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A lot of work has been devoted to content-based image retrieval from large image databases. The traditional approaches are based
on the analysis of the whole image content both in terms of low-level and semantic characteristics. We investigate in this paper an
approach based on attentional mechanisms and active vision. We describe a visual architecture that combines bottom-up and top-
down approaches for identifying regions of interest according to a given goal. We show that a coarse description of the searched
target combined with a bottom-up saliency map provides an efficient way to find specified targets on images. The proposed system
is a first step towards the development of software agents able to search for image content in image databases.
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1. INTRODUCTION

Image analysis is confronted with the development of large
image databases and new techniques have to be designed
for image and content retrieving in this context. The agent
paradigm has proved its efficiency for searching in unstruc-
tured databases. An agent exhibits interaction abilities with
its environment and an autonomous behavior driven by its
perceptions of the environment and its expectancies. This
viewpoint emphasizes the role of interaction in visual pro-
cessing and is related to the active vision paradigm mainly
used in robotics [1, 2]. We propose here to use a similar
paradigm of active vision for implementing content retrieval
mechanisms in fixed image or video sequences. To drive
the active vision system, we need a mechanism for identify-
ing salient regions in the visual scene. Most of the systems
proposed for the computation of saliency maps are based
on bottom-up approaches [3, 4]. We use here a bottom-up
mechanism to identify a first set of salient regions and a
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top-down mechanism for target recognition. Salient regions
can be defined as high-energy contrast regions. On the other
hand, regions of interest are characterized by their high rel-
evance according to a given goal. Preattentional mechanisms
are based on saliencies while attentional top-down processes
are goal-directed. We thus propose an approach that com-
bines both mechanisms in the following way.

We distinguish two nested regions in an image: the whole
visual field, a low-resolution area that can be shifted by at-
tention from position to position, and a small central foveal
region that can be analyzed at full resolution. A first set of
points is computed at low resolution from the whole visual
field and used to give the focus to each potentially interest-
ing region one at a time. We study here how information on
the target can bias this exploratory step and improve its effi-
ciency. We also compare different approaches for identifying
or rejecting the target when it is foveated.

2. MODEL

2.1. Definition of a saliency space

The first step in our work consisted in defining a projec-
tion space in which we can compute the saliencies present in
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the visual field. Although saliencies can be computed from
various methods (e.g., local image contrast), we assumed
here that saliencies are mainly based on preferred orienta-
tions and spatial frequencies. Consequently, we used an ap-
proach based on Gabor wavelets. The image convolution by
a bidimensional Gabor wavelet can be described by the equa-
tion

r
(
x,Ωk,θ

) = e(−1/2)x
τΣ−1xe−iΩk,θx ∗ I(x), (1)

where I(x) is the initial image, r(x,Ωk,θ) the filtered image,
and e(−1/2)xτΣ−1xe−iΩk,θx is the Gabor convolution kernel. Ωk,θ

is a row vector defining the preferred orientations of the filter
such thatΩk,θ = ΩkRθ where Rθ is the rotation matrix defin-
ing the orientation of the filter and Ωk = (ωk 0) the central
frequency of the filter.

In the present work θ ∈ {0,π/4,π/2, 3π/4} and k ∈
{1/12, 1/6, 1/3 cyc/pixel}.

Thus, starting from the hypothesis that only low frequen-
cies are used to orient the exploratory bottom-up mecha-
nism, we computed the saliency map as explained below.

From a statistically significant set of natural images ana-
lyzed through a Gabor wavelet bank, we extracted small im-
age patches at random. Each patch had the same size as the
foveal region. From each patch, we computed as many signa-
ture vectors vk = {r̄k,θ}θ∈{0,π/4,π/2,3π/4} as the number of de-
sired frequency bands according to the following equation:

r̄2k,θ =
1
N

∑

x

r
(
x,Ωk,θ

)× r∗
(
x,Ωk,θ

)
, (2)

where N is the number of pixels in the image patch and
r∗(x,Ωk,θ) and r(x,Ωk,θ) are complex conjugates.

The multiresolution technique used to compute the vk
vector is similar to the one proposed by [5]. A principal com-
ponent analysis (PCA) was then applied to each of these vec-
tors for each spatial frequency channel according to z = Uτv
where U is an orthogonal projection matrix such that 〈zzτ〉
is diagonal.

We thus obtained four projection axes in each frequency
band, the components of which are linear combinations of
the initial orientations. The obtained projection space is sig-
nificant of the second-order statistical regularities observed
in the used subset of natural images. However, experiments
performed with various subsets did not show significant dif-
ferences.

2.2. Preattentional and attentional controls

The saliencies of the scene at each position in the visual field
can then be obtained as the projection of the vk vectors on the
corresponding axis of the PCA (Figure 1). We have shown
elsewhere that the salient points computed by this method
differ according to the considered axis [6]. Here only the first
eigenvector at low resolution was used.

The obtained salient points are used to control the explo-
ration of the scene. In the present study, two methods were
used: the bottom-up control uses only information extracted
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2σ2

Figure 1: An overall presentation of the attentional model. A
bottom-up saliency map is biased with the information on the de-
sired target lying in long-term memory.

from the visual scene in a Preattentional way, while the top-
down control implements an attentional mechanism driven
by a previously memorized information concerning the tar-
get.

We tested this architecture on a task where the system’s
behavior is to find targets similar to the one pointed out by
the user.

In bottom-up control mode, when the user points to
a region, the system finds the nearest salient point in its
present visual field, focuses on it, and then computes the low-
resolution bottom-up salient points in its new visual field. It
then focuses on the most salient of these points and com-
putes a recognition score of the target. Two kinds of scores
have been tested: (i) one from the average of the Gabor
norms, (ii) the other being simply the concatenation of the
Gabor norm image vectors covering the foveal area of the sys-
tem. In this study, these vectors are of dimension 12 (3 spatial
frequencies, 4 orientations).

In top-down control mode, the system performs a low-
resolution comparison between the salient points in its whole
visual field and a low-resolution signature of the target. It
thus retains only salient points superior to a given threshold.
This mechanism leads to amodulation of the natural saliency
of the considered point according to the low-resolution char-
acteristics of the searched target. Two kinds of score compu-
tations were tested: (i) a comparison of the energy vectors
computed from the low-resolution part of the multiresolu-
tion analysis, respectively, from the salient point xs and the
target representation xt (TDE) (ii) a direct comparison of the
low-frequency images of the salient region and of the target
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Figure 2: Bottom-up detection of interest points. The figure illus-
trates the end-stopping (termination detector) properties of the ap-
proach.

(TDV). The similarity score is thus computed using a radial
basis function a = e−‖xs−xt‖2/2σ2 .

2.3. Discussion of themodel properties

Some points concerning this approach deserve to be
discussed before the description of the obtained results. Ma-
jor results have been obtained during the last decade con-
cerning the first steps of visual processing in natural systems
[7, 8, 9]. These papers show that the first filtering steps con-
sist in the elaboration of an optimal code based on the max-
imization of a statistical independence criterion. It leads to
similar filters such as those obtained using independent com-
ponent analysis (ICA) [10, 11, 12]. They have been shown to
be very similar to Gabor filters [13]. This is why we use this
approach in our model.

However, it is interesting to analyze the kind of salient
features obtained from the computations described above.
Experiments with several different images demonstrated that
the features emphasized by such projections mainly consist
in termination and curvature points. For instance, some of
the features extracted from a test image according to the first
PCA axis are rotation-invariant curvature points (Figure 2).

Due to their properties of end-stopping detectors, it is in-
teresting to observe that the saliant positions computed from
the image in Figure 3 can be invoked as an explanation for
the Müller-Lyer illusion.

3. RESULTS

Although the system can be used in various object search
tasks, we only present here the results obtained in a face re-
trieval task.

The user points a face in a scene and the task of the sys-
tem is to find similar patterns across the image. On this task,
we tested the three methods presented above (bottom-up,
top-down energy (TDE), and top-down vector (TDV), see
Figure 4).

In bottom-up mode, the system is driven by the natu-
ral saliencies computed from the scene. These saliencies are
sorted according to their decreasing intensities in such a way
that the system begins its exploration with the highest inten-
sity saliency. The similarity score obtained in this case ranges

(a) (b)

Figure 3: Bottom-up detection of interest points. (a) Detection of
interest points is made on the basis of curvature and termination
characteristics. (b) The energy peak from these detectors is located
inside the direct arrowheads and outside the reversed arrowheads,
as expected in the Müller-Lyer illusion where the direct arrowheads
appear shorter than the reverse arrowheads.

from 0.1–1.0. Ten percent of the points have a similarity score
in the range 0.9-1.0, while 17% are in the range 0.8-0.9. The
majority of the points have a score in the range 0.6–0.9.

In the top-down mode, the system is guided through
high-level information. In TDE mode, the similarity scores
range from 0.3–1.0. Fourteen percent of the points lie be-
tween 0.9 and 1.0 while 22% range from 0.8-0.9. Most of the
visited points have a similarity score between 0.7 and 1.0.

In TDV mode, there is a decrease in the variability of the
similarity score. Sixty five percent of the points have a simi-
larity score in the range 0.9–1.0 and 10% between 0.8 and 0.9.
The most visited points lie between 0.9 and 1.0. The use of
top-down information leads to a significant reduction in the
number of visited points (234 for the bottom-up exploration,
107 for TDE, and 31 in TDV for the example in Figure 4).

When this experiment is repeated with various images
(up to 20 images), faces always yield similarity scores greater
than 0.8. We retained this value as a decision threshold sep-
arating faces and nonfaces locations. We were thus able to
compute an error rate for the different experiments from a



2394 EURASIP Journal on Applied Signal Processing

70

60

50

40

30

20

10

0

Pe
rc
en
ta
ge

of
po

in
ts

0 0.2 0.4 0.6 0.8 1

Similarity score

Bottom-up

TDE

TDV

Figure 4: Percent of visited points according to the similarity score.
The figure shows that a large portion of visited points have a low
similarity score in bottom-up exploration, while in TDE and in
TDV the visited points exhibit greater similarity scores. The im-
age shows the result obtained with the face recognition task in TDV
mode.

comparison between the answer of the system (a similarity
score greater than 0.8 being now considered as a positive an-
swer) and the ground truth of the target.

It results from these investigations that in the bottom-
up mode only 27% of the visited points are faces while this
percentage increases to 36% in the TDE mode and reaches
74% in the TDV mode (Figure 5). On the other hand, in the
bottom-up mode the error rate is 47%. It decreases to 26%
and 30% in TDE and TDV, respectively. The TDV method
gives rise to the best results.

One mandatory specification of this kind of system is its
robustness according to the variations of illumination. We
tested the behavior of the system in the case of the search for
identical targets in a series of video images. This property is
indeed especially important in the case where we want to fol-
low the same object through a video sequence. We have used
the TDV mode to search for a zone pointed out by the user
in a midilluminated scene (image mean intensity 151.9 ex-
pressed in grey level) through a set of homologous images the
illumination of which ranges from 69.24–185.69. Figure 6a
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Figure 5: (a) Evolution of the number of points explored by the
system in the three investigated modes. (b) Evolution of the ratio
between faces and nonfaces in the visited points (upper values) and
evolution of the recognition error rate (lower values).

shows the variation of the similarity score according to the
illumination for homologous points (i.e., points correspond-
ing to the same target, in order to detect false negatives).

Figure 6b shows the same result for heterologuous points
(i.e., points corresponding to different targets, in order to de-
tect false positives). The mean score remains approximately
constant in function of illumination. Its variance increases
with illumination but the discrimination ability of the sys-
tem (measured by the threshold between the two curves) is
preserved.

4. DISCUSSION AND CONCLUSION

The system presented in this paper is based on two principles:
(i) the selection of salient points used to guide exploratory
saccades, (ii) the combination of bottom-up and top-down
information to bias the saliencies in favor of the searched tar-
get. This last modulation reduces the computational load of
the system. The identification of the salient points is indeed
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Figure 6: Robustness to the variations of illumination. A video se-
quence with a continuous variation in luminance has been used to
follow the detection of homologous interest points from image to
image. The figure shows themean detection score for (a) targets and
(b) nontargets superimposed with the luminance curve (expressed
in grey levels).

not based on a saliency map computed on the whole scene
[3, 14, 15] but limited to the visual field and computed at
low resolution.

The list of the potentially interesting coordinate points
can thus be viewed as a sparse representation of the scene
consisting of a system of references to the external location
where the complete information lies. Such a view was first
introduced by O’Regan who proposes to see the world as an
external memory [16]. It implements the first principles of
the sensori-motor theory of perception proposed by this au-
thor [17]. This mechanism is also related to the notion of de-

ictic pointers proposed by Ballard [18]. Note that only stable
landmarks can be used for this purpose and that new ques-
tions could arise in the case of video applications.

The proposed architecture allows to perform any search
and exploration task. It is indeed independent of the type and
size of image and the searched target.

Our final goal is to build an exploratory vision architec-
ture able to work in real-time. The reduction of the compu-
tational load is critical to achieve this goal. This constraint
explains the limited number of preferred directions used in
the computation of saliencies and the relative simplicity of
the coding method.

The multiresolution technique used here, which per-
forms the complex processing steps on previously selected
regions, also provides a mechanism to overcome the real-
time constraints. Though the retained information does not
allow a complete reconstruction of the initial scene, it is suf-
ficient to ensure a sufficiently fast exploration mechanism.
The advantages of this approach, which distinguishes low-
resolution and large-field processing from high-resolution
focused computations, is twofold. It indeed reduces the need
for complex computation during the exploration process
and, perhaps more importantly, clearly separates the explo-
ration and exploitation steps that constitute the behavior of
the system. As suggested by psychophysics experiments [19],
wemake the hypothesis that the identification processes hap-
pening in peripheral and central vision are quite different.
In peripheral vision, we do not need to cope with invari-
ance, since the available representation is simplified, par-
tial, and sparse. It is only made of a set of pointers useful
for driving action. From these regions, it seems to be im-
possible to get a complex representation of objects [19]. On
the contrary, the central part of the visual field provides the
information for building complex objects representations.
One of the major contributions of the proposed approach
is that the system does not need a complete representation
of the object to select locations to focus at. The recogni-
tion process can thus take place in two steps: (i) identifi-
cation of potentially interesting locations according to the
searched target, (ii) recognition of the target after foveation.
When the search process is biased by low-resolution infor-
mation related to the target, the number of potentially inter-
esting points dramatically decreases which improves the effi-
ciency of the search process. We can thus parallel this mech-
anism with the one at work in natural vision system in which
the search for a given target could be driven by a simpli-
fied description of the target, the recognition process being
made easier by the fact that it operates only on focused re-
gions.

One can argue that the proposed method is neither
rotation- nor scale-invariant. However, it is inherently in-
variant in translation; since the targets will eventually be cen-
tered, the translational invariance problem disappears.

Another interesting fallout of considering perception as
a dynamical mechanism is that the system endowed with
those perceptual abilities can be viewed as a kind of au-
tonomous agent. The interactive process in which the agent
is involved can thus be improved using learning techniques
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popular within the agent’s or robotics communities. Among
these methods, the use of reinforcement learning is presently
under investigation in our laboratory.
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[17] J. K. O’Regan and A. Noë, “A sensorimotor account of vi-
sion and visual consciousness,” Behavioral and Brain Sciences,
vol. 24, no. 5, pp. 939–973, 2001.

[18] D. H Ballard, M. M. Hayhoe, P. K. Pook, and R. P. N. Rao,
“Deictic codes for the embodiment of cognition,” Behavioral
and Brain Sciences, vol. 20, no. 4, pp. 723–724, 1997.

[19] M. Boucart, M. Fabre-Thorpe, S. Thorpe, C. Arndt, and J. C.
Hache, “Covert object recognition at large visual eccentricity,”
Journal of Vision, vol. 1, no. 3, pp. 471–472, 2001.

Joseph Machrouh received his M.S. degree
in mathematics and computer science from
Paris 1 University. From 1998 to 2002, he
was with the LIMSI-CNRS and received his
Ph.D. degree in 2002 from Paris XI Univer-
sity. He is presently in a postdoctoral posi-
tion with France TelecomResearch &Devel-
opment. His research interests include at-
tentive vision, face detection, and face and
gesture tracking.

Philippe Tarroux graduated from the École
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