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IAS-CNRS, Université Paris Sud, Bâtiment 121, 91405 Orsay Cedex, France
Email: nabila.aghanim@ias.u-psud.fr

Division of Theoretical Astronomy, National Astronomical Observatory of Japan,
Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan

Received 30 May 2004; Revised 11 December 2004

In this first attempt to extract a map of the kinetic Sunyaev-Zel’dovich (KSZ) temperature fluctuations from the cosmic microwave
background (CMB) anisotropies, we use a method which is based on simple and minimal assumptions. We first focus on the
intrinsic limitations of the method due to the cosmological signal itself. We demonstrate using simulated maps that the KSZ
reconstructed maps are in quite good agreement with the original input signal with a correlation coefficient between original and
reconstructed maps of 0.78 on average, and an error on the standard deviation of the reconstructed KSZ map of only 5% on
average. To achieve these results, our method is based on the fact that some first-step component separation provides us with (i)
a map of Compton parameters for the thermal Sunyaev-Zel’dovich (TSZ) effect of galaxy clusters, and (ii) a map of temperature
fluctuations which is the sum of primary CMB and KSZ signals. Our method takes benefit from the spatial correlation between
KSZ and TSZ effects which are both due to the same galaxy clusters. This correlation allows us to use the TSZ map as a spatial
template in order to mask, in the CMB + KSZ map, the pixels where the clusters must have imprinted an SZ fluctuation. In
practice, a series of TSZ thresholds is defined and for each threshold, we estimate the corresponding KSZ signal by interpolating
the CMB fluctuations on the masked pixels. The series of estimated KSZ maps is finally used to reconstruct the KSZ map through
the minimisation of a criterion taking into account two statistical properties of the KSZ signal (KSZ dominates over primary
anisotropies at small scales, KSZ fluctuations are non-Gaussian distributed). We show that the results are quite sensitive to the
effect of beam convolution, especially for large beams, and to the corruption by instrumental noise.
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1. INTRODUCTION
The cosmic microwave background (CMB) temperature
anisotropies field encloses so-called primary anisotropies, di-
rectly related to the initial density fluctuations at early stages
of the universe, and so-called secondary anisotropies gener-
ated after matter and radiation decoupled. The secondary
anisotropies arise from the interaction of the CMB pho-
tons with gravitational potential wells or with ionised gas
along their way towards us. More “local” contributions to
the CMB signal are due to foreground emissions from our
galaxy and from distant galaxies. One of the major goals of
observational cosmology is to use the CMB anisotropies to
probe the cosmological model mainly through cosmological
parameter estimation. This is already performed by a num-
ber of groups using ground-based and balloon-borne exper-
iments such as TOCO [1], BOOMERanG [2], MAXIMA [3],

DASI [4], and Archeops [5], which achieved a firm detection
of the so-called “first peak” in the CMB anisotropy angular
power spectrum at the degree scale. This detection was re-
cently confirmed by theWMAP satellite [6]. A series of small
scale CMB experiments (e.g., VSA [7], CBI [8], ACBAR [9])
showed rather conclusive evidence for a second and a third
peak. The positions, heights, and widths of these features in
the angular power spectrum already give us a good idea of
the cosmological model.

It is clear however that such constraints necessitate the
“cleanest” possible cosmological signal, or in other words
they need the best possible monitoring of contaminating sig-
nals such as secondary anisotropies or foreground emissions.
This is the objective of the component separation for CMB ob-
servations. Inmost cases, the different contributing signals to
CMB anisotropies exhibit both different frequency (ν) and
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spectral (in Fourier or spherical harmonic domains) depen-
dences. As a consequence CMB experiments often observe
at several frequencies to be able to separate the different as-
trophysical signals. Numerous methods were adapted and
developed for the CMB problem like the Wiener filtering,
maximum entropy, independent component analysis, and so
forth [10, 11, 12, 13, 14]. All gave very satisfactory results and
showed clearly that one can extract the CMB primary signal
from the observed mixture. Obviously the success of the sep-
aration methods greatly depend on how different from each
other the signals, in the observed mixture, are. Signals shar-
ing with the primary anisotropies the same frequency de-
pendence and/or the same power spectrum will be badly de-
tected or even undetected by the separation methods men-
tioned above.

We present here a newmethod optimised to extract, from
the primary signal, temperature fluctuations which have the
same frequency dependence and are associated with a ma-
jor secondary effect, namely, the kinetic Sunyaev-Zel’dovich
(KSZ) effect (for details see [15]). Our method is based on
a two-step strategy in which we derive the best estimate of
the CMB signal on masked pixels by interpolation, and then
we deduce the best estimate of the KSZ map by minimisa-
tion. We show that we retrieve the KSZ signal, in the best
possible way, in terms of its amplitude, its distribution and
its power spectrum provided we use (i) a well-chosen spa-
tial template for the masked pixels, and (ii) adapted signal
processing techniques for both interpolating and minimis-
ing. For the first point, we use the TSZ maps as a template
since both TSZ and KSZ are associated with the same ob-
jects (clusters of galaxies). For the second point, namely, the
signal processing techniques, there are several issues to ad-
dress in order to optimise the extraction of the KSZ signal
from the primary CMB. We have thus to make sure at each
step that we use adapted techniques. At the interpolation on
the masked pixels defined by the template, we can obviously
use several methods like for example constrained 2D realisa-
tions of the underlying CMB (sensitive to our knowledge of
the CMB through the confidence intervals on the cosmologi-
cal parameters), textures [16] (sensitive to the morphological
description of the processes), or simply cubic B-spline meth-
ods. The latter, which we use in the present study, is a classi-
cal and robust method giving reliable results especially when
we set proper continuity and boundary conditions. In order
to separate the primary CMB signal from KSZ, several meth-
ods can be used such as principal component analysis or least
square minimisation. Here, we choose to minimise over sta-
tistical criteria. At the minimisation step, it is thus important
to use the tools which emphasize the different statistical char-
acteristics of the signal (power, non-Gaussian signatures).
Among the numerous possible tools used to exhibit non-
Gaussian signatures (higher-order moments in real space, bi-
and tri-spectrum (e.g., [17]), Minkowski functionals (e.g.,
[18]), higher criticism (e.g., [19]), the multiscale transforms
seem to be the most satisfactory and will thus be used in the
following. In the same spirit, we use the most sensitive non-
Gaussian estimator among the coefficients in a biorthogonal
wavelet transform, namely, the diagonal coefficients.
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Figure 1: Frequency dependences of the intensity variations due to
the TSZ effect (solid line) and KSZ effect (dashed line) as a func-
tion of the dimensionless frequency x = hν/kTCMB (h is the Planck
constant, k is the Boltzmann constant, and TCMB = 2.728). K is the
mean temperature of the CMB.

We test and develop our method on a set of numerical
simulations that will be described in Section 2. In Section 3,
we detail themethodology adopted to separate KSZ from pri-
mary CMB signal. We focus on the way our method is intrin-
sically limited by pure cosmological signals primary CMB
and SZ effect. We perform some sensitivity tests in Section 4
and explore the effects of beam convolution and instrumen-
tal white noise on our results. Finally, we discuss our results
in Section 5.

2. THE ASTROPHYSICAL SIGNALS

Among all secondary anisotropies, the dominant contribu-
tion to CMB signal comes from the Sunyaev-Zel’dovich (SZ)
effect [20, 21] which represents the inverse Compton scatter-
ing of CMB photons by free electrons in ionised and hot in-
tracluster gas. This so-called thermal SZ (TSZ) effect, whose
amplitude is given by the Compton parameter y, is the inte-
gral of the pressure along the line of sight. The inverse Comp-
ton effect moves the CMB photons from the lower to the
higher frequencies of the spectrum. This results in a peculiar
spectral signature with a brightness decrement at long wave-
lengths and an increment at short wavelengths (Figure 1,
solid line). When the galaxy cluster moves with respect to the
CMB rest frame, with a peculiar radial velocity vr , a Doppler
shift called the kinetic SZ (KSZ) effect generates a tempera-
ture anisotropies with the same spectral signature as the pri-
mary CMB fluctuations, at first order (Figure 1, dashed line).

The importance of the SZ effect for cosmology has been
recognized very early (see reviews by [22, 23]). It is a pow-
erful tool to detect high-redshift galaxy clusters since it is
redshift independent. In combination with X-ray observa-
tions, it can be used to determine the Hubble constant and
probe the intracluster gas distribution. Moreover, the KSZ
effect may be one of the best ways of measuring the cluster
peculiar velocities by combining thermal and kinetic effects
[21]. Formally, the KSZ can be distinguished from the TSZ
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effect due to their different frequency dependences. The KSZ
intensity reaches its maximum at ∼218GHz, just where the
TSZ intensity is zero (Figure 1). In practice, very few mea-
surements of the peculiar velocities were attempted [24, 25].

With usual component separation techniques it has been
shown that the TSZ signal can be extracted from the CMB
rather easily (its frequency dependence is quite different from
a black-body spectrum) while the KSZ component remains
indistinguishable from the primary CMB anisotropies due
to same frequency distribution. In early works, [26] used an
optimal filtering (Wiener), with a spatial filter derived from
X-ray observations of galaxy clusters, that minimises confu-
sion with CMB, and [27] used a matched filter optimised
on simulated data and independent of the underlying CMB
model.

We simulate (512 × 512 pixels) primary CMB (∆T/
T)RMS

CMB = σCMB = 1.9×10−5), TSZ (mean σy = 1.17×10−5,
i.e., mean (∆T/T)RMS

TSZ = −2.34×10−5 at 2mm) and KSZ
(mean (∆T/T)RMS

KSZ = σKSZ = 1.85×10−6) maps with a pixel-
size of 1.5 arcmin. A precise description of the SZ simulations
is given in [28]. The CMB signal is a Gaussian field whose
power spectrum is computed from an inflationary flat, low
matter density, model. The KSZ effect induces temperature
fluctuations given by δKSZT = (∆T/T)KSZ = −(vr/c)τ, with c
and τ the velocity of light and the cluster Thomson optical
depth. The primary CMB and the KSZ anisotropies having
the same spectral shape (at first order), we construct maps of
thermodynamic temperature fluctuations, δT , by adding the
two signals δT = (∆T/T)KSZ + (∆T/T)CMB. We are thus left
with two simulated datasets of pure cosmological signals, one
consisting of the temperature fluctuationmaps (CMB+KSZ)
and the other consisting of the Compton parameter maps, y,
for the TSZ effect. For our study, we restrict the analysis to 15
simulated maps which span a representative range of ampli-
tudes for all signals.

Note that in “real life,” it is the multifrequency CMB ex-
periments that can provide us, after classical component sep-
aration, with two sets of maps. One contains both CMB and
KSZ temperature fluctuations, as they are indistinguishable,
and the second consists of Compton parameter maps associ-
ated with the TSZ effect.

3. METHOD FOR SEPARATING KSZ
FROM CMB SIGNAL

From the two available types of maps (ymaps for TSZ and δT
maps for CMB + KSZ). Our goal is to obtain the best possi-
ble estimate of the KSZ buried in the dominant CMB signal.
We benefit for this from the fact that TSZ and KSZ features
are spatially correlated (e.g., [29, 30]). The spatial correla-
tion simply means that both effects are due to galaxy clus-
ters. Therefore, where TSZ signal is present, so are KSZ fluc-
tuations regardless of their signs or amplitudes. Conversely,
where the TSZ fluctuations are absent, so are the KSZ fluctu-
ations and the signal at that position in the δT map is associ-
ated with the CMB primary anisotropies only. Note however
that clusters at rest with respect to CMB (vr = 0) will have
no KSZ signal.

From this simple statement we build a two-step compo-
nent separation strategy in which (i) we first derive the best
estimate of the CMB map by interpolation, and (ii) conse-
quently deduce the best estimate of the KSZ map by minimi-
sation.

3.1. Estimating primary CMB anisotropies

The basic idea in order to estimate the primary CMB
anisotropies is to use the TSZ map as a mask to select in
the δT map the pixels where only primary anisotropies are
present. These pixels contain no TSZ fluctuations in the y
map. The rest of the pixels in the δT map are masked pix-
els. We then interpolate the δT signal on these masked pixels
with the constraint that pixels where the signal is associated
with only primary CMB, keep their values after the interpo-
lation. We therefore obtain an estimated primary CMB map.
It is worth noting that ymap is an observable quantity that is
rather easy to obtain from multifrequency observations due
to its spectral signature. This is what makes it useful for the
mask definition.

Formally, the KSZ map can then be estimated simply by
computing the difference between the original unmasked δT
map and the primary CMB map obtained from the interpo-
lation.

3.1.1. Interpolation of themasked pixels

The reconstruction of the KSZ map depends on the perfor-
mances of the interpolation. We use the method described
in [31] and consider the problem of the minimisation of a
general criterion written as

E(u) =
∑

(k,l)∈Z2

w(k, l)
[
f (k, l)− u(k, l)

]2

+ λ
∑

(k,l)∈Z2

[
dx ∗ u(k, l)

]2
+
[
dy ∗ u(k, l)

]2
,

(1)

where f is an input image, u is the desired solution,w ≥ 0 is a
map of space-varying weights, and dx and dy are the horizon-
tal and vertical gradient operators, respectively. The second
space-invariant term in (1) is a membrane spline regulariser;
the amount of smoothness is controlled by the parameter λ.
Taking the partial derivative of (1) with respect to u, we find
that u is the solution of the differential equation

fw =Wu + λLu = Au, (2)

where W is the diagonal weight matrix, fw = W f the
weighted data vector, L is the discrete Laplacian operator, and
A = W + λL a symmetric definite matrix. The inversion of
(2) is achieved using a multigrid technique [32]. Typically,
we need two V-cycles with two iterations in the smoothing
Gauss-Seidel part of the algorithm to reach a residual of the
order of 10−6.

The interpolation of the primary CMB map can be
achieved by setting the weights to zero where the data are
missing, that is in the masked pixels, and to one elsewhere
and by resolving (2). The value of λ then determines the
tightness of the fit at the known data points (unmasked pix-
els), while the surface u is interpolated such that the value of
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the Laplacian of u is zero elsewhere. In the present work, we
impose a low value for λ so that the recovered values at the
known data points are equal to the original values. This cri-
terion can be relaxed to take into account corruption of the
data by additive white noise [31]. In this case, the optimum
regularisation parameter λ can be defined as

λ = σ2

E( f · L f )− 4σ2
, (3)

where σ2 is the variance of the noise and E( f · L f ) denotes
an estimate of the correlation between the noisy image f and
its Laplacian L f . In the case of nonwhite noise, the optimal
regularisation parameter λmay be determined from the data
using cross-validation methods [33], or from a given mea-
surement model of the signal + noise [34].

The performances of the interpolation are improved if
the values of the Laplacian of u at the missing data points
are nonzero. Moreover, the values are set such that the first
and second derivatives of the interpolated signal are contin-
uous throughout the interval. These continuity conditions
characterise the cubic B-spline functions which are known
for their simplicity and their performances in terms of sig-
nal reconstruction [35, 36]. In practice, these conditions im-
ply that the source term fw in (2) is modified to impose
nonzero values at the points where the weights are set to zero
(i.e., masked pixels). An equivalent way to solve (2) with the
above-mentioned conditions is to replace the Laplacian op-
erator L by the quadratic operator L2.

Obviously other interpolation methods can be proposed
and used to estimate the CMB data in the masked pixels. We
could for example improve the interpolation by using tex-
tures [16]. The latter account for the morphological proper-
ties of the signal. Such method is limited by our knowledge
of these characteristics. We could also think of using con-
strained 2D realisations of the CMB to obtain the values in
the mask. This method is simple; however, it suffers from the
precision to which the CMB power spectrum is estimated, or
in other words the precision on the cosmological parameters
used for the realisation.

3.1.2. Defining themasked pixels

We now define the mask, that is, how we select the missing
data points. Besides the pixels that actually contain no galaxy
clusters, that is, no SZ contributions, we fix a threshold value
for the TSZ amplitude below which TSZ signal is considered
too small to be detected. The corresponding pixels in the δT
maps are then associated only with primary CMB signal. On
the contrary, above this threshold, pixels in the δT map are
considered to be the missing data points (masked pixels) that
we want to interpolate. The number and location of themiss-
ing data depend on the threshold. The choice of this thresh-
old has thus important consequences on the quality of the in-
terpolation. When the threshold is high, the number of miss-
ing data is small and the interpolated surface is good but the
selection retains only the clusters with the highest TSZ and
misses the majority of clusters. In this case, we expect a low
correlation coefficient between the retrieved KSZ map (ob-
tained by subtracting the interpolated CMB map from the

δT map) and the original KSZ map. When the threshold is
low, we take into account a large fraction of clusters, but the
interpolated surfaces are large and the quality of the interpo-
lation suffers from that. Moreover, the characteristic scale of
the interpolated surfaces becomes of the order of the CMB
fluctuations leading to “confusion effects.”

Since it is difficult to choose one single optimal TSZ
threshold, we retrieve a set of interpolated CMB maps cor-
responding to a set of TSZ threshold values. The later are
defined as follows: we compute the cumulative distribution
function of the TSZ values in the y map and we search for
the values corresponding to 15%–95% of the total number
of pixels (with a step of 5%). This gives us a set of 17 thresh-
old values. All pixels in the TSZ map that have y parameters
above the thresholds are identified as missing data points in
the simulated δT map, that is, the mask.

3.1.3. Results

For each of the 15 simulated maps of our datasets, we ob-
tain 17 TSZ thresholds, and thus 17 masked δT maps. We
interpolate the missing data points to recover the primary
CMB signal in the masked regions. We evaluate 17 associ-
ated KSZmaps by subtracting the interpolated primary CMB
maps from the total δT map.

We compute for each of the 17 KSZ estimated maps
the correlation coefficient between the original input KSZ
map and the 17 estimated KSZ maps. The correlation coeffi-
cients are plotted as a function of the standard deviation of
the estimated KSZ map for each of the 17 threshold values
(Figure 2). The diamonds and the dashed line represent the
case where the interpolation is such that the Laplacian val-
ues are set to zero, and the triangles and the solid line are for
the case in which the Laplacian values are nonzero. Figure 2a
shows our best recovery case in terms of correlation coeffi-
cient. Figure 2b is for our worst case.

From Figure 2, we see that the correlation coefficient be-
tween the original and the estimated KSZ maps is higher
when the Laplacian values are nonzero than when they are set
to zero. This is especially true for the maps with low standard
deviations. The improvement due to the biharmonic opera-
tor is of the order of 20% in our worst case (Figure 2b). We
will therefore use, in the following, the L2 operator as it gives
better interpolation. In addition, we see that the correlation
coefficient increases when the standard deviation of the es-
timated KSZ map increases (i.e., TSZ threshold decreases).
The correlation coefficient reaches a maximum value and
then decreases for the highest KSZ standard deviations (i.e.,
the lowest TSZ thresholds).

3.2. Reconstructing the KSZmap

From the previous step, we obtained a set of 17 estimated
KSZ maps. Now, we search for a method that gives us either
the reconstructed KSZ map which is the closest to the orig-
inal KSZ signal or the combination of 17 KSZ maps giving
the best estimate of the original KSZ map. We compare the
reconstructed maps with the original KSZ maps. This allows
us to calibrate our method and thus provides us with the in-
trinsic limitations of the reconstructing methods.
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Figure 2: The correlation coefficient between the original KSZmap
and the series of 17 estimated KSZ maps as a function of the stan-
dard deviations of the estimated KSZ maps. (a) The best case and
(b) the worst case. Triangles and solid line stand for the interpola-
tion with the biharmonic operator; diamonds and dashed line are
for the interpolation with the Laplacian. The interpolation with the
biharmonic operator gives better results especially for the KSZmaps
with low standard deviation. The vertical lines mark the standard
deviation of the original KSZ maps (2.6×10−6 and 1.2×10−6). The
standard deviation of the primary CMB is 1.9×10−5.

3.2.1. Method
We test the decorrelation by principal component analysis
(PCA). The PCA gives us a reconstructed KSZ signal which
is rather close to the original. The correlation coefficient, av-
eraged over the 15 maps, between reconstructed and orig-
inal KSZ reaches 0.73. However, the standard deviation is
on average smaller by almost 50% than the original. This
is not satisfactory. We can also search for a linear combi-
nation of the 17 estimated KSZ maps that is the closest to
the original KSZ in the sense of least squares. This minimi-
sation is done using a standard singular value decomposition
(SVD). The average correlation coefficient (over the 15 sim-
ulated input maps) between the original KSZ map and the
reconstructed map is 0.8, slightly higher than the PCA result.

However, in this case, the standard deviations of the recon-
structed maps are lower than the original KSZ signal by al-
most 25% on average. Furthermore, the results of the SVD
least square minimisation depend on the set of estimated
maps that are used which is clearly undesirable.

The two previous attempts being not quite satisfactory,
we thus need as much map-independent results as possible.
We must identify a criterion, to minimise on, which should
ideally give the largest possible correlation coefficient and the
reconstructed KSZ maps with the closest possible standard
deviations to those of the original KSZ signal. Moreover, a
good minimisation criterion would characterise the KSZ sig-
nal only, excluding the primary CMB signatures. We have
identified two properties of the KSZ fluctuations that fulfill
this definition.

(i) The KSZ signal dominates primary CMB at high wave
numbers (small angular scales).

(ii) The KSZ effect is a highly non-Gaussian process con-
trary to primary CMB which is a Gaussian process.

The KSZ effect is due to galaxy clusters whose typical sizes
are a few to a few tens of arcmin. As a result, SZ anisotropies
produced either by KSZ or TSZ intervene at small angu-
lar scales where they show a maximum amplitude (Figure 3,
dashed line). At those scales, primary CMB anisotropies are
severely damped and the angular power spectrum decreases
sharply (Figure 3, solid line). Therefore, at small scales, both
the power and the statistical properties of the total δT signal
should be those of the dominant signal, that is, KSZ effect.
In order to focus on the KSZ signal and also to enhance the
signal-to-noise ratio, we perform multiscale wavelet decom-
position of the δT map. The above-mentioned properties re-
main true in the wavelet domain as it was first recognised by
[37] and applied by [38]. Thus, the statistical properties of
the wavelet coefficients at the lowest decomposition scale (3
arcmin) reflect the properties of the SZ effect only.

We use the decimated biorthogonal wavelet transform
which decomposes a signal s as follows:

s(l) =
∑
k

cJ ,kφJ ,l(k) +
∑
k

J∑
j=1

ψj,l(k)wj,k (4)

with φj,l(x) = 2− jφ(2− jx − l) and ψj,l(x) = 2− jψ(2− jx − l),
where φ and ψ are, respectively, the scaling and the wavelet
functions. J is the number of resolutions used in the de-
composition, wj the wavelet coefficients (or details) at scale
j, and cJ a smooth version of s ( j = 1 corresponds to the
finest scale, highest frequencies). The two-dimensional al-
gorithm gives three wavelet subimages at each decompo-
sition scale. Within this choice, the wavelet analysis pro-
vides us with the wavelet coefficients associated with diag-
onal, vertical, and horizontal details of the analysed map.
Using this tool, we have demonstrated [39, 40] that the ex-
cess kurtosis of the wavelet coefficients in a biorthogonal
decomposition allows us to discriminate between a Gaus-
sian primary CMB signal and a non-Gaussian process like
SZ effect better than with an orthogonal wavelet decompo-
sition. Moreover, we have shown that diagonal details are
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Figure 3: Angular power spectrum of the primary CMB
anisotropies (solid line) and of the KSZ fluctuations from galaxy
clusters (dashed line). The plots are for one statistical realisation of
both processes. (The multipole is equivalent to a wave number in
the spherical harmonic decomposition of the sky.)

Table 1: The statistical properties of the first scale (3 arcmin) diag-
onal wavelet coefficients distribution for the δT map (KSZ +CMB),
the KSZ map, and the primary CMB alone. The two cases stand for
our best case (first pair) and the worst case (second pair). We note
that the three moments are almost identical and characterise well
the KSZ fluctuations; they are very different from the CMB fluctua-
tions properties.

Standard deviation Skewness Excess kurtosis

KSZ + CMB 6.45×10−7 0.10 8.71

KSZ 6.45×10−7 0.10 8.72

KSZ + CMB 2.05×10−7 0.22 8.97

KSZ 2.09×10−7 0.23 9.15

CMB 1.60×10−8 −0.02 0.45

the most sensitive to non-Gaussian signatures (recently con-
firmed and explained in [41]). We therefore choose to use
the diagonal details in a biorthogonal wavelet decomposi-
tion at the smallest decomposition scale to obtain the best
results.

In Table 1, we compare, using the 9/7 biorthogonal filter
bank [42] for the worst and best cases, the statistical prop-
erties of the diagonal details of KSZ maps and CMB + KSZ
maps at the first decomposition scale (3 arcmin).We also give
the values for the primary CMB maps. As expected, we note
that the wavelet coefficients for KSZ and KSZ + CMB share
the same statistical properties and are quite different from
those of the primary CMB alone. This confirms that KSZ sig-
nal dominates over primary CMB in wavelet domain (same
standard deviation means same power, c.f. Figure 3 in real
space), and that non-Gaussian signatures in the KSZ + CMB
maps are associated with the KSZ effect (same skewness and
excess kurtosis) alone at the smallest decomposition scale (3
arcmin).
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Figure 4: Standard deviations of our set of 15 KSZ original simu-
lated maps (triangles) as compared with standard deviations of the
15 reconstructed KSZ maps (squares). The reconstruction is based
on the minimisation of the statistical criterion.

Consequently, we can confidently minimise on the statis-
tical properties of power and non-Gaussianity at the small-
est decomposition scale. In practice, we choose the follow-
ing criterion minimised over the 17 estimated KSZmaps (for
each of the 15 maps of our dataset):

ζ =Min

[(
M2
(
w0
)−M2(w)

)2
M2

2

(
w0
) +

(
M4
(
w0
)−M4(w)

)2
M2

4

(
w0
)

]
,

(5)

where w0 is the distribution of diagonal wavelet coefficients
for the known δT map (KSZ + CMB) and w is the distri-
bution of diagonal wavelet coefficients for the desired solu-
tion map (the reconstructed map). M2 and M4 are respec-
tively the second and the fourth moments of the wavelet co-
efficients. This criterion takes into account both the energy
content of the coefficients, through second moment, and the
non-Gaussian character, through fourth moment. We have
chosen the fourth moment because it is the one for which the
KSZ signal is the most sensitive to non-Gaussianity. Clearly,
we might also include the third moment of the wavelet coef-
ficients to the criterion. This would be needed in particular
if we were dealing with a “skewed” signal (e.g., weak lensing
signal). Taking the fourth moment in the minimisation crite-
rion allows us in turn to focus on the reconstruction of KSZ
maps excluding any skewed signal that might contribute at
small scales.

In addition to the conditions of power and non-Gaussian
character, we make use in the minimisation process, of a
nice property of the wavelet transform, which is that it pre-
serves the spatial information. Thus instead of minimising
over all wavelet coefficients of the data map (w0 in (5)), we
can minimise only over those corresponding to clusters. This
enhances the non-Gaussian character and reduces the influ-
ence of other possible non-Gaussian processes that could af-
fect the anisotropy map δT .
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Figure 5: (a)-(b) Histogram and power spectrum of the original
KSZ map (solid line) and of the reconstructed KSZ map (dashed
line). The reconstruction was obtained by minimising a statistical
criterion. (c) The ratio of original to reconstructed power spectrum.
Note the correlation coefficient between original and reconstructed
KSZ maps of ∼0.9 and the agreement between total power Preal and
Pest.

3.2.2. Results

In Figure 4, we present the standard deviations of the 15
original simulated KSZ maps (triangles) and of the 15
reconstructed KSZ maps (squares) obtained by the above-
mentioned minimisation technique. The agreement is good
even for the lowest standard deviations with an error only
of the order of ∼5%. This is much smaller than what was
obtained from the PCA method (∼50%) or from the least
square minimisation (∼25%). Furthermore, the mean value
(over the 15 original maps) of the correlation coefficient be-
tween the original and the reconstructed KSZ maps is 0.78.
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Figure 6: The same as Figure 5. This is our worst reconstruction
case which corresponds to the original KSZ map with the lowest
standard deviation. Note the low correlation coefficient 0.62.

The quality of the KSZ map reconstruction can be observed
in Figures 5 and 6 which display, for our best and worst cases
respectively, the histograms of the temperature fluctuations
and the power spectra of both original (solid line) and re-
constructed (dashed line) KSZ maps as well as the ratio of
these two power spectra. Note that the ratio is close to one
over a large range of multipoles (wave number in the spheri-
cal harmonic decomposition) even in the domain where the
primary CMB dominates the KSZ signal (see Figure 3). We
also notice the correlation coefficient between original and
reconstructed KSZ maps which reaches ∼0.9 in our best case
and 0.62 in our worst case. The comparison between stan-
dard deviations of original and reconstructed maps σreal and
σest also gives a global indication on how well the method
works.
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Figure 7: Cuts across the best reconstructed KSZmap (dashed line)
and its original counterpart (solid line). The cuts have the same po-
sition in both maps.

The method allows us to obtain such results because we
are able to estimate correctly the amplitude of the KSZ sig-
nal for most clusters together with their angular separation,
as well as the amplitude of the background (primary CMB).
This is nicely exhibited by the superposition of the cuts across
reconstructed (dashed line) and original (solid line) KSZ
maps, for the best and worst cases (Figures 7 and 8, resp.).
The method partially fails to find broad KSZ features due to
their important level of confusion with primary CMB fluctu-
ations. Moreover, since theminimisation process is an overall
procedure, relatively large features (i.e., of the order of 10−5

in absolute ∆T/T) are occasionally poorly recovered.

4. SENSITIVITY TESTS

We have shown in the previous section that statistical min-
imisation with a well-chosen criterion gives very good recon-
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Figure 8: Same as Figure 7 for the worst reconstructed KSZ map
and its original counterpart.

structions of the KSZ original maps, both in terms of corre-
lation coefficient, power spectrum and pixel distribution. We
now investigate some of the effects that can affect our results.

4.1. Amplitude of the input KSZ signal
The previous results were obtained in a specific model which
predicts the amplitude of the KSZ signal and thus its ratio
to primary CMB anisotropies. Obviously the KSZ amplitude
can vary for many physical reasons (number of clusters, dis-
tribution of velocities, etc.). It is thus important to test what
is the performances of our separationmethod are in response
to different mixing ratios. For illustration, we take one KSZ
map and add it to the same primary CMB map. The stan-
dard deviation of the KSZ signal is reduced while the CMB
standard deviation is kept the same (i.e., we reduce the KSZ
contribution to the 5δT map). We reduce the standard devi-

ation following a geometrical progression σi = σ0
√
2
i
with
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Table 2: Standard deviations of the KSZ maps and correlation coefficients between original and reconstructed KSZ maps for the same KSZ
map with standard deviations ranging from 2.5×10−7 to 2.0×10−6. Two wavelet bases are tested.

Original σ
9/7 filter 6/10 filter

Estimated σ Correlation coefficient Estimated σ Correlation coefficient

2.5×10−7 2.21×10−7 0.48 2.68×10−7 0.45
3.53×10−7 3.36×10−7 0.54 4.02×10−7 0.52
5.0×10−7 5.52×10−7 0.56 5.46×10−7 0.58
7.07×10−7 8.02×10−7 0.59 6.60×10−7 0.67
1.0×10−6 9.74×10−7 0.68 9.16×10−7 0.71
1.41×10−6 1.35×10−6 0.74 1.20×10−6 0.77
2.0×10−6 1.94×10−6 0.78 1.77×10−6 0.81

i = 0, 6 and σ0 = 2.5×10−7. The highest standard devia-
tion is then σmax = 2.0×10−6 which is a typical value for
our dataset. At the same time, we test the sensitivity of our
method to the wavelet base by comparing results obtained
using two different biorthogonal wavelet bases, the 9/7 tap
filter and the 6/10 tap filter [43].

The results for this test are displayed in Table 2. We first
notice that results do not depend much on the wavelet ba-
sis. As expected, the quality of the reconstruction (in terms
of correlation coefficient) increases with the standard devi-
ation of the original KSZ map from 0.5 to ∼0.8. The small-
est coefficients are obtained for very-low-standard deviations
(< 10−6). It is worth noting that decreasing the KSZ ampli-
tude by a factor 2 (i.e., a factor 4 in power) still gives a reason-
ably good correlation coefficient. At the same time, the stan-
dard deviation of the reconstructed KSZ map is very close to
the original even when the input KSZ signal is decreased by
one order of magnitude in terms of standard deviation. This
is illustrated in Figure 9 by the reconstructed power spec-
trum of the KSZ map.

4.2. Beam convolution

Our separation method is based on two steps; the first is
the interpolation and the second is the minimisation. Obvi-
ously, when the sky is observed by an instrument, the δT map
suffers from beam dilution, which means that the signal is
damped at the typical scale of the beam size. The same is true
for the ymap for which the damping can be evenmore severe
since the signal is mainly at small scales. As a consequence,
the definition of the mask based on the TSZ template and
used in the interpolation is also affected by beam dilution.
We expect that this reduces the quality of the interpolation
and in turn that of the 17 estimated KSZmaps. Moreover, the
minimisation criterion is based on two properties of the KSZ
signal (non-Gaussian character and excess of power) as com-
pared to the primary CMB, which are mostly true at small
scales. When the δT map is convolved by the beam instru-
ment, the contribution from KSZ signal is reduced affecting
also the statistical minimisation criterion.

All these effects depend on the size of the beam. The
smallest the beam is, the less affected the recovered signal
is. For a beam-size of 1.5 arc-minute (like that of some
planned SZ experiments), there should be no effect on our
results since our minimum resolution is 1.5 arc-minute.

To illustrate the effect of a larger beam, we have convolved
our observed maps (y and δT maps) by a Gaussian-shaped
beam (for simplicity) with a size of 3 arcmin. We find that
the reconstructed KSZ map is not satisfying neither in terms
of the correlation coefficients (mean coefficient of 0.59), nor
in terms of the average amplitudes (standard deviations of
the 15 reconstructed maps are typically 40% smaller than the
original), nor in terms of the power spectrum. We show in
Figure 10 a cut across a reconstructed KSZmap (which is not
our best case) and its original counterpart. We note that only
the largest amplitude features are reconstructed but with am-
plitudes which are lower than the original. As expected, we
find that the results get worse for larger beam sizes.

One way to improve our results in the case of large beam
experiments might be to use a minimisation criterion in (5)
based on other wavelet decomposition scales which should
be less affected by the beam dilution. For example, the second
smallest decomposition scale could be used in the case of a 3
arc-minute beam. At that scale, the non-Gaussian character
of the KSZ signal is indeed still preserved (see [39]), how-
ever the power is no more dominated by KSZ but rather by
the CMB primary signal. More adapted criteria should then
be investigated, but they will likely require more “a priori”
knowledge of both KSZ and primary CMB signals.

4.3. Noise

We illustrate possible effects of noise on our separation
method by adding to the observed δT and y maps a white
noise at the pixel size whose RMS amplitude in terms of tem-
perature fluctuation is 2× 10−6. This corresponds to a noise
level of about 6 µK which is the typical noise of most future
SZ experiments. We note that the RMS noise level is of the
order of the mean standard deviation of the original input
KSZ signal. It is twice as large as the standard deviation of
some KSZ maps. This not only modifies the amplitude of
the fluctuations in the δT at a given position in the map, but
also significantly modifies the position of the maxima and
shape of the fluctuations associated with the KSZ signal. As a
consequence, the spatial correlation between TSZ and KSZ is
decreased and the reconstructed KSZ signal is different from
the input map (see Figure 11). The correlation coefficients
between the original and reconstructed KSZ maps are obvi-
ously very low in this case with values ranging between 0.24
and 0.54.
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Figure 9: Same as Figure 5. The standard deviation of the origi-
nal KSZ map is very low (σreal = 2.5×10−7). Note the excess of
near-zero values in the histogram of the estimated map (logarith-
mic scale). Note also the very low correlation coefficient 0.48. This
is for the worst case.

As noted in Section 3.1.1, the white noise can in princi-
ple be accounted for at the interpolation stage in the regu-
larisation parameter. Such possibilities should have to be ad-
dressed.

5. DISCUSSION

We presented a method for separating the KSZ signal from
primary CMB anisotropies based on two steps: (1) interpo-
lation and (2) reconstruction. In our case this corresponds to
the interpolation of a correlated noise (the CMB). The KSZ
reconstruction is based on a set of KSZ estimated maps ob-
tained with a choice of TSZ thresholds (from the cumulative
distribution of the pixels in the TSZ template map), more so-
phisticated methods optimising the series of TSZ thresholds
can be proposed. Using the set of KSZ estimated maps, we
can investigate several methods to reconstruct the final KSZ
maps. We tested a decorrelation-based approach using the
PCA. The decorrelation is a blind method whose advantage
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Figure 10: Cuts across a typical reconstructed KSZ map (dashed
line) and its original counterpart (solid line). The cuts have the same
position in both maps. (No noise, convolution beam = 3 arcmin.)

is that no a priori criteria are needed to obtain the KSZ map.
However, the resulting maps are of low quality in terms of
standard deviation. More sophisticated methods such as the
independent component analysis [12, 44, 45] can be used but
the results obtained need to be rescaled using external con-
straints.

In our study, we choose to use a reconstruction method
based on a minimisation technique. We propose a minimisa-
tion criterion taking into account statistical properties of the
KSZ signal: (i) KSZ dominates over primary anisotropies at
small angular scales, and (ii) KSZ fluctuations follow a non-
Gaussian distribution. We use the excess kurtosis of the di-
agonal wavelet coefficients to characterise the non-Gaussian
signatures of the KSZ effect. The minimisation method gives
reconstructed KSZ maps that are in quite good agreement
with the original signal with an average correlation coeffi-
cient between original and reconstructed KSZ maps of 0.78,
and an error of 5% on the standard deviation of recon-
structed KSZ maps. The KSZ reconstruction through min-
imisation depends on the minimisation criteria and there-
fore on our knowledge of the signals. The available CMB data
seem to agree on the fact that primary CMB anisotropies are
Gaussian distributed at least at small scales [46, 47, 48]; see
[49] for large scales. The KSZ effect is dominant at small
scales since it is associated with galaxy clusters. We have
tested our results against the relative amplitude of KSZ to
primary signal. We find satisfactory results even when KSZ
is twice as small (in RMS) as predicted.

The results above are for the case where only the two sig-
nals CMB and SZ are taken into account, which allows us
to investigate the intrinsic limitations of the method. Addi-
tional astrophysical contributions should be partly treated
in a first-step component separation (from which we ob-
tain the observed y and δT maps). For example if some
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Figure 11: Cuts across a typical reconstructed KSZ map (dashed
line) and its original counterpart (solid line). The cuts have the same
position in both maps. (Noise = 2× 10−6, no convolution.)

contribution from the TSZ signal remains in the δT map, it
will act as a correlated noise. We can account for it at the
interpolation stage with the additional constraint that the
skewness should be zero (which is the case for the primary
CMB anisotropies), or in the minimisation procedure using
a generalised criterion including the skewness as well as the
excess kurtosis. In the present study, we have tested for the
presence of an instrumental white noise at the pixel scale
with 6 µK RMS amplitude. We find that such noise level af-
fects the KSZ map reconstruction making it difficult to re-
cover the KSZ signal buried in CMB. In theory, instrumental
noise can be taken into account in the interpolation step by
relaxing the parameter λ. Another way to deal with noise is
to minimise not on the non-Gaussian character of the KSZ,
but rather on the statistical properties of the remainder (i.e.,
CMB+noise+other components) at scales where CMB dom-
inates. We should then obtain an estimate of all the compo-
nents except KSZ that can then be subtracted from the total
signal. These methods will need to be investigated in the fu-
ture.

Another key element of our separation method is the use
of a spatial template. The choice of a spatial template is an
important issue since it is used to define the mask and hence
the interpolated regions. The template should then be the
closest possible to the signal. In our case, the optimal choice
is the TSZ signal itself as it allows us to evaluate the temper-
ature fluctuations associated with KSZ in the map without
resorting to the knowledge or the measurement of cluster pa-
rameters. However, the beam dilution caused by observation
suppresses the signal at small scales and can significantly af-
fect the results especially for large beam sizes. (Note that our
previous results are equivalent to a 1.5 arc-minute beamsize.)
One way around the problem is to resort to multiscale min-
imisation criteria at the reconstruction step; we will investi-
gate this question in the future.
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