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This paper considers the detection of point sources in two-dimensional astronomical images. The detection scheme we propose
is based on peak statistics. We discuss the example of the detection of far galaxies in cosmic microwave background experiments
throughout the paper, although the method we present is totally general and can be used in many other fields of data analysis.
We consider sources with a Gaussian profile—that is, a fair approximation of the profile of a point source convolved with the
detector beam in microwave experiments—on a background modeled by a homogeneous and isotropic Gaussian random field
characterized by a scale-free power spectrum. Point sources are enhanced with respect to the background bymeans of linear filters.
After filtering, we identify local maxima and apply our detection scheme, a Neyman-Pearson detector that defines our region of
acceptance based on the a priori pdf of the sources and the ratio of number densities. We study the different performances of some
linear filters that have been used in this context in the literature: the Mexican hat wavelet, the matched filter, and the scale-adaptive
filter. We consider as well an extension to two dimensions of the biparametric scale-adaptive filter (BSAF). The BSAF depends on
two parameters which are determined by maximizing the number density of real detections while fixing the number density of
spurious detections. For our detection criterion the BSAF outperforms the other filters in the interesting case of white noise.

Keywords and phrases: analytical methods, data analysis methods, image processing techniques.

1. INTRODUCTION

A very challenging aspect of data analysis in astronomy is the
detection of pointlike sources embedded in one- and two-
dimensional images. Some common examples are the sep-
aration of individual stars in crowded optical images, the
identification of emission and absorption lines in noisy one-
dimensional spectra, and the detection of faint extragalactic
objects at microwave frequencies. This latter case, for exam-
ple, is one of the most critical issues for the new generation of
experiments that observe the cosmic microwave background
(CMB).

The CMB is the remnant of the radiation that filled the
universe immediately after the big bang. This weak radiation
can provide us with answers to one of the most important
set of questions asked in modern science—how the universe
did begin, how it evolved to the state we observe today, and
how it will continue to evolve in the future. Unfortunately, we
do not measure the CMB alone but a mixture of it with in-
strumental noise and other astrophysical radiations that are
usually referred to as foregrounds.

Some foregrounds are due to our own galaxy, for exam-
ple, the thermal emission due to dust grains in the galactic
plane or the synchrotron emission by relativistic electrons
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moving along the galactic magnetic field. These foregrounds
appear as diffuse emission in the sky, and their spectral be-
haviors (the way the emission scales from one wavelength
of observation to another) are reasonably well known. An-
other foreground with a well-known spectral behavior is the
Sunyaev-Zel’dovich effect, which is due to the hot gas con-
tained in galaxy clusters that distorts the energy distribution
of CMB photons. Foreground emissions carry information
about the galaxy structure, composition, and physical pa-
rameters as well as about the number, distribution, and evo-
lution of galaxy clusters that map the distribution of mat-
ter in the universe. Therefore, the study of the different fore-
grounds has great scientific relevance by itself. In order to
properly study the CMB and the different foregrounds, it
is mandatory to separate the signals (components) that are
mixed in the observations. This can be done by observing
the sky at a number of frequencies at least as big as the num-
ber of components and then applying some statistical compo-
nent separation method in order to recover the different as-
trophysical signals. Several component separation techniques
have been suggested, including blind (Baccigalupi et al. [1],
Maino et al. [2], Delabrouille et al. [3]), semi-blind (Bedini et
al. [4]) and nonblind (Hobson et al. [5], Bouchet and Gispert
[6], Stolyarov et al. [7], Barreiro et al. [8]) approaches.

Another important foreground is due to the emission of
far galaxies. Since the typical angular size of the galaxies in
the sky is a few arcseconds and the angular resolution of the
microwave detectors is typically greater than a few arcmin-
utes,1 galaxies appear as points to the detector, which is un-
able to resolve their inner structure. Therefore, they are usu-
ally referred to as extragalactic point sources (EPS) in the CMB
jargon. Note that, however, they do not appear as points in
the images but as the convolution of a pointlike impulse with
the angular response of the detector (beam). The instruments
(radiometers and bolometers) that are used in CMB experi-
ments have angular responses that are approximately Gaus-
sian and therefore EPS appear as small Gaussian (or nearly
Gaussian) spots in the images.2

The problem with EPS is that galaxies are a very hetero-
geneous bundle of objects, from the radio galaxies that emit
most of their radiation in the low-frequency part of the elec-
tromagnetic spectrum to the dusty galaxies that emit mainly
in the infrared (Toffolatti et al. [9], Guiderdoni et al. [10],
Tucci et al. [11]). This makes it impossible to consider all of
them as a single foreground to be separated from the other by
means of multiwavelength observations and statistical com-
ponent separation techniques. EPS constitute an important
contaminant in CMB studies at small angular scales (Toffo-
latti et al. [9]), affecting the determination of the CMB angu-

1For example, the upcoming ESA’s Planck satellite will have angular res-
olutions ranging from 5 arcminutes (for the 217–857GHz channels) to 33
arcminutes (for the 30GHz channel).

2It is also common to speak of compact sources, describing a source that is
comparable to the size of the beam being used. Non-pointlike sources (such
as large galaxy clusters with arcminute angular scales) will have more com-
plicated responses when convolved with a beam, but if the source profile is
known, it is always possible to apply the methods presented in this work.
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Figure 1: Residual map of a 12.8 × 12.8 square degrees sky patch
at 30GHz after the application of a maximum entropy compo-
nent separation. The residual map is obtained by subtracting from
the 30GHz map the different components (CMB and foregrounds)
given by the maximum entropy algorithm. Bright point sources ap-
pear as spots in the images whereas faint point sources are masked
by the residual noise.

lar power spectrum and hampering the statistical study (e.g.,
the study of Gaussianity) of CMB and other foregrounds at
such scales. Moreover, while there are good galaxy surveys at
radio and infrared frequencies, the microwave window of the
electromagnetic spectrum is a practically unknown zone for
extragalactic astronomy. Therefore, it is important to have
detection techniques that are able to detect EPS with fluxes
as low as possible.

One possibility is to consider the EPS emission at each
frequency as an additional noise to be considered in the equa-
tions of a statistical component separation method. Once the
algorithm has separated the different components, the resid-
ual that is obtained by subtracting the output foregrounds
from the original data should contain the EPS plus the in-
strumental noise and some amount of foreground residuals
that remain due to a nonperfect separation. As an example,
Figure 1 shows the residual at 30GHz after applying a max-
imum entropy component separation algorithm (Hobson et
al. [12]) to a 12.8×12.8 square degrees simulated sky patch as
would be observed by the Planck satellite. The brightest point
sources can be clearly observed over the residual noise. How-
ever, fainter point sources are still masked by a residual noise
that is approximately Gaussian and must be detected some-
how. Besides, the situation is more complex because the pres-
ence of bright EPS in the data affects the performance of the
component separation algorithms so the recovered compo-
nents are contaminated by point sources in a way that is dif-
ficult to control. Therefore, any satisfactory method should
detect and extract at least the bright sources before the com-
ponent separation. Then, after separation some additional
low intensity EPS could be detected from the residual maps
such as the one in Figure 1.
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Several techniques based on linear filters have been pro-
posed in the literature for the detection of point sources in
CMB data. Linear filtering techniques are suitable for this
problem because they can isolate structures with a given
characteristic scale, as is the case of pointlike sources, while
canceling the contribution of diffuse foregrounds. Among
the methods proposed in the literature, we emphasize the
Mexican hat wavelet (MHW, Cayón et al. [13], Vielva et al.
[14, 15, 16]), the classic matched filter (MF, Tegmark and de
Oliveira-Costa [17]), the adaptive top hat filter (Chiang et al.
[18]), and the scale-adaptive filter (SAF, Sanz et al. [19], Her-
ranz et al. [20]). Moreover, linear filters can be used in com-
bination with statistical component separation techniques in
order to produce a more accurate separation of the different
foregrounds (Vielva et al. [15]).

The goal of filtering is to enhance the contrast between
the source to be detected and the background that masks it.
For example, if we filter the image in Figure 1, assuming that
the background can be characterized by a white noise, with
the well-known matched filter (see Section 4.1) at the scale
of the 30GHz detector beam (FWHM = 33 arcminutes) the
signal-to-noise ratio of the sources increases by more than
25%. Therefore, a source whose signal-to-noise ratio was∼ 3
before filtering becomes a source with signal-to-noise ratio
∼ 4 and will be easier to detect.

After filtering, a detection rule is applied to the data in
order to decide whether the source is present or not. The
usual detection approach in astronomy is thresholding: for
any given candidate (e.g., a local peak in the data), a posi-
tive detection is considered if the candidate has a signal-to-
noise ratio greater than a certain threshold (in many astro-
nomical applications, a typical value of this threshold is 5σ).
This naive approach works fine for bright sources, but weak
sources can be easily missed.

More sophisticated detection schemes can use additional
information in order to improve the detection. If the detec-
tion is performed by means of the study of the statistics of
maxima in the images, such information includes not only
the amplitude of the maxima but also spatial information re-
lated to the source profile, for example, the derivatives of the
intensity. In our approach we will consider the amplitude, the
curvature, and the shear of the sources (the last two quanti-
ties are given by the properties of the beam in the case of
point sources) to discriminate between maxima of the back-
ground and real sources. Moreover, in some cases a priori
information on the distribution of intensity of the sources
is known. We will therefore use a Neyman-Pearson detec-
tor that uses the three above-mentioned elements of infor-
mation (amplitude, curvature, and shear) of the maxima as
well as the a priori probability distribution of the sources.
This technique has been successfully tested in images of one-
dimensional fields (López-Caniego et al. [21, 22]). In this
work we will generalize it to two dimensions.

The overview of this work is as follows. In Section 2 we
describe the statistics of the peaks for a two-dimensional
Gaussian background in the absence and presence of a
source. In Section 3 we introduce the detection problem,
define the region of acceptance, and derive our detector.

In Section 4 we briefly review some of the linear filters pro-
posed in the literature. In Section 5 we describe a probability
distribution of sources that is of interest and compare the
performance of the filters, regarding our choice of detector.
Finally, in Section 6 we summarize our results.

2. PEAK STATISTICS

In this section we will study the statistics of peaks for a two-
dimensional Gaussian background in both the absence and
presence of a source. We will focus on three quantities that
define the properties of the peaks: the intensity of the field,
the curvature, and the shear at the position of the peak. The
first quantity gives the amplitude of the peak. The curvature
and the shear give information about the spatial structure of
the peak and are related to its sharpness and eccentricity, re-
spectively.

2.1. Background

We consider a two-dimensional (2D) background repre-
sented by a Gaussian random field ξ(�x ) with average value
〈ξ(�x )〉 = 0 and power spectrum P(q),

〈
ξ(�Q)ξ∗( �Q′)

〉 = P(q)δ2D(�Q − �Q′), q ≡ |�Q|, (1)

where ξ(�Q) is the Fourier transform of ξ(�x )3 and δ2D is the
Dirac distribution in 2D.

We are interested in the distribution of maxima of the
background with respect to the three variables already men-
tioned: intensity, curvature, and shear. We define the normal-
ized field intensity ν, the normalized curvature κ, and the nor-
malized shear ε as

ν ≡ ξ

σ0
, κ ≡ λ1 + λ2

σ2
, ε ≡ λ1 − λ2

2σ2
, (2)

where ν ∈ (−∞,∞), κ ∈ [0,∞), ε ∈ [0, κ/2), λ1 and λ2 are
the eigenvalues of the negative Hessian matrix, and the σn are
defined as

σ2n ≡
1
2π

∫∞
0
dq q1+2nP(q). (3)

The moment σ0 is equal to the dispersion of the field.
The distribution of maxima of the background in one

dimension (1D) with respect to the intensity and curvature
(the shear is not defined in 1D) was studied by Rice [23].
If we generalize it to 2D, including the shear, the expected

3Throughout this paper we will use the following notation for the
Fourier transform: the same symbol will be used for the real space and the
Fourier space versions of a given function. The argument of the function will
specify in each case which is the space we are referring to. For instance, f (q)
will be the Fourier transform of the function f (x).
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number density of maxima per intervals (�x,�x + d�x ), (ν, ν +
dν), (κ, κ + dκ), and (ε, ε + dε) is given by

nb(ν, κ, ε) = 8
√
3ñb

π
√
1− ρ2

ε
(
κ2 − 4ε2

)
e−(1/2)ν

2−4ε2−(κ−ρν)2/2(1−ρ2),

(4)
where ñb is the expected total number density of maxima
(i.e., number of maxima per unit area d�x ),

ñb ≡ 1
4π
√
3θ2m

, (5)

and ρ and θm are defined as

θm ≡
√
2
σ1
σ2
, ρ ≡ σ21

σ0σ2
= θm

θc
, θc ≡

√
2
σ0
σ1
. (6)

In the previous equations θc and θm are the coherence scale
of the field and maxima, respectively. The formula in (4) can
be derived from previous works (Bond and Efstathiou [24],
Barreiro et al. [25]).

2.2. Background plus point source

To the previous 2D background we add a source with a
known spatial profile τ(�x ) and an amplitude A, so that the
intensity due to the source at a given position �x0 is ξs(�x ) =
Aτ(�x−�x0). For simplicity, we will consider a spherical Gaus-
sian profile given by

τ(x) = exp
(
− x2

2R2

)
, x ≡ |�x|, (7)

where R is the Gaussian width (in the case of point sources
convolved with a Gaussian beam, R is the beam width). We
could easily consider other functional profiles4 without any
loss of generality. The expected number density of maxima
per intervals (�x,�x+d�x ), (ν, ν+dν), (κ, κ+dκ), and (ε, ε+dε),
given a source of amplitude A in such spatial interval, is

n
(
ν, κ, ε|νs

)
= 8

√
3ñb

π
√
1−ρ2

ε
(
κ2−4ε2)e−(1/2)(ν−νs)2−4ε2−(κ−2κs−ρ(ν−νs))2/2(1−ρ2),

(8)

where νs = A/σ0 is the normalized amplitude of the source,
κs = −Aτ′′/σ2 is the normalized curvature of the source, and
τ′′ is the second derivative of the source profile τ with respect
to x at the position of the source. Note that in (8) we are
taking into account that the shear of the source is zero since
we are considering a spherical profile. It is useful to define a
quantity ys that is related to the curvature of the source:

ys ≡ −θ2mτ
′′

ρ
, κs = νs ys

2
. (9)

4For example, more complicated beams or sources that are not pointlike
but have some resolved structure.

3. THE DETECTION PROBLEM

Equations (4) and (8) can be used to decide whether a source
is present or not in a data set. The tool that allows us to de-
cide whether a point source is present or not in the data is
called a detector. In this section we will describe the Neyman-
Pearson detector (NPD). We will study its performance in
terms of two quantities: the number of true detections and
the number of false (spurious) detections that emerge from
the detection process. Our approach fixes the number density
of spurious detections and determines the number density of
true detections in each case.

3.1. The region of acceptance

We consider a peak in the 2D dataset characterized by the
normalized amplitude, curvature, and shear (ν, κ, ε). The
number density of backgroundmaxima nb(ν, κ, ε) represents
the null hypothesisH0 that the peak is due to the background
in the absence of source. Conversely, the local number den-
sity of maxima n(ν, κ, ε) represents the alternative hypoth-
esis, that the peak is due to the source added to the back-
ground. The local number density of maxima n(ν, κ, ε) can
be calculated as

n(ν, κ, ε) =
∫∞
0
dνs p

(
νs
)
n
(
ν, κ, ε|νs

)
. (10)

In the last equation we have used the a priori probability
p(νs) that gives the amplitude distribution of the sources.

We can associate to any regionR∗(ν, κ, ε) in the (ν, κ, ε)
parameter space two number densities n∗b and n∗,

n∗b =
∫
R∗

dνdκdε nb(ν, κ, ε),

n∗ =
∫
R∗

dνdκdε n(ν, κ, ε),
(11)

where n∗b is the expected number density of spurious sources,
that is, due to the background, in the region R∗(ν, κ, ε),
whereas n∗ is the number density of maxima expected in the
same region of the (ν, κ, ε) space in the presence of a local
source. The regionR∗ will be called the region of acceptance.

In order to define the region of acceptanceR∗ that gives
the highest number density of detections n∗ for a given
number density of spurious detections n∗b , we consider a
Neyman-Pearson detector (NPD) using number densities in-
stead of probabilities

L(ν, κ, ε) ≡ n(ν, κ, ε)
nb(ν, κ, ε)

≥ L∗, (12)

where L∗ is a constant. The proof follows the same approach
as for the standard Neyman-Pearson detector. If L ≥ L∗ we
decide that the signal is present, whereas if L < L∗ we decide
that the signal is absent. From this ratio L ≥ L∗, we derive
the region of acceptance that is given by the sufficient linear
detector ϕ (see appendix)

R∗ : ϕ(ν, κ) ≥ ϕ∗, (13)
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where ϕ∗ is a constant and ϕ(ν, κ) is given by

ϕ(ν, κ) ≡ aν + bκ, a ≡ 1− ρys
1− ρ2

, b ≡ ys − ρ

1− ρ2
. (14)

We remark that the detector is independent of the shear ε.
This is due to the fact that we are considering a source with a
spherical profile with shear εs = 0. If the profile is not spher-
ical, the detector may depend on the shear.

3.2. Spurious sources and real detections

Given a region of acceptanceR∗, we can calculate the num-
ber density of spurious sources and the number density of
detections as given by (11):

n∗b =
√
3ñb√
2π

∫∞
0
dκ
(
κ2 − 1 + e−κ

2)
e−κ

2/2erfc(M),

M ≡ ϕ∗ − ysκ

a
√
2
(
1− ρ2

) ; (15)

n∗ =
√
3ñb√
2π

∫∞
0
dνs p

(
νs
)

×
∫∞
0
dκ
(
κ2 − 1 + e−κ

2)
e−(1/2)(κ−νs ys)2erfc(Q),

(16)

Q ≡M + νs
ρys − 1√
2
(
1− ρ2

) . (17)

Our approach is to fix the number density of spurious de-
tections and then to determine the region of acceptance that
gives the maximum number of true detections. This can be
done by inverting (15) to obtain ϕ∗ = ϕ∗(n∗b /nb; ρ, ys). Once
ϕ∗ is known, we can calculate the number density of detec-
tions using (16).

4. THE FILTERS

Detection can, in principle, be performed on the raw data,
but in most cases it is convenient to transform first the data
in order to enhance the contrast between the distributions
nb(ν, κ, ε) and n(ν, κ, ε). Hopefully, such an enhancement
will help the detector to give better results (namely, a higher
number of true detections). In this paper we will focus on the
use of linear filters as a means to transform the data in such a
way. Filters are suitable for this task because background fluc-
tuations that have variation scales different from the source
scale can be easily filtered out while preserving the sources.
Different filters will improve detection in different ways: this
paper compares the performance of several filters. The fil-
ter that gives the highest number density of detections, for
a fixed number density of spurious sources, will be the pre-
ferred filter among the considered filters.

We consider a filter Ψ(�x;R,�b), where R and �b define a
scaling and a translation respectively. Since the sources we are
considering are spherically symmetric and we assume that

the background is statistically homogeneous and isotropic,
we will consider spherically symmetric filters,

Ψ(�x;R,�b) ≡ 1
R2

ψ
( |�x −�b|

R

)
. (18)

If we filter our background with Ψ(�x;R,�b), the filtered field
is

w(R,�b) =
∫
d�x ξ(�x )Ψ(�x;R,�b). (19)

The filter is normalized such that the amplitude of the source
is the same after filtering:

∫
d�x τ(�x )Ψ(�x;R,�0) = 1. (20)

For the filtered field, (3) becomes

σ2n ≡ 2π
∫∞
0
dq q1+2nP(q)ψ2(q). (21)

The values of ρ, θm, θc, and all the derived quantities change
accordingly. The curvature of the filtered source κs can be
obtained through (9), taking into account that for the filtered
source,

−τ′′ψ = π
∫∞
0
dq q3τ(q)ψ(q). (22)

Note that the function ψ(q) will depend as well on the scal-
ing R. As an application of the previous ideas, we study the
detection of point sources characterized by a Gaussian pro-
file τ(x) = exp(−x2/2R2), x = |�x|, and Fourier transform
τ(q) = R2 exp(−(qR)2/2). This is the case we find in CMB
experiments, where the profile of the point source is given by
the instrumental beam that can be approximated by a Gaus-
sian.

This profile introduces in a natural way the scale of the
source R, the scale at which we filter. However, previous
works in 1D using theMHW,MF, SAF, and BSAF have shown
that the use of a modified scale αR can significantly improve
the number of detections (Cayón et al. [13], Vielva et al.
[14, 15], López-Caniego et al. [21, 22]). Therefore, we gener-
alize the functional form of these filters to 2D and allow for
this additional degree of freedom α.

4.1. Thematched filter

We introduce a circularly symmetric filter Ψ(�x;R,�b). The fil-
tered field is given by (19). Now, we express the conditions
to obtain a filter for the detection of the source s(x) = Aτ(x)
at the origin taking into account the fact that the source is
characterized by a single scale R0. We assume the following
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conditions:

(1) 〈w(R0,�0)〉 = s(0) ≡ A, that is, w(R0,�0) is an unbiased
estimator of the amplitude of the source;

(2) the variance of w(R,�b) has a minimum at the scale R0,
that is, it is an efficient estimator.

Then, the 2D filter satisfying these conditions is the so-called
matched filter. As mentioned before, we will allow the filter
scale to be modified by a factor α. If α = 1 we have the well-
known standard matched filter use in the literature. For a
source with a Gaussian profile, a scale-free power spectrum
P(q) ∝ q−γ, and allowing the filter scale to vary through the
α parameter, the modified matched filter is

ψMF(q) = N(α)zγe−(1/2)z
2
, z ≡ qαR, (23)

where

m ≡ 2 + γ

2
, N(α) = α2

∆m

1
π

1
Γ(m)

, ∆ = 2α2

(1 + α2)
, (24)

and Γ is the standard Gamma function. The parameters of
the filtered background and source are

ρ(α)=ρ=
√

m

1+m
, θm(α)=αR

√
2

1 +m
, ys(α)=ρ∆.

(25)

The corresponding threshold as compared to the stan-
dard matched filter (α = 1) is

ν(α)
νMF(α=1)

= αt−2∆m, (26)

where

t ≡ 2− γ

2
. (27)

We remark that for the standard matched filter the cur-
vature does not affect the region of acceptance and the linear
detector ϕ(ν, κ) is reduced to ϕ = ν.

4.2. The scale-adaptive filter

The scale-adaptive filter (or optimal pseudo-filter) has been
proposed by Sanz et al. [19]. The filter is obtained by impos-
ing an additional condition to the conditions that define the
MF:

(3) w(R,�0) has a maximum at (R0,�0).

Considering a scale-free power spectrum, P(q) ∝ q−γ, a
modified scale αR, and a Gaussian profile for the source, the
functional form of the filter in 2D is

ψSAF(q) = N(α)zγe−(1/2)z
2
[
γ +

2t
m
z2
]
, z ≡ qαR, (28)

where

N(α) = α2

∆m

1
πΓ(m)

1
γ + (2t/m)∆

, (29)

and where m and ∆ are defined as in (24), t is defined as in
(27). The parameters of the filtered background and source
are

ρ(α)=ρ=
√

m

1 +m

H1√
H2H3

, θm(α) = αR

√
2

1 +m

√
H1

H3
,

ys(α) =
√

m

1 +m

√
H2

H3
∆
γ + c(1 +m)∆

γ + cm∆
,

(30)

where c = 2t/m and

H1 = γ2 + 2γc(1 +m) + c2(1 +m)(2 +m),

H2 = γ2 + 2γcm + c2m(1 +m),

H3 = γ2 + 2γc(2 +m) + c2(2 +m)(3 +m).

(31)

The corresponding threshold as compared to the stan-
dard matched filter (α = 1) is

ν

νMF(α=1)
= αt−2∆m(γ + cm∆)√

H2
. (32)

4.3. TheMexican hat wavelet

The MHW is defined to be proportional to the Laplacian of
the Gaussian function in 2D real space

ψMHW(x)∝
(
1− x2

)
e−(1/2)x

2
, x ≡ |�x|. (33)

Thus, in Fourier space we get the modified Mexican hat
wavelet introducing the α parameter as follows:

ψMHW(q) = N(α)z2e−(1/2)z
2
, z ≡ qαR,

N(α) = 1
π

(
α

∆

)2
.

(34)

Thus, the filtered background and source parameters are

ρ(α) = ρ =
√

2 + t

3 + t
, θm(α) = αR

√
2

3 + t
,

ys(α) = 2√
(2 + t)(3 + t)

∆,

(35)

where m and ∆ are defined as in (24) and t is defined as in
(27). The corresponding threshold is

ν(α)
νMF(α=1)

= αt−2∆2√
Γ(m)Γ(2 + t)

. (36)
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Table 1: Number density of detections n∗ for the BSAF and the standard MF (α = 1) with optimal values of c and α for different values of
n∗b and R. RD means relative difference in number densities in percentage: RD ≡ 100(−1 + n∗BSAF/n

∗
MF).

R n∗b α c n∗BSAF n∗MF RD(%)

1.5
0.005 0.5 −0.44 0.0507 0.0484 4.7
0.01 0.5 −0.46 0.0709 0.0620 14.3

2
0.005 0.4 −0.54 0.0396 0.0335 18.2
0.01 0.4 −0.54 0.0567 0.0406 39.6

2.5 0.005 0.3 −0.64 0.0320 0.0245 30.6

4.4. The biparametric scale-adaptive filter

López-Caniego et al. [21] have shown that removing condi-
tion (3) defining the SAF and introducing instead the condi-
tion

(3) w(R0,�b) has a maximum at (R0,�0)

leads to the new filter

ψ(q)∝ τ(q)
P(q)

[
1 + c(qR)2

]
, (37)

where c is an arbitrary constant related to the curvature of
the maximum. For the case of a scale-free spectrum, and al-
lowing for a modified scale αR, the filter is given by the pa-
rameterized equation

ψBSAF(q) = N(α)zγe−(1/2)z
2(
1 + cz2

)
, z ≡ qαR,

N(α) = α2

∆m

1
π

1
Γ(m)

1
1 + cm∆

,
(38)

where m and ∆ are defined as in (24). We remark that c = 0
leads to the MF, and if c ≡ 2t/mγ, with t defined as in (27),
the BSAF becomes the SAF. The parameters of the filtered
background and source are

ρ(α)=ρ =
√

m

1 +m

D1√
D2D3

, θm(α) = αR

√
2

1 +m

√
D1

D3
,

ys(α) =
√

m

1 +m

√
D2

D3
∆
1 + c(1 +m)∆

1 + cm∆
,

(39)

where

D1 = 1 + 2c(1 +m) + c2(1 +m)(2 +m),

D2 = 1 + 2cm + c2m(1 +m),

D3 = 1 + 2c(2 +m) + c2(2 +m)(3 +m).

(40)

The equivalent threshold is given by

ν(α)
νMF(α=1)

= αt−2∆m(γ + cm∆)√
D3

. (41)

5. ANALYTICAL RESULTS

In this section we will compare the performance of the dif-
ferent filters previously introduced. We use as an example the
interesting case of white noise as background. This is a fair
approximation to the case presented in Figure 1, where the
sources are embedded in a background that is a combination
of instrumental noise (approximately Gaussian) and a small
contribution of residual foregrounds that have not been per-
fectly separated. For this example, we will consider sources
with intensities distributed uniformly between zero and an
upper cutoff.

The comparison of the filters is performed as follows. We
fix the number density of spurious detections, the same for
all the filters. Then, for any given filter we calculate the quan-
tities σn, ρ, and ys. Using (15) it is possible to calculate the
value of ϕ∗ that defines the region of acceptance. Then we
calculate the number density of real detections using (16).
The filter that leads to the highest number density of detec-
tions will be the preferred one. We do this for different values
of α in order to test how the variation of the filtering scale af-
fects the number of detections.

5.1. A priori probability distribution

As mentioned before, we will test a pdf of source intensities
that is uniform in the interval 0 ≤ A ≤ Ac. In terms of nor-
malized intensities, we have the pdf

p
(
νs
) = 1

νc
, νs ∈

[
0, νc

]
. (42)

We will consider a cutoff in the amplitude of the sources such
that νc = 2 after filtering with the standardMF, that is, we will
focus on the case of faint sources that would be very difficult
to detect if no filtering was applied. Note that while the value
νc is different for each filter (because each filter leads to a
different dispersion σ0 of the filtered field), the distribution
in source intensities A is the same for all the cases.

5.2. Results for white noise

We want to find the optimal filter in the sense of the max-
imum number of detections. For the sources, we use a
uniform distribution with amplitudes in the interval A ∈
[0, 2]σ0, where σ0 is the dispersion of the linearly filtered map
with the standard MF. We focus on the interesting case of
white noise (γ = 0) and explore different values of n∗b and R.
The results are summarised in Table 1.



Detection of Point Sources 2433

1.41.210.80.60.4

α

0.02

0.04

0.06

0.08

n∗

MF
SAF
BSAF

Figure 2: The expected number density of detections n∗ as a func-
tion of α for γ = 0 for the BSAF (c has been obtained bymaximizing
the number of detections for each value of α), MF, and SAF filters.
We consider the case R = 1.5, n∗b = 0.01.

We study the performance of the different filters as a
function of α. This allows us to test how the variation of the
natural scale of the filters helps the detection. In the case of
the BSAF, which has an additional free parameter, c in (38),
for each value of α we determine numerically the value of c
that gives the highest number of detections. Then the BSAF
with such c parameter (i.e., a function of α, n∗b , and R) is
compared with the other filters.

In Figure 2, we plot the expected number density of de-
tections n∗ for different values of α, R = 1.5 pixels, and
n∗b = 0.01. Note that for the 2D case the MHW and SAF are
the same filter for γ = 0, and we have only included the latter
in our figures. In this case, the curve for the BSAF always goes
above the other filters. The maximum number of detections
is found for small values of α. In this region, the improve-
ment of the BSAF with respect to the standard matched filter
is of order 
 15%.

In Figure 3, we show the results for R = 2. We have in-
creased the beamwidth as compared to the previous example
and left unchanged the number density of false detections.
The BSAF outperforms all the other filters, and for small val-
ues of α the improvement is of order 
 40%. Note that in
this figure the MF takes values α ∈ [0, 1]. For greater values
of α, with R = 2 and n∗b = 0.01, we cannot solve for ϕ∗ in the
implicit equation (15) and cannot calculate n∗.

We remark that filtering at scales much smaller than the
scale of the pixel does not make sense. This is due to the fact
that we are not including the effect of the pixel in our the-
oretical calculations and, thus, the results would not exactly

1.41.210.80.60.4
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0.02

0.04

0.06

n∗

MF
SAF
BSAF

Figure 3: The expected number density of detections n∗ as a func-
tion of α for γ = 0 for the BSAF (c has been obtained by maximising
the number of detections for each value of α), MF, and SAF filters.
We consider the case R = 2, n∗b = 0.01.

follow what would be found in a real image. Therefore, we
present the results only for those values of α such that αR is
at least ∼ 1.

6. CONCLUSIONS

Several techniques have been introduced in the literature
to detect point sources in two-dimensional images. Exam-
ples of point sources in astronomy are far galaxies as de-
tected by CMB experiments. An approach that has been thor-
oughly used in the literature for this case consists in linear
filtering the data and applying detectors based on thresh-
olding. Such approach uses only information on the ampli-
tude of the sources: the potentially useful information con-
tained in the local spatial structure of the peaks is not used
at all. In our work, we design a detector based on peak
statistics that uses the information contained in the am-
plitude, curvature, and shear of the maxima. These quan-
tities describe the local properties of the maxima and are
used to distinguish statistically between peaks due to back-
ground fluctuations and peaks due to the presence of a
source.

We derive a Neyman-Pearson detector (NPD) that con-
siders number densities of peaks which leads to a sufficient
detector that, in the case of the spherically symmetric sources
that we consider, is linear in the amplitude and curvature of
the sources. For this particular case, then, the information of
the shear of the peaks is not relevant. In other cases, however,
it could be useful.
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It is a common practice in astronomy to linear filter the
images in order to enhance very faint point sources and help
the detection. The best filter would be the one that makes it
easier to distinguish between peaks coming from the back-
ground alone and those due to the presence of a source, ac-
cording to the information used by the detector. In the case of
simple thresholding, which considers only the amplitude of
the peaks, the answer to the question of which is the best filter
(in the previous sense) is well known: the standard matched
filter. But in the case of the Neyman-Pearson detector, which
considers other things apart frommere amplitudes, this is no
longer true.

We have compared three commonly used filters in the lit-
erature in order to assess which one of them performs bet-
ter when detecting sources with our scheme. In addition, we
have designed a filter such that it optimizes the number of
true detections for a fixed number of spurious sources. The
optimization of the number of true detections is performed
by using the a priori pdf of the amplitudes of the sources.
This filter depends on two free parameters and it is therefore
called biparametric scale-adaptive filter (BSAF). By construc-
tion, the functional form of the BSAF includes the standard
MF as a particular case and its performance in terms of num-
ber of true detections for a fixed number of spurious detec-
tions must be at least as good as the standard MF’s one.

Following the work done in the 1D case, we generalize the
functional form of the filters to 2D and introduce an extra
degree of freedom α that will allow us to filter at different
scales αR, where R is the scale of the source. This significantly
improves the results.

We have considered an interesting case, a uniform distri-
bution of weak sources with amplitudes A ∈ [0, 2]σ0, where
σ0 is the dispersion of the field filtered with the standard
matched filter, embedded in white noise (γ = 0). We have
tested different values of the source size R and of the number
density of spurious detections n∗b that we fix. We find that
the BSAF improves the number density of detections up to

 40% with respect to the standard MF (α = 1) for certain
cases. Note that since the Neyman-Pearson detector for the
standard MF (α = 1) defaults to the classic thresholding de-
tector that is commonly used in astronomy, the results of this
work imply that it is possible, under certain circumstances, to
detect more point sources than in the classical approach.

The generalization of these ideas to other source profiles
and non-Gaussian backgrounds is relevant and will be dis-
cussed in a future work.

APPENDIX

We will show in this appendix that ϕ(ν, κ) ≥ ϕ∗ given in (13)
is a sufficient linear detector, that is, the detector is linear in
the threshold ν and the curvature κ and the data it uses is a
sufficient statistic to decide if a peak is a source (independent
of the a priori probability P(νs)). The ratio L(ν, κ, ε|νs) ≡
n(ν, κ, ε|νs)/nb(ν, κ, ε) can be explicitly written as

L
(
ν, κ, ε|νs

) = eϕνs−(1/2)(ν2s+(ρνs−2κs)2). (A.1)

The criterion for detection can be written as

Ł(ν, κ) ≡
∫∞
0
dνs p

(
νs
)
L
(
ν, κ|νs

) ≥ L∗, (A.2)

where L∗ is a constant. L is a function of ϕ,

ϕ(ν, κ) ≡ aν + bκ, a = 1− ρys
1− ρ2

, b = ys − ρ

1− ρ2
. (A.3)

By differentiating L with respect to ϕ we find that

∂L

∂ϕ
=
∫∞
0
dνs p

(
νs
)
νse

ϕνs−(1/2)(ν2s+(ρνs−2κs)2) ≥ 0, (A.4)

and therefore setting a threshold in L is equivalent to setting
a threshold in ϕ:

Ł(ν, κ) ≥ L∗ ⇐⇒ ϕ(ν, κ) ≥ ϕ∗, (A.5)

where ϕ(ν, κ) is given by (A.3) and ϕ∗ is a constant.
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