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José M. Molina
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Automatic surveillance of airport surface is one of the core components of advanced surface movement, guidance, and control
systems (A-SMGCS). This function is in charge of the automatic detection, identification, and tracking of all interesting targets
(aircraft and relevant ground vehicles) in the airport movement area. This paper presents a novel approach for object tracking
based on sequences of video images. A fuzzy system has been developed to ponder update decisions both for the trajectories and
shapes estimated for targets from the image regions extracted in the images. The advantages of this approach are robustness, flexi-
bility in the design to adapt to different situations, and efficiency for operation in real time, avoiding combinatorial enumeration.
Results obtained in representative ground operations show the system capabilities to solve complex scenarios and improve track-
ing accuracy. Finally, an automatic procedure, based on neuro-fuzzy techniques, has been applied in order to obtain a set of rules
from representative examples. Validation of learned system shows the capability to learn the suitable tracker decisions.

Keywords and phrases: fuzzy-knowledge-based system, neuro-fuzzy learning, video image tracking, data association.

1. INTRODUCTION

In airport areas, advanced surface movement, guidance, and
control systems (A-SMGCS) [10] are conceived as new pro-
cedures and technologies to support ground traffic manage-
ment, increasing both safety and efficiency of traffic flow in
complex, high-density airport ground scenarios. One of the
core functions within A-SMGCS is surveillance, in charge
of the automatic detection and tracking of all relevant tar-
gets located in the airport movement area (runways, taxi-
ways, and apron areas). These targets moving in the airport
are generally commercial aviation aircraft and surface vehi-
cles, such as fuel trucks, luggage convoys, cars, and so forth.
A-SMGCS processes data from different types of sensors

to monitor all ground traffic providing controllers with a
periodically updated synthetic image containing all interest-
ing traffic state on the airport surface.

In this paper we will focus on tracking aspects when the
data to be processed are provided by cameras. They act as
noncooperative sensors, so not requiring additional equip-
ment on-board for targets to be controlled. Cameras can be
configured as a set of local installations with high resolution
of the images produced, allowing tracking in dense airport
areas such as inner taxiways and apron. The general archi-
tecture and main blocks integrated in the video surveillance
system were described in [3]. Basically, the system follows a
distributed structure with a local processor operating on the
image sequences provided by each camera. Each processor
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calculates target trajectories (local tracks) in the projected
camera plane by performing two steps. First, moving targets
are detected against their local background to generate de-
tected pixels, connecting them later to form image regions
referred to as blobs. Blobs are defined with their spatial bor-
ders, generally a rectangular box, centroid location, and area.
Then, the tracker must distinguish all targets in the scene and
track their motion, applying association and filtering pro-
cesses to blobs extracted from the processed images.

The traditional association systems use, together with
motion estimation, target position (represented by cen-
troids) extracted from sensor data. Conventional nearest
neighbor systems [5] deal with the assignment between plots
and tracks as if minimizing a global cost function. This func-
tion is computed based on the distance between plots and
predicted tracks (residuals) and known statistical models for
sensor errors. Bayesian extensions of NN, such as multiple
hypothesis tracking (MHT) [5] consider association deci-
sions over several data scans to ensure track continuity under
critical conditions such as presence of false alarms, maneu-
vers, or closely spaced targets. These types of hard-decision
systems assume basic constraints of single plot updating each
track, and no more than one track updated by the same plot,
which are not applicable to the problem at hard.

A possible solution could be the removal of the one-to-
one constraints and the enumeration of all possible grouping
and assignment hypothesis with approaches similar to that
suggested in [11]. However, these types of solutions could
demand excessive computation load to process the frames
in real time and it would not ensure solving some problems
such as the assignation of corrupted blobs resulting from the
mix of several target images. As alternative, an all-neighbors
approach, similar to joint probabilistic data association [5] or
PMHT [12], seems adequate to this problem, since all blobs
potentially gated with each track are used to update it, re-
quiring besides quite lower memory and computation than
MHT approaches. Other approaches apply the expectation-
maximization [8] clustering algorithm for estimating the un-
known correspondence among blobs and tracks. The groups
of cells representing each target are modelled as a mixture of
Gaussian pdf ’s of unknown parameters, so a likelihood func-
tion for those parameters given the measurements are com-
puted at the same time as the unknown correspondence. The
application of EM algorithm transforms the hard assignment
to a continuous problem, numerically solved with a “hill-
climbing” approach. It has been previously applied to data
association for computer vision applications [7], and for a
probabilistic approach to MHT, PMHT [12].

Using a video surveillance system, an explicit represen-
tation of target shape and dimensions seems more adequate
than a simple position to improve the association logic in or-
der to select the set of updating blobs for each track. There
are many approaches for video-based tracking systems based
on regions in the computer vision literature, for instance,
[23, 24]. Some proposals use in addition 3D models of inter-
esting targets which are projected on camera plane, and then
a correlation process allows model identification and extrac-
tion of parameters such as position or orientation [13, 16].

However, these systems require detailed 3D models of all
interesting targets, which may be difficult in heterogeneous
airport scenarios, and they could be computationally expen-
sive in situations with a moderate number of targets.

The approach proposed here does not take advantage of
any 3D information; it uses a generic 2D model based on
moving regions to represent the targets. The central prob-
lem addressed is the correspondence between tracked objects
and extracted regions making use of a spatial shape repre-
sentation and a rule-based system. Besides, the rules also ad-
dress the evolution of shape (it depends on the relative posi-
tion of target with respect to camera plane), which is updated
accordingly to the information received from the images se-
quence.

The updating scheme should be designed considering a
number of factors to overcome all the specific problems and
effects with video data, in order to guarantee the stability of
the tracking output. There are no detailed models or ana-
lytical expressions to design this process, similar to JPDA [9]
where there is full-detailed statistical model of sensor data. As
an alternative, this paper presents a representation of knowl-
edge in order to enhance the tracking performance. An anal-
ysis of continuity performance with different strategies, de-
pending on numeric heuristics describing the possible situ-
ations to solve, may potentially provide robust rules to take
appropriate association decisions [11].

The proposed algorithm estimates a correlation level, as-
sessing the confidence given to every blob for updating every
track, with a number of rules derived from experimentation.
Rules can be obtained by analysis of conventional tracking
systems performance under different conditions, character-
ized with these heuristics values. The rules represent the suit-
able actions to take under a set of particular extreme con-
ditions to guarantee track continuity. Fuzzy reasoning tech-
niques [19, 28] may be adopted to reproduce the system be-
havior under these extreme conditions, and besides gener-
ate the proper output for all intermediate cases. One of the
advantages of this soft approach is that it avoids combinato-
rial complexity, essential to real-time operation with moder-
ate frame rates, since it removes enumeration of hypotheses,
while it is flexible to include specific rules to deal with the
most complex situations. The fuzzy system will compute for
each blob potentially gating each track a weight to be consid-
ered in the track update, so that several blobs can contribute
in final estimation.

Finally, learning techniques can be potentially exploited
to automatically learn and tune the proposed rule system.
A machine-learning procedure (neuro-fuzzy technique) has
been applied in order to extract rules directly from examples,
analyzing the capability to provide right decisions in different
conditions.

The rest of paper is organized as follows. In the next sec-
tion, the particular association problems in this type of appli-
cation are summarized and taken as the objective of design.
Section 3 presents the representation of target shape and the
heuristics considered to describe the image characteristics.
The fuzzy approach to evaluate the confidence levels used
to update estimators describing targets shapes and motion
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Blobs

Figure 1: Blob-to-track association problem.

parameters is presented in Section 4, including the learn-
ing approach based on a neuro-fuzzy technique. Section 5
is dedicated to evaluation, and the system output in several
scenarios is analyzed indicating the response for complex sit-
uations with real image sequences of representative ground
operations. The end of this section is related with the ap-
plication of the learning method and the evaluation of the
learned rules. Finally, some conclusions and future work are
presented in Section 6.

2. THEMULTITARGET TRACKING PROBLEM IN
VIDEO SURVEILLANCE SYSTEMS

As mentioned above, the design of a multitarget tracking sys-
tem must address the data association logic [5], which is the
focus of interest in this case of video data processing. Its de-
sign must take into account the characteristics and quality of
data resulting from the detection subsystem. In this case, data
are the blobs resulting from the detection subsystem applied
on image sequences of airport surface scenes.

Figure 1 shows an example where a single target (an air-
craft) is the source for five blobs separated from the back-
ground. When processing video output in dense airport ar-
eas, each available frame presents a set of blob-to-track mul-
tiassignment problems to be solved, where several (or none)
blobs may be assigned to the same track and simultaneously
several tracks could overlap and share common blobs.

So the association problem to solve is the decision of
the most proper grouping of blobs and assignation to each
track for each frame processed. The characteristics of data
to be processed, blobs detected in image sequences of air-
port surface areas, have been taken into account to develop
the image-based tracking system. Due to image irregularities,
shadows, occlusions, and so forth, a first problem of imper-
fect image segmentation appears resulting in multiple blobs
potentially generated for a single target. This splitting effect
occurs with extraneous surface objects such as luggage con-
voys, or presence of irregular shadows, and especially when
obstacles or other targets appear between the interest target
and camera. So, blobs must be reconnected before track as-
signment and updating. This problem might be easily solved
in single-target scenarios using a blob-grouping algorithm
based on the blobs associated to the track in previous frames,
defining a spatial gate for each track. However, when multi-
ple targets move closely spaced, their image regions interact
and overlap causing some targets to appear occluded by other

xmin xmaxGated blobs

x̂p l̂H

ymin

ymax

l̂V
ŷp
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Figure 2: Target segmentation with estimated box.

targets or obstacles, so that some blobs can be shared by dif-
ferent tracks. So, a blob-to-track multiassignment problem
has to be solved, where several blobs could be assigned to the
same track and simultaneously several tracks could overlap
and share common blobs. The key trade-off to be considered
in the system performance can be summarized in the follow-
ing two aspects, which represent conflicting requirements:

(1) it must group the different blobs representing a single
target to avoid track-splitting effects. Grouping must
adapt to gradual variations in targets sizes and shapes
due to changes in distances and orientations of targets;

(2) when different targets approach one another, it should
avoid mixing their close image regions since their
tracks can be wrongly updated or even one of them
discarded resulting in an erroneous single track in-
cluding more than one target.

Besides, the case of no plot updating the track (track pre-
dicted) is also weighted and included to generate the final
pseudomeasure to update the track. If more than one blob
is within track gate, their centroids are combined after, using
their areas as weighing factors to finally update the track.

Finally, a recursive filter is used to update both centroid
position and velocity for each track from the sequence of as-
signed values, by means of a decoupled Kalman filter for each
Cartesian coordinate, with a piecewise constant white accel-
eration model [5]. So, the association of blobs to tracks de-
termines the evolution of tracks representing the targets. The
logic included in the fuzzy system is mainly intended to keep
tracks continuity in real conditions.

3. REPRESENTATION OF TARGETS SHAPES AND
ASSOCIATION HEURISTICS

In the developed visual tracking system, track-state vectors
with position and cinematic estimates (2D location and ve-
locity referred to the camera plane) are complemented with
attributes defining a spatial representation of target exten-
sion and shape. So, the predicted target contour is used to
gate blobs extracted in next frame.
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Figure 3: Overlapping degree heuristic.

For the sake of simplicity, a rectangular box has been
used to represent the target, as indicated in Figure 2. Around
the predicted position, (x̂p, ŷp), a rectangular box is defined,
(xmin, xmax, ymin, ymax), with the estimated target dimensions
(l̂H , l̂V ). Then, an outer gate, computed with parameters ∆H ,
∆V , is used to finally gate the potential blobs updating the
track estimates.

This outer gate allows the system to track dynamic vari-
ations in target shape along the sequence for targets not
perfectly matching the predictions due to variations in pro-
jected shape (changes of orientation, distance, etc.), or ma-
neuvers. Besides, it avoids the initialization of tracks around
existing ones, potential source of instabilities. The process of
shape update with new information should reach a trade-off
between the conflicting requirements presented in previous
section: it must reconnect the different blobs representing a
single target to avoid track-splitting effects and, when dif-
ferent targets approach one another, it should avoid group-
ing their image regions since their tracks could be wrongly
updated. So, the shape must be dynamically updated with
the information contained in blobs, but the changes must
be smooth, avoiding instabilities in scenarios with closely
spaced targets.

The final weight of gated blobs in the update phase
should take into account the aspects mentioned before. Al-
though there is not any closed expression doing that, sim-
ilar to statistical residuals, some numeric heuristics, com-
puted with simple geometrical analysis of blobs and pre-
dicted tracks, have shown to provide helpful indications to
be considered. They can be used to asses the confidence given
to each blob after it is included into a certain group, and also
to assess confidence in predicted track. They were detailed in
[11], and are summarized as follows.

(1) Overlapping heuristic: this component can be seen as
a “soft gating,” computed as the fraction of blob area con-
tained within track-predicted region. Maximum value, 1,
is given when blob is completely included within an inner
track-predicted gate, andminimum, 0, when blob is out of an
outer track region (see Figure 3). Both regions for each track
allow adaptive grouping for targets not perfectly matching

Ix
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Area 1

Area 3

Area 2
Blob 1

Blob 2
Centroids

Figure 4: Group density after blob reconnection.

Track 2 Conflict-free
blobs

Track 1Blob in conflict

Figure 5: Blob in assignment conflict with two tracks.

predictions due to variations in projected shape (changes of
orientation, distance, etc.), or maneuvers.

(2) Group density and distance to track: this heuristic, ρ,
evaluates the ratio between areas of detected regions and
nondetected zones (holes) in the box enclosing the finally re-
connected pseudoblob (see Figure 4). ρ =∑i Areai/(lxly). So,
in the case that the blobs grouped are very scattered, a low
value of ρ will indicate that different targets probably have
originated them.

To do that, a criterion based in the distance to track is
used to finally compute this heuristic whose values fall from
1, when distance is zero, to ρ, for the most separated blobs, so
that they would be practically discarded when density is low.

(3) Conflict with other tracks: this component evaluates
the likelihood of blob being in conflict with other tracks. This
problem appears when target trajectories are so close that
track gates get overlapped and share the blob, as depicted in
Figure 5.

Evaluation of blob conflict degree is completely equiva-
lent to the first heuristic, overlapping, but computed with the
other existing tracks. In the case that more than one track are
in conflict, the maximum overlapping degree is selected.

(4) Proximity to image borders: finally, image borders are
the areas where tracks are usually initialized, and so they are
transient areas where tracks are not stabilized yet. This num-
ber evaluates if the blob is close to any of the four image bor-
ders.

These heuristics provide useful information to be consid-
ered when assessing the confidence that may be given to each
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blob before track update. Additionally, the predicted track
may be also characterized with some heuristics, indicating
the confidence given to the fact that this track represents mo-
tion of a real target. These track heuristics detect when it may
be deviating from the real trajectory.

(i) Number of missed updates: it is the number of consec-
utive frames where no blob was included into track in-
ner gate.

(ii) Track detected area: conversely to blob overlapping
heuristic, it is the proportion of area, within predicted
inner gate, filled with blobs detected in current frame.

(iii) Proximity to image borders: this value is equivalent to
the one computed for blobs.

4. FUZZY SYSTEM FOR UPDATING TARGETS SHAPES

Heuristics defined above are the input to unknown relations
computing the confidence levels both for blobs and predicted
tracks in the update process. A rules system based on fuzzy
logic has been developed in order to approximate these rela-
tions. The first step to build this system should be the selec-
tion of adequate descriptions of heuristics and rules relating
them with the outputs: confidence levels for blobs and pre-
dictions. The inputs (heuristic values) are translated into lin-
guistic variables. Using these concepts, for heuristic hi, a lin-
guistic variable Lhi is introduced together with its set of val-
ues {lhi1, lhi2, . . . , lhimi}, whose cardinality is mi. Each term
lhi j in the set, labels a fuzzy subset in the universe of dis-
course Hi, with membership function µlhi j (hi). A fuzzy rela-
tional algorithm (FRA) will store the knowledge required to
obtain the final confidence level, CONF, both for blobs and
tracks involved in each decision. It is composed of a finite set
of fuzzy conditional statements of the form IF {Lhi is lhi j}
THEN {LCONF is lαk}, where LCONF is a linguistic variable
representing blobs or track confidence levels, with a set of
possible values {lα1, . . . , lαn}. TheMamdani implication [17]
has been chosen. Finally, α is the defuzzification of LCONF,
and CONF represents its numerical domain (universe of dis-
course of LCONF). The adopted defuzzification process on
LCONF will be a modified version of the center of gravity
procedure [29].

Target’s estimated shape will vary very smoothly, accord-
ingly to confidence levels of gated blobs. The estimated po-
sition (measured centroid to update track vector) will de-
pend both on these blobs confidence levels, αbi, and on pre-
dicted track confidence, αp, in order to avoid losing tracks
when they deviate from real trajectory. So, estimated shape
(dimensions of box) is the most constrained feature, remain-
ing “locked” while the blobs confidence levels are not high
enough, while estimated position (where the bounding box
is located) will be a trade-off between confidence levels esti-
mated both for blobs and tracks.

With the rectangular simplification considered, only two
shape parameters are estimated: length, width (l̂H , l̂V ). If we
consider horizontal coordinate, the two gated blobs with
the minimum and maximum extremes for coordinate x,

(xbmin, xbmax) are taken into account. Denoting their as-
sociated confidence levels, computed by fuzzy system, as
α1H , α2H , the minimum and maximum values are obtained:
αminH = min[α1H ,α2H]; αmaxH = max[α1H ,α2H].

First, the target horizontal length is updated considering
the minimum blob confidence value, αminH :

l̂H[k] = αminH
(
xbmax − xbmin

)
+
(
1− αminH

)
l̂H[k − 1].

(1)

So, the estimated target length will be modified only in
the case where both blobs have enough confidence. Then, the
estimated target bounds (location of box) are updated from
the blob with the highest confidence, αmaxH , considering
also the value for track confidence, αp. It is required that αp

reaches aminimum threshold, Tp, to weight the track predic-
tion with the blob having highest confidence. In other case,
track prediction is discarded, and box is positioned aligned
with the best blob, in order to avoid track lost when de-
viation between predictions and detected regions increases.
For instance, if left-hand side blob defining value xbmin had
the highest confidence, the estimated target bounds would be
updated as follows.

(i) αp > Tp:

x̂min[k] = αmaxHxbmin

+
(
1− αmaxH

)(
x̂min[k − 1] + v̂x[k − 1]T

)
,

x̂max[k] = x̂min[k] + l̂H[k].

(2)

(ii) αp < Tp:

x̂min[k] = xbmin,

x̂max[k] = x̂min[k] + l̂H[k].
(3)

(x̂min[k − 1], x̂max[k − 1]) are the horizontal bounds in last
update, v̂x[k − 1] the horizontal velocity estimated by track-
ing filter, l̂H[k] the value computed in (1), and T the time
elapsed. Tp is the threshold on track confidence. Similar con-
siderations are made for the other possible case (right-hand
blob) and for the vertical dimension update.

Figure 6 shows an example of track shape update with
two targets overlapping, and performing maneuvers (track
1 represents a target accelerating and track 2 decelerating).
Due to the conflicting blob, dimensions of both tracks re-
main locked in this frame, but bounds are computed to con-
form to the conflict-free blobs (with high confidence levels
for association). So, the biases produced by maneuvers are
corrected.

Finally, the measured target centroid used to update the
estimated track vector is extracted from the set of blobs gated
in the updated track contour, after applying the logic ex-
plained above to generate target bounds. To do that, only
the portion of blobs within the track box are considered, and
they are weighted with their areas, xa = ∑i xiAi, as indicated
in Figure 7.
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Figure 6: Shape update with conflicts and maneuvers.

l̂H

l̂V

Pseudoblob

Area 1

Area 3

Area 2Blob 1

Blob 2

Blob 3

Pseudoblob
centroid xa

Gated blobs centroids

Figure 7: Centroid computation.
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Figure 8: Membership function for overlap input.

The first implemented system had the seven inputs men-
tioned (overlap, density, conflict, border, track misses, track
overlap, and track border) and two outputs, correlation level
for blob,αb, and track weight, αp. Each linguistic variable was
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Figure 9: Membership function for blob correlation output.

defined with three fuzzy sets: small (S), medium (M), and
large (L). The membership function for them is indicated in
Figure 8, common for all inputs, and Figure 9, for output αb.

The rules were the following:

(i) overlap is small => correlation is small,
(ii) density is small => correlation is small,
(iii) conflict is large => correlation is small,
(iv) conflict is medium => correlation is small,
(v) (overlap is medium), (density is medium), and (con-

flict is small) => correlation is medium,
(vi) (overlap is medium), (density is large), and (conflict is

small) => correlation is medium,
(vii) (overlap is large), (density is medium), and (conflict is

small) => correlation is medium,
(viii) (overlap is large), (density is large), and (conflict is

small) => correlation is large,
(ix) border is large => correlation is large.

This first system was manually set by analysis of tracking per-
formance. Next, a data analysis was performed to automati-
cally tune the fuzzy sets and rules, as indicated next.

4.1. Rule extraction using neuro-fuzzy techniques

An automatic learning procedure could be applied as an al-
ternative to the manual derivation of the fuzzy rules from
the expert knowledge, or to tune the labels’ membership
functions of linguistic variables used to represent the knowl-
edge. Although many proposals have been developed based
on neural networks [6] or in genetic algorithms [18], the
fuzzy systems with learning techniques based on neural net-
works showmathematical consistence and have been applied
profusely in many applications [14].

The techniques based on neural networks are named
neuro-fuzzy systems and they are usually represented as a
multilayer feedforward neural network [27]. A neuro-fuzzy
system is a fuzzy system that is trained by a learning algo-
rithm, usually related with neural network training methods.
The learning process may be purely data driven or combined
with a previous-knowledge-based system. In any case, the re-
sulting neuro-fuzzy system will be interpreted as a system
of fuzzy rules, so the learning procedure takes the semantic
properties of the underlying fuzzy system into account (e.g.,
with constraints on the possible modifications of systems pa-
rameters).
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Two approaches of neuro-fuzzy systems exist. The first
type uses differentiable operators in the fuzzy system to apply
gradient descent procedures. These systems, such as ANFIS
or GARIC, generate fuzzy systems that are not easy to inter-
pret. The ANFIS model by Jang [15] implements a Sugeno-
like fuzzy system [26] in a network structure, and applies a
mixture of backpropagation and least-mean-square proce-
dure to train the system. The GARICmodel [2] uses a special
“soft minimum” function which is differentiable.

The second type of neuro-fuzzy system uses max-min
operators and the learning procedure is heuristic, these sys-
tems are easy to interpret as the systems developed by Nauck
and Kruse: NEFCLAS [20] and NEFCON [21]. The neuro-
fuzzy system developed by Nauck and Kruse learns a fuzzy
system in several steps. In the first place, it builds the fuzzy
rule base using a labeled data set and a fuzzy classifier. Each
fuzzy rule is a multidimensional fuzzy set covering a hyper-
box in the data space. The membership degree of a cluster is
the degree in which an individual pattern belongs to the clus-
ter. The second step, starting with the learned rules (learned
clusters), is the refinement of the membership functions to
adjust the membership degree to the data set. This algorithm
depends on the shape of the membership function (in the
available software NECFLASS there are triangles, trapezoids,
and bell-shaped functions). Finally, the last step is used to
prune the fuzzy rule base. The pruning algorithm reduces the
number of rules selecting the best rules and deleting the re-
dundant ones.

The idea of the learning algorithm, see [22], is to create a
rule base first and then to refine it by modifying the initially
given membership functions (usually fuzzy partitions of in-
put and output variables). The rule base is created by finding
for each pattern in the training set a rule that best classifies it.
If a rule with an identical antecedent is not already in the rule
base, it will be added. The learning algorithm of the mem-
bership functions uses the output error that tells whether the
degree of fulfillment of a rule has to be higher or lower. This
information is used to change the input fuzzy sets by shifting
the membership functions and making their supports larger
or smaller. There are defined different shapes for fuzzy mem-
berships (triangles, bells, etc.), and all of them can be easily
modified with parameters. Constraints are defined here for
the learning procedure (fuzzy sets must not pass each other
or that they must intersect at 0.5, etc.), in order to obtain an
interpretable rule base. After the rule learning algorithm has
terminated, the predefined fuzzy partitioning on both input
variables defines a partitioning of the input space created by
overlapping hyperboxes where each hyper-box is formed by
the Cartesian product of the supports of the defined fuzzy
sets (the number of sets is predefined). Each hyper-box rep-
resents the support of an n-dimensional fuzzy set which is
the antecedent of a fuzzy rule.

The fuzzy sets are trained by a backpropagation-like al-
gorithm, the error is propagated from the output units to-
wards the input units and is used to change the membership
function parameters, but there is no gradient information in-
volved. The adaptivity of an NEFCLASS system is restricted
because of the initially given input fuzzy partitions, which

define the form and maximal number of clusters, and by the
constraints that do not admit certain changes in the fuzzy
sets.

Finally, to interpret a fuzzy rule base it is important that
there are as few rules as possible and that superfluous vari-
ables are not used in the rules. NEFCLASS defines pruning
techniques to improve the rule base automatically. Besides,
each of these pruning strategies can be interactively applied
by the user with a graphical rule editor. Some of the strategies
are related to rule evaluation (the rule learning procedure is
invoked to keep only the best k rules) or to input deletion
(the correlations of the input variables with the class infor-
mation are computed in order to remove input variables with
the worst correlation to the output).

In this paper, the fuzzy system for association usedMam-
dani implication [17] because the fuzzy system interpolates
a generic function (the association function) without ana-
lytical expression. The Nauck/Kruse neuro-fuzzy approach
was applied because it uses directly this type of implication
and the method was developed for this type of fuzzy system.
The goal of learning here was the suitable decision for each
blob association to each track under different situations. The
heuristic descriptors presented in Section 3 are used as input
variables and the right decision, among three possibilities, is
the available output, so it is a supervised learning. The de-
tails of learning process and the results about the capability
of generalization from examples in this application are pre-
sented at the end of following section.

5. EXPERIMENTS AND PERFORMANCE RESULTS

This section presents some results about the performance
of the developed video tracking system with real data from
some sample scenarios. The evaluation of video tracking sys-
tems is an important aspect since it may require plenty of
effort, especially when manual generation of ground truth
is done. There are different approaches for performance as-
sessing in the literature. The most direct is using manual
mark-up of all samples, obtaining the “ideal” segmentation
of all interesting targets from the background; there are avail-
able standard video sequences for test containing the ground
truth, such as the PETS (performance evaluation of track-
ing systems) collections [23]. Other approaches make use of
synthetic data or hybrid combinations of synthetic and real
samples, such as [1, 4, 25].

This paper presents some demonstrative evaluation re-
sults, obtained with a direct supervision process, that illus-
trate the system’s capability to cope with complex situations
and include symbolic knowledge in the design. The only
ground truth data generated were the labels for blob associ-
ations in some situations where learning was applied, leav-
ing a more exhaustive evaluation and tuning for a future
work. First, qualitative results are presented for continuity in
some typical situations representing hard conditions of op-
eration. Then, some quantitative results with accuracy are
presented, comparing the fuzzy system with an ad-hoc sys-
tem with hard-decisions for association, where the trajecto-
ries for comparison were approximated with least squares.
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(a)

(b)

Figure 10: Single-target scenario 1. (a) t = 15 and (b) t = 124.

Finally, the section is closed presenting the automatic learn-
ing of association rules from data with a neuro-fuzzy model,
and assessing the quality of learning in terms of generaliza-
tion.

5.1. Continuity

First, the tracking output (estimated targets shape and cine-
matics) is presented for some representative scenarios, where
the fuzzy association rules solved the most representative
types of problems that can appear in the airport area. In
all cases, blobs resulting from segmentation are always rep-
resented by dashed rectangles, with centroid location indi-
cated with a circle. Tracks, predicted to the time instants of
blobs detections, are represented by asterisks, vector veloc-
ity, and a solid rectangular target contour (inner correlation
gate). Axis units are image pixels, and the time units are the
frame numbers, with an average rate of 3 frames per sec-
ond.

5.1.1. Scenario 1: single-target scenario

This situation has an aircraft detected, without other close
targets, which performs a double turn to change the taxiway
in which it is moving. In Figure 10, there are pictures for time

instants before and after the maneuver. System output in six
time instants is presented in Figure 11. The shape and area
are continuously adapted to target dynamic evolution, and
fragmented blobs are correctly reconnected, with maximum
confidence levels.

5.1.2. Scenario 2: conflicts with two targets,
nomaneuvers

In this case, two aircrafts are moving in parallel taxiways
and, due to the low depression angle, their images get mixed
when they cross (Figure 12). System output in four represen-
tative time instants is presented in Figure 13. While targets
are close, detection system extracts a single blob for two tar-
gets (t = 47, t = 49). The confidence level is lowered due
to the conflict heuristic, and tracks shape and velocities are
not affected during this interval. In t = 50, conflict degree
is lower, confidence increases, and tracks are again updated
with blobs.

5.1.3. Scenario 3: conflicts and occlusions

In this case, Figure 14 presents a situation where two ef-
fects, track conflicts and splits, due to occlusions, appear.
A luggage convoy is partially occluded by an aircraft tail,
and at the same time a high-speed van is moving in oppo-
site direction. As shown in Figure 15, in time instants 113,
118, two blobs appear (indicated with discontinuous boxes),
one as result of partial occlusion, and other in conflict with
both tracks. Tracks shapes and locations are updated with
blobs accordingly to confidence levels given basically by con-
flict degree, so the situation is correctly solved (tracks are
displayed with continuous boxes and velocity vector super-
posed).

5.1.4. Scenario 4: conflicts and occlusions

In Figure 16, a multiple blob reconnection scenario is de-
picted. There is an aircraft moving from right to left, with oc-
clusions due to a stopped bus and an aircraft located in front.
As a consequence, multiple blobs representing different parts
of aircraft and its shadow appear (see Figure 17, blobs are the
discontinuous boxes with circles), and those are connected
to update the aircraft track, without track-splitting effects.
There are two continuous boxes representing the tracks for
the aircraft and for an upper vehicle moving in a parallel in-
ner taxiway, and the conflicts due to interactions when blobs
are overlapped are correctly solved.

5.1.5. Scenario 5: conflicts andmaneuvers

In this scenario, two aircrafts moving on inner taxiways
between airport parking positions and maneuvering areas
cross, as shown in Figure 18, and their images get mixed dur-
ing 25 frames. Besides, both aircraft turn during the con-
flict interval changing their orientations. System output, with
zoom in the interest targets, is shown in Figure 19 for four
interest time instants. We can notice that the extracted blobs
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Figure 11: Shape evolution with single-target scenario 1: (a) t = 15, (b) t = 50, (c) t = 75, (d) t = 100, (e) t = 116, and (f) t = 124.

Figure 12: Constant-speed track conflict in scenario 2.

mix image regions from the two targets. In frame 90, due to
conflict, a single discontinuous box melts the two aircrafts.
The fuzzy system successfully avoids updating with the cor-
rupted blobs and, as soon as targets separate (from frame 109
on) tracks (continuous boxes) are gradually updated to fol-
low their respective trajectories.

5.1.6. Scenario 6: conflicts andmaneuvers

Now, in the next example, three vehicles are moving on
a road and approach one another until their images get
overlapped, while at the same time one of them performs
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Figure 13: Shapes with a two-target conflict and constant velocity, scenario 2: (a) t = 44, (b) t = 47, (c) t = 49, and (d) t = 50.

Figure 14: Track conflict and occlusion in scenario 3.

a deceleration maneuver. A van (white) and a vehicle move
from left to right, and another vehicle is moving from right
to left. As depicted in Figure 20, images from three vehicles
overlap when the first vehicle moving from left to right stops
in front of the aircraft. Figure 21 indicates some of the most
important time instants, the blobs extracted by detector, and
the tracks updated accordingly to the rules activated.

5.2. Accuracy

Here some comparative results about accuracy in two scenar-
ios are presented, comparing the fuzzy systemwith an ad-hoc
system with hard-decisions for association.

(i) Update with all blobs included in the gate if group den-
sity is higher than 0.7. Otherwise, remove the farthest
blobs from the group.

(ii) If two or more tracks share any conflictive blobs, pre-
dict them without update.

Accuracy is defined by means of the root mean squared
error (RMS) in the estimator for each coordinate. However,
the analysis was performed over real data, without any refer-
ence trajectory available to compute the errors. To overcome
this difficulty, a linear trajectory with uniform motion has
been selected to reasonably estimate a least squares approxi-
mation from the track estimators as a reference to compute
the errors.
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Figure 15: Output with reconnections and conflicts, scenario 3: (a) t = 116, (b) t = 113, (c) t = 118, and (d) t = 120.

Figure 16: Target splitting in scenario 4.

Errors in scenario 4

First, the trajectory estimated for the aircraft in the 4th
scenario above has been used to compare both systems.

Target dimensions, available in the blobs extracted from im-
ages, normalize the errors and so they are expressed as frac-
tions of target size in each coordinate (%). In that scenario
there was an aircraft moving from right to left, with partial
occlusions from a bus and an aircraft stopped in front. As a
consequence, multiple blobs representing different parts of
aircraft and its shadow appear, which are grouped to update
the aircraft track (Id = 18), without splitting effects. Figure 22
shows the estimated trajectories (X , Y coordinates against
processed frames) with fuzzy association (circles) and pre-
vious system (triangles), and an LS-approximated trajectory
(dotted line). The normalized magnitude of error with re-
spect to the straight line for X and Y coordinates is shown in
Figures 23 and 24, respectively, comparing fuzzy and previ-
ous systems, which are represented by solid and dashed lines.
RMS values, averaged along the time duration of trajectory
are indicated too. As it can be seen, an improvement of 35%



2352 EURASIP Journal on Applied Signal Processing

200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

(a)

150 200 250 300 350 400 450 500 550

150

200

250

300

350

400

(b)

150 200 250 300 350 400 450 500

150

200

250

300

350

(c)

150 200 250 300 350 400 450 500
150

200

250

300

350

(d)

Figure 17: Blob reconnection with scenario 4: (a) t = 89, (b) t = 96, (c) t = 99, and (d) t = 102.

Figure 18: Low-density blob grouping and maneuvers in scenario
5.

in vertical accuracy appears with the new system, due to the
fact that this track is more stable now, after integrating the
fuzzy combination of blobs to be grouped.

Errors in scenario 5

In that scenario two aircrafts cross and their images getmixed
with association conflicts for an interval of 25 frames (frames
90 to 113). In frame 95, where an aircraft is clearly occluded
by another, fuzzy system successfully avoids update with cor-
rupted blobs due to conflict, (frame 101), but as soon as

targets separate (from frame 105), tracks are gradually up-
dated to follow the trajectory. The output of both systems
is displayed in Figure 25. The rigid system with extrapola-
tion during conflicts clearly separates from real trajectory,
due to maneuver during the conflict interval. This fact is il-
lustrated in Figure 26, depicting the horizontal and vertical
residuals with both systems (fuzzy with solid line, and pre-
vious one with dashed). In this case with maneuver it is not
applicable using a linear approximation of trajectory, and so
the residuals (difference between blobs centroids and track
predictions) have been shown for evaluation.

5.3. Rules extractionwith neuro-fuzzy techniques

Finally, here we present some results of automatic learning
after applying the Nauck/Kruse neuro-fuzzy approach, de-
scribed in Section 4.1, to learn rules from data. Three scenar-
ios were selected from the set presented in Section 5.1 con-
sidering representative situations such as image splitting in
segmentation, occlusions, and overlapping in order to get a
robust system able to attain acceptable behavior in the gen-
eral case. The three possible outputs considered for blob con-
fidence regarding track parameters update were discard, low,
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Figure 19: Shape evolution with scenario 5: (a) t = 86, (b) t = 90, (c) t = 109, and (d) t = 118.
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Figure 20: Blob reconnection and occlusions with scenario 6: (a) t = 29, (b) t = 35, (c) t = 42, and (d) t = 55.
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Figure 21: Tracker output in scenario 6: (a) t = 29, (b) t = 35, (c) t = 42, and (d) t = 55.
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Figure 22: Estimated and approximated trajectories for track 18.

high. So, for each detected blob located around the target
bounds (predicted by the tracking system), the three possible
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Figure 23: Horizontal error with respect to straight line.

decisions were as follows: accept the blob and update the
estimated track parameters (high), if the blob information
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Figure 25: Estimated Y coordinate with both systems in scenario 5.

is reliable and only referred to the represented target; dis-
card the blob (discard), if it clearly comes from a different
source; or partially update the track (low), when the blob
has information about target but it is corrupted by effects
such as occlusion or overlapping. The learning process then
obtained a “synthetic” fuzzy system connecting these labels
with the heuristics variables describing different situations.
The three selected scenarios used to do that were the follow-
ing.

(i) Scenario 2. Pairs of aircraft moving in parallel taxi-
ways, with their images getting overlapped when they
cross. The confidence level of blobs in such situations
must be lowered to avoid degradation of estimated
shape and kinematics of targets.

(ii) Scenario 4. Multiple blob reconnections. An aircraft
is moving behind stopped vehicles and aircraft, which
occlude it while other vehicles move in close parallel
roads. Multiple blobs representing different parts of
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Figure 26: Residuals of both tracking systems in scenario 5: (a) hor-
izontal residual (%) and (b) vertical residual (%).

aircraft and its shadow appear. These blobs must be
grouped to update the aircraft track, avoiding split-
ting effects. Besides, images from other vehicles must
be kept separated guaranteeing track continuity for all
targets.

(iii) Scenario 6. Three vehicles were moving on a road,
approaching one another until their images overlap,
while at the same time one of them performs a decel-
eration maneuver.

For each frame in these scenarios, the blobs and tracks
were used to compute the heuristics, while the label describ-
ing the confidence category of blob (ground truth) was man-
ually assigned from direct observation. The set of rules gen-
erated with all available data (around 250 frames, with 700
instances composed of 6 attributes and output), and using
bell-shaped sets appears in Figure 27.
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(i) If overlap T is large, density is medium, proximity is large, conflict is small, border is small, and overlap I is large,
then high.

(ii) If overlap T is large, density is large, proximity is large, conflict is small, border is small, and overlap I is large,
then high.

(iii) If overlap T is large, density is medium, proximity is large, conflict is small, border is medium, and overlap I is
large, then high.

(iv) If overlap T is large, density is large, proximity is large, conflict is small, border is medium, and overlap I is large,
then high.

(v) If overlap T is small, density is large, proximity is large, conflict is large, border is small, and overlap I is large,
then discard.

(vi) If overlap T is small, density is medium, proximity is medium, conflict is medium, border is small, and overlap I
is large, then discard.

(vii) If overlap T is small, density is medium, proximity is medium, conflict is large, border is medium, and overlap I
is large, then discard.

(viii) If overlap T is small, density is medium, proximity is medium, conflict is large, border is small, and overlap I is
large, then discard.

Figure 27: Rules automatically obtained.

Table 1: Accuracy of rules generated with different subsets of data.

Test

Training
S2

(22–43)
S2

(44–52)
S2

(53–88)
S4

(61–67)
S4

(72–137)
S4

(115–120)
S6

(40–63)
S6

(64–85)
S6

(86–111)
S6

(112–136) All

S2 (22–43)
— 36.7 89.5 33.3 91.6 28 88.2 48.4 46.2 73.8 61.9

— 43.3 94.7 53.3 99 44 94.1 60.5 65.1 100 76

S2 (44–52)
100 — 94.7 63.3 92.6 56 88.2 68.6 63.9 73.8 76.2

93.5 — 81.6 63.3 74.7 64 79.4 67.7 60.3 70.2 70.2

S2 (53–88)
100 83.3 — 73.3 92.6 68 91.2 76.6 69.2 76.2 78.8

100 86.7 — 86.7 100 84 94.1 96.8 94.7 100 95.7

S4 (61–67)
100 83.3 94.7 — 94.7 56 91.2 74.2 70.4 77.4 80.7

96.8 90 96.1 — 84.2 80 82.4 67.7 74.6 96.4 81.2

S4 (72–137)
100 43.3 89.5 33.3 — 28 88.2 50 50.3 94.1 63.9

100 43.3 94.7 53.3 — 44 94.1 60.5 65.1 100 73.7

S4 (115–120)
100 83.3 94.7 63.3 94.7 — 91.2 85.8 73.4 75 83.4

100 86.7 96.1 76.7 92.6 — 91.2 95.1 89.4 73.8 89.6

S6 (40–63)
100 43.3 94.7 43.3 93.7 28 — 53.2 53.3 77.4 67.2

100 43.3 94.7 53.3 99 44 — 60.5 65.1 100 76.2

S6 (64–85)
100 83.3 100 73.3 92.6 60 91.2 — 75.7 77.4 83.8

100 86.7 100 86.7 96.8 84 94.1 — 91.7 85.7 92.5

S6 (86–111)
100 83.3 94.7 63.3 94.7 72 91.2 84.7 — 75 85.8

100 86.7 100 86.7 99 76 94.1 96 — 100 95.9

S6 (112–136)
100 43.3 94.7 43.3 93.7 28 94.1 55.7 56.8 — 68.7

100 43.3 94.7 53.3 99 44 94.1 60.5 65.1 — 73.9

Repres. 1
100 — — 63.3 94.7 68 91.2 — 75.2 75 80.8

100 — — 76.7 100 84 97.1 — 94.1 97.6 94.9

Repres. 2
— 100 94.7 — 94.7 72 91.2 87.1 — 76.9 88.4

— 86.7 100 — 96.8 84 97.1 97.6 — 83.3 93.8

All
— — — — — — — — — — 84.1

— — — — — — — — — — 93.3

No. instances 31 30 76 30 95 25 34 124 169 85 699

We can compare these rules with the ones directly set
to represent the “expert knowledge” in Section 4 and no-
tice their similarities. As it can be seen, the most important
attributes to classify blobs are again conflict degree and over-

lapping with track. Besides, in order to analyze the quality
of the classification scheme and its capability to predict the
tracker decisions, the whole data set was split in subsets for
validation of learned rules. The three scenarios were divided
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into ten groups, depending on the characteristics of each se-
quence (segments without conflicts, segments with occlu-
sions, with bad segmentations, etc.). These sets are summa-
rized next.

(i) S2 (22–43), S2 (53–88): frames intervals of scenario 2
containing separated targets.

(ii) S2 (44–52): frames interval of scenario 2 containing
conflicts with several interacting targets (crosses).

(iii) S4 (61–67), S4 (115–120): frames intervals of scenario
4 with no interactions.

(iv) S4 (72–137): frames interval of scenario 4 containing
a target with reconnections due to background occlu-
sions and interactions with a second target (vehicle).

(v) S6 (40–63), S4 (86–111): frames intervals of scenario 6
with interactions and occlusions.

(vi) S6 (64–85), S6 (112–136): frames interval of scenario
6 containing separated targets.

(vii) All: all frames available.

The training and evaluation process was performed with
different scenarios to obtain the rate of instances correctly
predicted in order to assess the ability to “generalize” suit-
able rules from sets of data representing different situations.
The results are depicted in Table 1. Two types of fuzzy sets
were selected to represent the concepts: triangular and bell-
shaped, whose performances are indicated at the top and
bottom, respectively, of each cell. From the results, the learn-
ing capability is generally better when bell-shaped functions
are applied. The main diagonal is blank since the test was al-
ways performed with data different from training, in order to
avoid over-fitting in the results. Final column has the mean
performance for each training set applied to the rest of avail-
able data. The worst results were obtained when data from
simple segments without problems were used for training.
For instance, intervals S2 (22–43) and S2 (53–88) from sce-
nario 2 containing only separated targets.

It is interesting to notice the “specialization” effect ap-
pearing when the rules obtained for each scenario obtain bet-
ter results than those generated from other ones (although
with different data sets than training), but worse in the rest.
The rows “representative 1” and “representative 2” are from
data samples containing a sample of conflictive situations in
scenarios 1 and 2, with overlap, occlusions, and splits. The
training with a “sufficient” sample of different situations ob-
tained the best results. Finally, the row “all” represents the re-
sult obtained with a random sampling for training and val-
idation complementary sets, applying cross validation, very
similar to the best result. In fact, both sets resulted in sets of
rules very similar to the one generated with all available data.

6. CONCLUSIONS AND FUTUREWORK

Fuzzy reasoning has been successfully applied to effectively
solve the core problem of data association for video track-
ing under complex, high-density conditions. Specific domain
knowledge is represented as a set of rules to adapt association
decisions as a function of several heuristics inferred from ex-
perimentation. This approach allowed a robust and flexible

design to cope with different situations and at the same time
guarantee real-time operation with an efficient computation
load, avoiding combinatorial enumeration as in other ap-
proaches. Results obtained in representative ground opera-
tions illustrate the system capabilities to solve complex sce-
narios and improve tracking accuracy, with a satisfactory
trade-off between system performance and computation ef-
ficiency. Future works will extend evaluation on more sam-
ples and make use of ground truth data. Finally, an auto-
matic procedure, based on neuro-fuzzy techniques, has been
applied in order to obtain a set of rules from representa-
tive examples showing that the domain is susceptible to ap-
ply machine-learning techniques to tune its design, in this
case, to refine the rules to decide the appropriate associations.
The evaluation assessed the capability to decide the appropri-
ate labels for each blob. A thorough evaluation with ground
truth will measure the capability of learning processes to im-
prove the accuracy and continuity performance of a given
design of tracker, and this is also left for future work.
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