of correctly classified regions without
disrupting its shape.

False negatives are typically the result of similarities be-
tween the colours of foreground objects and the background.
Pixel-based approaches are fundamentally incapable of dis-
tinguishing between the foreground and the background if
their colours are too similar (the inability of organisms to
do this is the basis of camouflage). False negatives typically
occur as holes in foreground regions and can be quite large
(see Figure 4). They are not as prevalent at the edges of ob-
jects because discontinuities are often easier to distinguish.
Tightening the luminance and chrominance thresholds (see
Section 3) can help to eliminate them but only at the expense
of more numerous and more severe false positives. A better
approach is to use a connected components algorithm to
find connected foreground regions. Small regions are likely
to be false positives and can be eliminated. Then, holes in the
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(a) (b)

(c) (d)

Figure 3: Centroid images (K = 4 and k is the cluster index): (a) k = 3; (b) k = 2; (c) k = 1; and (d) k = 0.

(a) (b)

(c)

Figure 4: (a) Original; (b) raw segmentation results; and (c) after postprocessing.

remaining regions, which are presumed to be false negatives,
can be filled in. Unfortunately, this approach will also fill
true holes in the foreground objects, but in practice, this be-
haviour is often acceptable.

The postprocessor that we utilise is very simple. First,
pixels that are separated by a single gap are joined. Next, the
contours of all regions that were classified as foreground are

extracted using facilities of the Open CV library.1 If the area
enclosed by the contour is below a user prescribed threshold,

1The Open Source Computer Vision Library is used courtesy of the Intel

Corporation and is available for public download from theWorldWideWeb

at “http://www.intel.com/research/mrl/research/opencv/.”

http://www.intel.com/research/mrl/research/opencv/.
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then it can be eliminated. Any remaining contours are pre-
sumed to border real foreground objects and are retained. If
a binary mask is desired instead, then one can be very easily
obtained by filling within the contours. An example of the
results obtained with this postprocessor is given in Figure 4
and, as shown, it eliminates most, if not all, of the false posi-
tives and the false negatives.

5. EXPERIMENTAL RESULTS

We have evaluated our background segmentation algorithm
against our implementations of three other techiques. Whilst
every effort was made to ensure their correctness, we can-
not guarantee that they are completely free of errors. The
first method,VAR, calculates an average frame and a variance
frame from a buffer of past frames. Each incoming frame is
segmented according to the variance normalised difference
between it and the average frame. The algorithm, GMM1, is
according to the original work of Stauffer and Grimson [16],
whereas GMM2 includes the modifications made by Kaew-
TraKulPong and Bowden [17]. Finally, NHD, NHD64, and
NHD128 correspond to the C, SSE, and SSE2 versions of our
algorithm. The inclusion of assembly language versions may
seem unfair but this detail is often very important for em-
bedded systems designers.

It is unreasonable to expect a user to purchase high-end
or specialised equipment just to use a particular background
segmenter. Consequently, we only used off-the-shelf com-
ponents when evaluating the four algorithms. Our test-bed
consisted of a dual 1000MHz Pentium 3 computer and a
1.8Ghz Pentium 4 computer both with 512MB of RAM.
The qualitative analysis was completed using both machines.
However, only the Pentium 4 computer was used when col-
lecting the timing and processor utilisation results.

For reasons outlined earlier, the choice of camera was
limited to those with manual white balance and manual gain
control. We chose to use two cameras: the low-end Bosch
1153P analog security camera and a more up-market Sony
3CCD camera. However, for the results presented here, the
Sony camera was only used for the stability tests. These
cameras both provide a composite output and as such, the
captured video was subject to cross-luminance and cross-
chrominance artifacts, particularly at sharp edges. We found
that their effect could be reduced by very slightly defocusing
the lens.

5.1. Qualitative analysis

Figure 5 visually compares a few manually segmented frames
from a five-minute sequence with the results obtained from
each of the algorithms. The postprocessor described in
Section 4 was used with each of the algorithms and although
it performs well in general, it is certainly not optimal in ev-
ery possible case. Therefore, it is likely that marginally bet-
ter results could have been obtained by tweaking it but the
improvement would have been minimal and would have de-
pended heavily on the acquisition conditions. From the fig-
ure, it is clear that our algorithm performs qualitatively as
well or better than the other techniques.

5.2. Quantitative analysis

In order to quantify the accuracy of each of the algorithms,
we segmented 30 seconds of video manually. The video was
designed to contain periods of no motion, periods of slow
motion, and periods of very fast motion. The fast motion was
problematic as it introduced motion blur and was difficult
to accurately and consistently segment by hand. Using the
video we were able to calculate false acceptance rates (FARs)
and false rejection rates (FRRs) for each algorithm, where

FAR = # of false positives
# background pixels

,

FRR = # of false negatives
# foreground pixels

.

(5)

Graphs of the FAR and FRR across the entire sequence are
given in Figures 6 and 7, respectively. From Figure 6, we
can see that, in terms of false acceptances, our algorithm is
significantly more accurate than the simple variance-based
segmenter. However, it lags behind both of the remaining
two segmenters. This may seem to contradict the results of
Figure 5 which visually favour our approach but the differ-
ence is only around half a percent and is caused by a slight
growth in the border of foreground regions.

The false rejection rates for our algorithm are clearly
much lower than any of the other techniques. This can also
be seen visually by the lack of holes in the segmentation re-
sults of Figure 5. Every one of the algorithms exhibits an FRR
of 100% for at least one frame in the sequence. This occurs
when the detected foreground region is so small that it is pre-
sumed to be noise and is eliminated by the postprocessor.
Hence, a large FRR is also an indication that an object has
just entered or is about to exit the scene.

5.3. Computational complexity

As aforementioned, a key issue for any segmentation algo-
rithm is its computational complexity. It does not matter
how accurately it may be able to segment if in doing so it
exhausts all of the processor cycles. Table 1 summarises the
run-time performance of the four algorithms including the
postprocessing stage. For our algorithm, we used a group
size of 5 and clearly, given this size, it is approximately two
and a half times as complex as the simple variance-based
background segmenter. However, its complexity remains well
within the capabilities of the hardware and it easily runs in
real time (25 fps for PAL video). Furthermore, the segmenta-
tion results of Figure 5 significantly favour our approach and
our backgroundmodel is adapted on every frame as opposed
to the variance-based segmenter which adapts only once ev-
ery three hundred frames (12 seconds).

5.4. Stability testing

The final test for this evaluation was the stability test. This
test aimed to determine whether or not a given algorithm
would remain convergent when run for a very long time. It
was also the only test for which the Bosch security camera
was not used as it was unavailable. The test was conducted by
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Background segmentation results: (a) original; (b) hand-segmented; (c) VAR; (d) GMM1; (e) GMM2; and (f)
NHD/NHD64/NHD128.

connecting the Sony camera to a computer and running our
algorithm for a period of approximately twenty-four hours.
The background was deliberately arranged to be very clut-
tered. As is shown in Figure 8, it consisted of nearby objects,

far away objects, a glass wall behind which people could walk,
and a computer screen that updated itself periodically. The
background also exhibited a small degree of pseudostation-
arity in the form of a suspended sign at the top right of
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Figure 6: False acceptance rates: (a) VAR; (b) GMM1; (c) GMM2; and (d) NHD/NHD64/NHD128.

the image which fluttered in the wind. In total, over nine
hundred thousand (900 000) frames were captured and seg-
mented. However, due to storage constraints, it was not pos-
sible to save every frame. Unfortunately, this meant that the
likelihood of saving an event of interest was very slim. Never-
theless, Figure 8 contains the segmentation results for frames
captured approximately five hours into the test at which time
the algorithm is clearly convergent.

6. APPLICATIONS

As aforementioned, accurate background segmentation is vi-
tal for many interesting applications. Whilst the previous
section has proved that our algorithm performs well under
laboratory conditions, this does not guarantee it will do so

in a real-world application. The major difficulty arises with
ensuring that enough hardware resources (CPU cycles and
memory) remain after segmentation to do something useful
with the results. Therefore, in this section, we briefly describe
a few developing applications that exploit our technique and
present some preliminary results.

6.1. Gesture recognition

When performing an action, a person’s body undergoes a
signature series of poses. The goal of gesture recognition is
to automatically detect these poses and classify the action.
Clearly, in order to do this accurately, the person must first
be segmented from the background. We have used our al-
gorithm for this purpose in a graffiti detection system that is
being developed at the QueenslandUniversity of Technology,
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Figure 7: False rejection rates: (a) VAR; (b) GMM1; (c) GMM2; and (d) NHD/NHD64/NHD128.

Table 1: Algorithm features and performance.

Algorithm Video format User params.
Frame rate

(fps)
Mem. usage

(MB)
CPU usage

(%)
VAR Y’CbCr 8 25 13.5 14.4

GMM1 [16] RGB 2 10 25.5 99.9

GMM2 [17] RGB 2 22, 13a 27.0 99.9

NHD Y’CbCr 4 25 14.7 40.1

NHD64 Y’CbCr 4 25 14.7 37.0

NHD128 Y’CbCr 4 25 14.7 35.0

aThe initial transient frame rate of the GMM2 algorithm and its steady-state frame rate, respectively.
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(a)

(b)

Figure 8: Stability results: (a) original; (b) NHD/NHD64/NHD128.

Figure 9: The subdivision of the segmentation results in an irregu-
lar grid. The ratio of foreground to background pixels in each of the
blocks captures the spatial distribution of the body.

Australia [20]. The system is trained to distinguish between
passive events and when a person writes on a white board as
this action simulates someone writing graffiti.

As depicted in Figure 9, after segmentation, the region
of interest is divided into an irregular grid. Since we are in-
terested in human actions, especially those consistent with
writing graffiti, the upper portion of the region is more im-
portant and hence contains finer subdivisions. Within each
block, the proportion of foreground to background pixels is
calculated and the resulting ratios are assembled into a fea-
ture vector. Vector quantisation is then used to reduce the
dimensionality of the feature vector into one of five symbols
and the sequence of symbols is classified as a particular event
using a discrete hidden Markov model (HMM).

The system was trained using twenty “graffiti” sequences
and twenty passive sequences, such as, a person stretching
or tying their shoe laces. These sequences were captured in a
small room with varying illumination in order to be consis-
tent with real-world conditions. Once trained, the systemwas
used to identify events from continuous video. Preliminary

Table 2: Graffiti classification.

Sequence Number
of events

Correctly detected False alarms

Person1a 30 24 12

Unknown1 15 8 7

Unknown2 15 5 4

aPerson1 is in the training set, Unknown1 and Unknown2 are not.

results for video containing people in and out of the training
set are summarised in Table 2. Although the algorithm per-
forms quite well when the subject is within the training set,
clearly much more work is needed to improve the accuracy
when they are not. Shadows are by far the greatest source of
error and work is continuing into suppressing them in real
time.

6.2. Interpersonal communications

A further intended use of the proposed algorithm is as a li-
brary function in the Isis multimedia scripting language de-
veloped at theMITMedia Laboratory and theMedia Lab Eu-
rope [21]. This language is used for prototyping networked
applications involving video, audio, and graphics on desk-
top hardware. An example is the reflexion system (previously
reflection of presence), Figure 10, a multipoint conferencing
and collaboration system which turns each user’s screen into
a “digital mirror” in which all the users appear. Active partic-
ipants are composited in the front, while less-active partici-
pants are rendered partially transparent behind them. Ges-
ture and object recognition permits users to interact with
documents or video streams that make up the background.
Other Isis applications under development that require real-
time segmentation include systems for recognizing human
activity in a space, such as, a meeting room and archiving
video of significant events.
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Figure 10: Reflexion combines multipoint conference participants
in a shared space, a task requiring real-time, visually acceptable
segmentation from a desktop PC while leaving enough processing
power for audio mixing, object compositing, and other functions
(image courtesy Stefan Agamanolis, Media Lab Europe).

7. CONCLUSIONS AND FUTUREWORK

The need for fast and accurate algorithms for segmenting
moving objects from arbitrary backgrounds is undeniable.
The algorithm introduced in this article is a general techique
and could be applied to problems as varied as automatic traf-
fic flow analysis and object-based compression. It works by
modeling each pixel in the frame by a group of K clusters
and then adapting the clusters to account for variations in the
background and the ambient conditions. Incoming pixels are
compared against the corresponding cluster group according
to the Manhattan distance which can be implemented very
efficiently. Based on the comparison, a pseudoprobability of
the pixel belonging to the foreground is calculated which can
be thresholded to obtain a binary decision.

We have evaluated all versions of our algorithm against
three other techniques, two of which were drawn from the
literature. Our algorithm demonstrated equal or better seg-
mentation than the other techniques whilst being capable of
processing 320× 240 PAL (25 fps) video in real time, includ-
ing all postprocessing. Furthermore, to achieve this frame
rate, it only utilises between 35%–40% of a 1.8GHz Pentium
4 computer. In terms of false acceptances, it falls around half
a percent behind the Gaussian mixture model-based tech-
niques, but it is consistently better at eliminating false neg-
atives.

The main limitation of our approach is its inability
to distinguish between objects and their shadows. When a
shadow falls upon a background region, its apparent lumi-
nance drops but its chromaticity remains relatively constant
[13]. Therefore, it should be possible to enhance the cluster
matching process by analysing the direction of the luminance
differences as well as their magnitudes. However, at present,
shadows either cause the segmentation boundary to blur or
in the worst case, they are detected as completely different
moving objects. This is a common problemwith background
segmentation algorithms and future work will look at reduc-
ing its impact without significantly increasing the computa-
tional complexity of our algorithm.
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