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We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultane-
ously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression
ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled
by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user’s requirements.
An advanced lossless/near-lossless differential pulse code modulation (DPCM) scheme, recently introduced by the authors and
relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric reso-
lution, generally low noise, etc.). The background noise is preliminarily estimated to drive the quantization stage for high quality,
which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and
lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method
compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a
noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for
the astronomers’ community.
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arrays, such as charge-coupled devices (CCDs). The size of
digital arrays is also increasing, pushed by astronomical re-

The volume of astrophysical data that is acquired and ex-
changed among users, either scientists or not, is rapidly in-
creasing. This is partly owing to large digitized sky surveys
in the visible and near-infrared spectral intervals. These sur-
veys are made possible by the development of digital imaging

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

search’s demands for more data in less time. Compression of
such images can reduce the volume of data that it is neces-
sary to store (a concern for large-scale sky surveys) and can
shorten the time required to transmit images. The latter is-
sue is useful for remote observing of or remote access to data
archives [1].

Astronomical images have some rather unusual charac-
teristics that make many existing image compression tech-
niques ineffective [2]. A typical image consists of a nearly flat


mailto:c.lastri@ifac.cnr.it
mailto:b.aiazzi@ifac.cnr.it
mailto:alparone@lci.det.unifi.it
mailto:s.baronti@ifac.cnr.it

2522

EURASIP Journal on Applied Signal Processing

background sprinkled with point sources and occasional ex-
tended sources. Depending on acquisition bandwidths and
exposure times, images may be more or less noisy; in the for-
mer case, lossless compression is ineffective for transmission
bandwidth reduction because the coding bit rate is lower-
bounded by the entropy of the noise [3]. Furthermore, the
images are usually subjected to stringent quantitative analy-
sis, so any lossy compression method must be proven not to
discard useful information, but should in principle discard
only the noise [4].

Data compression methods can be classified as either
reversible, that is, lossless, or irreversible, lossy, depending on
whether the original data may be exactly reconstructed from
the compressed data, or the decompressed data is not exactly
the same as the original, because some distortion has been in-
troduced by compression. Astronomers often insist that they
can accept only lossless compression, in part because of con-
servatism, and in part because the familiar lossy compression
methods sacrifice some information that is needed for accu-
rate analysis of image data. In fact, for an astronomer a scien-
tific frame is not simply a scene to be reproduced with a more
or less high fidelity, but a 2D measure of a scalar field repre-
senting fluxes. Then, as for any other measure, random and
systematic errors must be carefully assessed, quantified, and
kept under strict control [5]. A common practice to achieve
this goal, given the root mean square (RMS) of the noise in-
troduced by the analog instrument, is that the step size of the
uniform threshold quantizer (UTQ) is chosen accordingly,
based on application requirements; for example, target de-
tection, and the outcome quantization levels are transmitted
without further loss. However, since all astronomical images
contain noise, which is inherently incompressible, lossy com-
pression methods may produce much better compression re-
sults and are thus worth being investigated, provided that a
deep quantitative analysis of the impact of information loss
on the scientific products expected from the observation is
preliminarily carried out.

The classical image compression scheme consists of a
decorrelator, followed by a quantizer and an entropy cod-
ing stage [6]. The decorrelator has the purpose of removing
spatial redundancy; hence it must be tailored to the specific
characteristics of the data to be compressed. Examples are or-
thogonal transforms, for example, discrete cosine transform
(DCT) [6] and Mallat’s discrete wavelet transform (DWT)
[7], and differential pulse code modulation (DPCM) [6]. The
quantizer introduces a distortion to allow a decrement in en-
tropy rate to be achieved. Once an image has been decorre-
lated and possibly quantized, it is necessary to find a compact
representation of its coefficients, which may be sparse. Thus,
an entropy coding algorithm maps such coefficients into
codewords, aiming at minimizing the average code length.

Decorrelation is crucial for compression. DWT calcu-
lated on the whole image (full-frame DWT) allows long-
range correlation to be effectively removed, unlike DCT,
in which full-frame processing leads to a spread of energy
in the transformed plane, because DCT is not suitable for
the analysis of nonstationary signals. Also computational is-
sues make DCT usually applied not to the whole frame,

but to small blocks only, in which the assumption of sta-
tionarity approximately holds [6]. Hence, it fails in exploit-
ing long-range correlation and can effectively remove only
short-range correlation. The dc component that is encoded
stand-alone (e.g., by spatial DPCM) is a fundamental draw-
back of first-generation transform coders [6]. The new stan-
dard JPEG2000 proposed by the Joint Photographic Experts
Group [8] was devised to overcome such limitations, thereby
leading to substantial benefits. The use of critically decimated
decompositions, like Mallat’s octave wavelet pyramid [7], is
motivated by a twofold requirement: lack of redundancy, the
reason for which undecimated decompositions, like the “a
trous” wavelet transform, widely used in astrophysical im-
age processing [9], are little suitable for data compression;
orthogonality, thanks to which the variance of quantization
errors in the transformed domain is preserved when the data
is transformed back to the spatial domain.! Thus, the mean
square error (MSE) can be easily controlled through the step
sizes of quantizers. However, quantization errors in the trans-
formed domain, which are likely to be uniformly distributed,
at least if the step size is not greater than the RMS of the
data, and are upper bounded in modulus by half of the step
size, are spread by the inverse transformation and may yield
heavy-tailed distributions, whose maximum absolute ampli-
tude cannot be generally known a priori. Therefore, lossy
transform-based encoders are unable to control the distor-
tion but in the MSE sense, which means that in the lossy case
relevant image features may be locally distorted by an un-
quantifiable extent.

Let {g(i,j)}, with 0 < g(i,j) < gfs gfs being the
full scale, denote an integer-valued N-pixel digital image
and {g(i,j)} its distorted version, integer valued as well,
achieved by compressing {g(i, j)} and decoding the outcome
bit stream. All values are intended to be expressed either in
an unspecified unit, or simply in digital counts. Widely used
distortion measurements are MSE, or squared L, distance be-
tween original and distorted image (L3),

MSE = %ZZ[g(i,j)—gN(i,j)]z; (1)
i

maximum absolute distortion (MAD), or peak error, or Le-
distance between original and distorted image,

MAD = nlu}tx{ lg(i, i) —8G )|} (2)

peak signal-to-noise ratio (PSNR),

2
&Fs
PSNR(gp) = 10log,, m )

'If the transformation is not orthogonal, like the biorthogonal wavelet
transform used by JPEG2000, MSE distortions coming from quantized sub-
bands must be multiplied by constant coefficients depending on filters syn-
thesizing each subband, before being summed together to yield the total dis-
tortion.
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in which the MSE at denominator is incremented by the vari-
ance of the integer roundoff error, to handle the limit lossless
case, when MSE = 0. Thus, PSNR will be upper bounded by
10log,, (12 - g}s), in the lossless case, to indicate that the sig-
nal detected by the sensor has been quantized before being
reversibly compressed.

Noteworthy are those lossy methods that allow to settle
“a priori” the maximum reconstruction error, not only on
the whole, that is, globally, but also locally, that is, at each
pixel location. Control of the maximum value of the absolute
error, that is, of MAD, is capable to ensure constant quality
throughout the reconstructed image. If the L« -error is con-
strained to be not greater than a user-defined value, the cur-
rent definition of near-lossless compression, established for
the medical community [10], applies.

The evaluation of the maximum allowable distortion is
an open problem. In astrophysical applications, the data ac-
quired from the instrument, after being preliminarily pro-
cessed (preprocessed), for example, reduced and corrected
for acquisition distortions, and calibrated, is usually postpro-
cessed to extract information that may not be immediately
available by visual inspection. Under this perspective, an at-
tractive facility of near-lossless compression methods is that,
if the user-defined Lo -error is properly related to the RMS
value of the background noise (assumed to be additive and
signal-independent) the decompressed image, even though
not identical to the original, may be virtually lossless [11].
Originally introduced for remote-sensing data compression,
this term indicates not only that the decoded image is visu-
ally indistinguishable from the original, but also that pos-
sible outcomes of postprocessing (e.g., features extraction,
target detection, data modeling, classification, etc.) are sub-
stantially unchanged from those calculated from the original
data. Thus, the drawback of compression will be a small and
predictable increment in the equivalent sensor’s noisiness.

To conclude this section, we wish to recall that the in-
troduction of data compression can alleviate bandwidth re-
quirements at the price of a computational effort for en-
coding (images can be extremely large in size and process-
ing power is generally limited on spaceborne platforms) and
decoding, as well as of a possible loss of quality. The goal
of this paper is investigating state-of-the-art and advanced
compression algorithms from the viewpoint of their poten-
tial suitability to preserve the scientific quality of astrophys-
ical imagery. To this purpose, a statistical analysis of the
compression-induced distortion, when compression is lossy,
will be carried out.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the theoretic fundamentals of differ-
ential pulse code modulation (DPCM) and state-of-the-art
data compression methods. Section 3 describes an advanced
DPCM encoder, recently introduced by the authors, whose
characteristics of adaptivity make it suitable for astrophys-
ical image compression. Section 4 reports extensive coding
results on a large set of astrophysical images in a comparison
with such compression standards as JPEG-LS and JPEG2000.
Concluding remarks are drawn in Section 5.

2. LOSSLESS/NEAR-LOSSLESS IMAGE COMPRESSION
2.1. Adaptive prediction

Differential pulse code modulation (DPCM) schemes are in-
deed the sole algorithms suitable for lossless/near-lossless
image compression, or more exactly for Le-constrained
compression. DPCM basically consists of a decorrelation fol-
lowed by entropy coding of the outcome residues, given as
differences between true and estimated pixel values. If esti-
mation of the current sample is carried out from past sam-
ples, according to the image scan fashion, DPCM is said to
be spatially causal and the estimation is a prediction, that
is, an extrapolation, driven by the previous samples. Con-
versely, estimation may be carried out hierarchically, that
is, by increasing resolution: a low-resolution coarse image
version is interpolated to a finer scale and differences be-
tween true and interpolated samples are progressively en-
coded. In this way DPCM is said to be spatially noncausal,
or interpolation-based, and the outcome decoded bit stream
resembles a pyramid [12], whose basis is the decompressed
image. Both the causal and noncausal DPCM schemes may
be L.-constrained. However, the former is not redundant,
the number of residues being identical to that of image pix-
els, whereas the latter is redundant. Therefore, causal DPCM
performs better than noncausal DPCM for medium/high
bit rates, that is, close-to-lossless compression. Noncausal
DPCM, which has the attractive characteristic of progres-
sive decoding, is preferable for low bit rates, where its per-
formance plots lie in the middle between those of JPEG and
of JPEG2000.

Figure 1 outlines the flowcharts of causal DPCM encoder
and decoder, featuring context modeling for entropy coding,
which will be described in Section 2.2 . For the sake of clar-
ity, notation is one-dimensional. The difference e(n) between
the current sample g(n) and its estimation g(n) is quantized
by the block labeled with Q to yield the quantized predic-
tion error ex(n), which is sent to the entropy coder (featur-
ing context modeling in the example), which outputs the en-
coded prediction error ¢(n) and the array of data-dependent
context thresholds ©, as side information. At the same time,
ea(n) is inversely quantized (Q™!) to the reconstructed pre-
diction error &(n), which is added to the output of predictor
to yield the reconstructed sample g(n). The latter is delayed
by one sample, for the causality constraint, which states that
the predicted value g(n) may not depend on g(n), but only
on g(n — 1), g(n — 2), and so on. The quantization noise
feedback loop at the encoder allows the Lo, -error to be con-
strained, by forcing prediction at the encoder to be carried
out from the same distorted samples that will be available
at the decoder, where an identical predictor is placed. In a
lossless implementation, g(n) is integer valued, the output of
predictor is rounded to integer as well, the quantizer block is
missing together with the feedback loop, and the predictor is
straightforwardly fed by the delayed sequence of g(n).

The simplest way to design a predictor is to take a lin-
ear or nonlinear combination of the values of pixels lying
within a causal neighborhood of the current pixel, that is,
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F1GURE 1: Flowchart of DPCM with quantization noise feedback loop at the encoder, suitable for error-bounded near-lossless compression:

(a) encoder; (b) decoder.

surrounding the current pixel and such that they have been
previously encountered along the image scan path, thereby
representing past pixels. A linear combination, or regression,
with fixed coefficients usually provides limited decorrelation.
For better performance, the coefficients, whose number rep-
resents the order of prediction, may be calculated so as to
yield minimum MSE (MMSE) over the whole image. Such
coefficients are constant throughout an image, but change
from an image to another image. The globally MMSE pre-
diction, however, is optimal only for stationary signals. To
overcome this drawback, two variations have been proposed:
adaptive DPCM (ADPCM) [6], in which the coefficients of
the MMSE predictor are continuously recalculated from the
incoming new data at each pixel location on a subset of past
pixels (the procedure is symmetrical at the decoder, so that
the coefficients need not to be transmitted); classified DPCM
[13], in which a preliminary training phase is aimed at recog-
nizing some statistical classes of pixels and at calculating an
MMSE predictor optimized for each class. Once such predic-
tors are available, the most performing (in the MMSE sense)
on a block of pixels may be selected to encode the current
block [14]. Alternatively, predictors may be adaptively com-
bined [15], also based on fuzzy-logic concepts [16], to at-
tain an MMSE space-varying prediction. The two strategies
of classified prediction will be referred to as adaptive selec-
tion/combination of adaptive predictors (ASAP/ACAP).

Eventually, we wish to remind the reader that a forerun-
ner of the ACAP paradigm is the fuzzy 3D DPCM developed
by some of the authors for lossless compression of multispec-
tral and hyperspectral remotely sensed images [17]. In this
case, the prototype MMSE spatial/spectral linear predictors
constituting the dictionary were calculated on clustered data,
an idea successfully developed in later works [18].

2.2. Context modeling

A notable feature of all advanced image compression meth-
ods [19] is statistical context modeling for entropy coding.
The underlying rationale is that prediction errors should be
similar to stationary white noise as much as possible. As a
matter of fact, they are still spatially correlated to a certain
extent and especially are non-stationary, which means that
they exhibit space-varying variance. The better the predic-
tion, however, the more noise-like prediction errors will be.

Following a trend established in the literature, first in
the medical field [20], then for lossless coding in general
[21, 22], and recently for near-lossless coding [23, 24], predic-
tion errors are entropy coded by means of a classified imple-
mentation of an entropy coder, generally arithmetic [25] or
Golomb-Rice [26]. For this purpose, they are arranged into a
user-defined number of statistical classes based on the spatial
context that can be a measure of magnitude or activity of past
surrounding pixel values and/or prediction errors. If such
classes are statistically discriminated, then the entropy of a
context-conditioned model of prediction errors will be lower
than that of a stationary memoryless model of the (decorre-
lated) source [27].

2.3. Review of standards and state-of-the-art methods

Considerable efforts have recently been spent on the de-
velopment of lossless and near-lossless image compression
techniques. The first specific standard has been the lossless
version of JPEG [6], which relies on a set of linear pre-
dictors with fixed coefficients. A new standard, which pro-
vides also near-lossless compression, has been released un-
der the name JPEG-LS [22]. It is based on an adaptive non-
linear prediction, potentially capable to fit contours, and ex-
ploits statistical context modeling of prediction errors fol-
lowed by Golomb-Rice entropy coding. A similar context-
based algorithm named CALIC has also been recently pro-
posed [21]. The simple adaptive predictors used by JPEG-LS
and CALIC, however, the median adaptive predictor (MAP)
and the gradient adjusted predictor (GAP), have been em-
pirically tailored to the average characteristics of gray-scale
images. Thorough comparisons with methods following the
ASAP and ACAP paradigms [14, 16] have revealed that
their performance is limited and still far from the entropy
bounds. In fact, the original 2D encoder following the ACAP
paradigm [16] achieves lossless compression ratios 5% bet-
ter than CALIC and 10% than JPEG-LS, on average. Al-
though the 2D ASAP encoder [14] is slightly less perform-
ing than the former, its feature of real-time decoding is
highly valuable in application contexts, since an image is
usually encoded only once, but decoded many times. Fur-
thermore, the crisp algorithm takes more advantage than
the fuzzy one from a low noisiness of the data to com-
press.
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FIGURE 2: Flowchart of the relaxation-labeled prediction encoder (RLPE). The box marked as “block predictor and quantizer” includes a

quantization noise feedback loop.

Eventually, the JPEG2000 image coding standard [8]
incorporates a lossless mode, based on reversible integer
wavelets, and is capable of providing a scalable bit stream
that can be decoded from the lossy up to the lossless
level. The possibility of defining regions of interest (ROI) is
another facility of JPEG2000: for example, compression can
be lossless inside ROIs and lossy elsewhere. However, de-
spite its advanced and powerful facilities, JPEG2000 is an L;-
constrained encoder and thus not capable of providing near-
lossless compression, except for the limit lossless case.

3. RELAXATION-LABELED PREDICTION ENCODER

The DPCM encoder proposed for astrophysical image com-
pression [14] follows the ASAP paradigm, being based on
a classified linear-regression prediction, with context-based
arithmetic coding of prediction errors. The image is parti-
tioned into blocks, typically 8 x 8, and an MMSE linear pre-
dictor is calculated for each block. Given a prefixed number
of classes, a clustering algorithm produces an initial guess
of as many classified predictors that are delivered to an it-
erative labeling procedure, which classifies pixel blocks si-
multaneously refining the associated predictors. In order to
achieve reduction in bit rate within the constraint of a near-
lossless compression, prediction errors are quantized with
odd-valued step sizes, A = 2§ + 1, with § denoting the
induced Lo -error. Quantized prediction errors are then ar-
ranged into activity classes based on the spatial context, that
are entropy coded by means of arithmetic coding. Figure 2
shows the flowchart of the encoder. Besides encoded predic-
tion errors &(n), the refined predictors are transmitted along
with the label of each block and the set of thresholds defining
the context classes for entropy coding.

3.1. Initialization

Patterns of pixel values occurring within the causal neighbor-
hood of each pixel, also known as prediction support, reflect
local image features, for example, edges, textures, and shad-
ings. An efficient prediction should be capable of embodying
and reflecting such features as much as possible. After pre-
liminarily partitioning the input image into square blocks,
for example, 8 X 8, a prediction support of size S (i.e., con-
taining S samples) is set, and the S coefficients of an MMSE
linear predictor are calculated for each block by means of a

least squares (LS) algorithm. Thus, a large number of predic-
tors, each optimized for a single block, is produced.

The S coefficients of each predictor are arranged into
an S-dimensional space. Since the coefficients of any predic-
tor sum to one, all predictors lie on the hyperplane passing
through the unit vectors of the coordinate axes. It can be no-
ticed that statistically similar blocks exhibit similar predic-
tors. Thus, the MMSE predictors calculated for each block
are clustered on the hyperplane, instead of being spread.

A user-provided number M of representative predictors
are identified by the fuzzy-C-means (FCM) clustering algo-
rithm [28]. Such dominant predictors are calculated as cen-
troids of as many clusters in the predictors space, according

to a Euclidean metrics. Thus, an § X M matrix ®© = {(E(W?),
m = 1,..., M} containing the coefficients of the M predic-
tors is produced. The superscript (0) highlights that such
predictors are start-up values of an iterative refinement pro-
cedure.

3.2. Relaxation labeling and predictors refinement

Once M predictors have been found out through fuzzy clus-
tering, they are used to initialize an iterative procedure in
which image blocks are assigned to M classes and an opti-
mized predictor is obtained for each class.

Step 0. Classify blocks based on their mean square prediction
error (MSPE). The label of the predictor minimizing MSPE
for a block is assigned to the block itself. This operation has
the effect of partitioning the set of blocks into M classes that
are best matched by the currently available predictors.

Step 1. Recalculate each of the M predictors from the data
belonging to the blocks of each class. The new set of predic-
tors is thus designed so as to minimize MSPE for the current
block partition into M classes.

Step 2. Reclassify blocks: the label of the new predictor min-
imizing MSPE for a block is assigned to the block itself. This
operation has the effect of moving some blocks from one
class to another, thus repartitioning the set of blocks into M
new classes that are best matched by the current predictors.

Step 3. Check convergence; if realized, stop; otherwise, go to
Step 1.
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3.3. Blockwise prediction and quantization

Once all blocks have been classified and labeled, together
with the optimized predictors, the image is raster scanned
and the M refined predictors are activated based on the
classes of crossed blocks. Thus, each pixel value g(n) belong-
ing to one block of the partition that has been labeled to the
mth class is predicted by using the mth predictor. Since g(n)
is integer, g(n) is rounded to integer as well and the out-
come integer-valued prediction error, e(n) = g(n) — g(n),
is uniformly quantized with a step size A as ex(n) = round
[e(n)/A] and delivered to the context-coding section.

The operation of inverse quantization e(n) = ex(n) - A
introduces an error, whose variance is approximately (A? —
1)/12 (provided that A is lower than the RMS value of e(n))
and whose maximum absolute value is L, = |A/2]. Since
MSE is a quadratic function of A, odd-valued step sizes yield
lower Lo, than even sizes do. The step size A is set identical
for all blocks, both to minimize L., and to avoid blocking
artifacts in reconstructed images.

3.4. Context-based arithmetic coding

Prediction errors are classified into a predefined number of
statistically homogeneous classes based on the spatial con-
text. A context function is defined and measured on predic-
tion errors lying within a circular neighborhood of the cur-
rent pixel, possibly larger than the prediction support, as the
RMS value of prediction errors (RMSPE). Again, causality of
neighborhood is necessary in order to make the same infor-
mation available both at the encoder and at the decoder. At
the former, the probability density function (PDF) of RM-
SPE is calculated and partitioned into a number of intervals
chosen as equally populated to yield equiprobable contexts.
This choice is motivated by the subsequent use for residues
belonging to each class of adaptive arithmetic coding, which
benefits from a number of data in each class large enough
for training, which happens simultaneously with coding. The
residue in each class is split into sign bit and magnitude.
The former is strictly random and is coded as it stands,
the latter exhibits a reduced variance in each class; thus,
it may be coded with fewer bits than the original residue.
From the PDF of context, L — 1 thresholds ® = {6, € R,
I =1,...,L — 1}, that define the decision intervals of each
class, are calculated. ©, as well as @, is stored in the file header
as overhead.

It is noteworthy that the context-coding procedure in-
troduced by the authors [23] is independent of the partic-
ular method used to decorrelate the data. Unlike most of the
schemes, for example, CALIC [21], in which context coding
is embedded in the decorrelation, it can be applied to any
DPCM scheme, either lossless or near-lossless, without ad-
justments for the near-lossless case [24], as a patch between
decorrelation and entropy coding stages.

4, EXPERIMENTAL RESULTS
4.1. Dataset

All the images used in the following experiments have
been acquired by the Wide Field and Planetary Camera 2

(WFPC2) and are available at http://archive.eso.org, courtesy
of the European Southern Observatory (ESO).

The WFPC2 is a two-dimensional imaging photometer,
whose field of view (FOV) is located at the center of focal
plane of the Hubble Space Telescope (HST) and covers the
spectral range between approximately 1150 A and 10500 A.
The central portion of the f/24 beam coming from the Op-
tical Telescope Assembly (OTA) is intercepted by a steer-
able pick-off mirror attached to the WFPC2 and is diverted
through an open port entry into the instrument. The beam
then passes through a shutter and interposable filters. A to-
tal of 48 spectral elements and polarizers are contained in
an assembly of 12 filter wheels. The light then falls onto a
shallow-angle, four-faceted pyramid, located at the aberrated
OTA focus. Each face of the pyramid is a concave spherical
surface, dividing the OTA image of the sky into four parts.
After leaving the pyramid, each quarter of the full field of
view is relayed by an optically flat mirror to a Cassegrain re-
lay that forms a second field image on a charge-coupled de-
vice (CCD) of 800 x 800 pixels. Each of these four detectors is
housed in a cell sealed by an MgF2 window, which is figured
to serve as a field flattener. The optics of three of the four
cameras —the Wide Field Cameras (WF2, WF3, WF4)— are
essentially identical and produce a final focal ratio of f/12.9.
The fourth camera, known as the Planetary Camera (PC or
PC1), has a focal ratio of f/28.3. The WFPC2 simultaneously
images a 150" 150" L-shaped region with a spatial sampling
of 0.1 per pixel, and a smaller 34" x 34" square field with
0.046" per pixel. Figure 3 shows the field of view of WFPC2
projected onto the sky. The four operational configurations
of WFPC2 are described in Table 1.

The total system quantum efficiency (WFPC2+HST)
ranges from 5% to 13% at visual wavelengths, and drops to
~ 0.5% in the far UV. Detection of faint targets will be lim-
ited by either the sky background (for broad filters) or by
noise in the read-out electronics (for narrow and UV filters)
with an RMS equivalent to 5 detected photons. Bright targets
can cause saturation (more than 53 000 detected photons per
pixel), but there are no related safety issues.

A large test set of images acquired by WFPC2 was used
for lossless compression experiments. The subjects are Glob-
ular Cluster M30 (NGC7099), Irregular Galaxy Small Magel-
lanic Cloud (SMC), and Ring Nebula (NGC6720). For each
scene, several observations, differing by spectral filter and ex-
posure time, were considered. All the images downloaded
from the archive are raw data that have been neither reduced
nor calibrated, have 12 bit dynamic range, and are packed in
16 bit words. Units are digital counts, which are converted
into physical measure units once the calibration process is
accomplished. A subset of images —one for each scene— on
which lossy compression experiments have been carried out,
is shown in Figure 4. Acquisition parameters are summarized
in Table 2 and statistics, including the measured noise RMS
value, in Table 3.

4.2. Lossless compression performance comparisons

The methods compared are RLPE with context modeling
(CTX) and arithmetic coding (AC), RLPE without CTX and
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FIGUre 3: Field of view (FOV) of the Wide Field and Planetary
Camera 2 (WFPC2) projected onto the sky. U2 and U3 axes are
defined by the “nominal” Optical Telescope Assembly (OTA) axis,
which is near the center of the FOV of WFPC2.

TaBLE 1: Operational configurations of the Wide Field and Plane-
tary Camera 2.

Field of view Scale

36" x 36"
80" x 80"

Camera Pixels
PC 800 x 800

WEF2,3,4 800 x 800

f/ratio
0.0455" /pixel 28.3
0.0966" /pixel 12.9

with AC, RLPE with CCSDS-Rice coding [29] (including its
own context model), JPEG-LS, lossless JPEG2000, and plain
zero-order prediction with Rice coding (ZOP-Rice), stan-
dardized as baseline space encoder [30], though a more so-
phisticated predictor is left as an open concern. RLPE uses
8 x 8 blocks, 5 predictors (each with 4 coefficients, with val-
ues summing to one) refined with one iteration of relax-
ation labeling. Context modeling uses nine context classes,
that is, eight thresholds, and context calculated on a circu-
lar causal neighborhood of radius three. We wish to point
out that goal of the experimental section is comparing the
lossless, near-lossless, and unconstrained lossy compression
modalities, rather than providing a comprehensive compari-
son among compression algorithms, as it can be found, for
example, in [16]. Most of state-of-the-art algorithms, like
CALIC [21], are not available for image data having more
than 8 bits per pixel, being developed for multimedia images
rather than for scientific data.

Bit rates on disk including overhead and entropy coding
are reported in Tables 4, 5, and 6 for a wide variety of ob-
servation of the three test scenes. A trend steady intra-table
and inter-table shows that RLPE yields the lowest bit rates.
Benefits stem from arithmetic coding and especially from
context modeling. The coupling of RLPE with the CCSDS-
Rice context-based entropy coding is slightly penalized with

respect to JPEG-LS, which exploits Golomb coding [31],
together with a context model optimized to its nonlinear
prediction. The baseline CCSDS scheme [30] is somewhat
poorer, notwithstanding all predictors are relatively short
(one-to-four-pixel neighborhoods), mainly because a one-
dimensional predictor cannot adequately remove an intrin-
sically two-dimensional redundancy. Also, Rice entropy cod-
ing appears to be far less powerful than arithmetic coding.
The advantage of the former over the latter for space applica-
tion is that, at the time of its standardization, space-qualified
hardware was already available for Rice coding, but not
for arithmetic coding. Eventually, lossless JPEG2000, which
is not based on DPCM, yields results somewhat poor on
Globular Cluster, being superior to ZOP-Rice only; on SMC
the average performance is identical to that of RLPE+Rice.
However, JPEG2000 outperforms RLPE+Rice on Ring Neb-
ula and closely approaches the performances of JPEG-LS.
By watching Figure 4 the explanation of these trends is eas-
ily found. JPEG2000 is penalized with respect to advanced
DPCM schemes on a dark background sprinkled by stars be-
cause of its compact-support oscillating functions, the decre-
ment in performances against DPCM algorithms being di-
rectly related to the density of bright spots.

Given the intrinsically multispectral nature of the astro-
physical data under concern, joint spectral and spatial decor-
relation was investigated, by using the 3D version of RLPE
[11]. It was found that the same strategy of adaptive pre-
diction carried out from spectrally adjacent bands, unlike
what happens for conventional remote-sensing data, is not
rewarding in terms of compression performances, the aver-
age bit rate saving being less than one hundredth of bpp.
This is not surprising, since astronomical bands, even if ad-
jacent, are defined in order to select different physical emis-
sion mechanisms, with the consequence that images may be
somewhat different.

Computationally speaking, ZOP-Rice is obviously the
fastest scheme, closely followed by JPEG-LS, RLPE-Rice,
plain RLPE without context, and full RLPE (with context and
arithmetic coding). Table 7 reports encoding and decoding
times for the three main schemes. Unlike the publicly avail-
able official versions of JPEG-LS and JPEG2000, the code of
RLPE was written in C++, but was not optimized. Unpub-
lished results of experiments specifically carried out on hy-
perspectral data have demonstrated that coding time might
be reduced by, say, 4 + 5 times, by optimizing the algorithm
flow and the code, as well as by training off line. As it appears,
a notable feature of RLPE is its processing asymmetry: due
to training of predictors and block classification, encoding
is more onerous than decoding, whose complexity is essen-
tially dictated by context and arithmetic decoding. This fea-
ture may be valuable for remote access to archives, since an
image is coded only once (when it is placed in the archive),
but decoded as many times as it is retrieved by users.

4.3. Near-lossless compression performance
comparisons

Two DPCM algorithms having L. -constrained coding capa-
bility will be compared first. Figure 5 shows performances of
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FIGURE 4: Details of size 256 X 256 taken from the three sample scenes. (a) Globular Cluster M30. (b) Irregular Galaxy SMC. (c) Ring Nebula.

TaBLE 2: Subset of test images used for near-lossless compression experiments.

Name u5fw0106r u5wob405r u531010er
Subject Globular Cluster M30 Irregular Galaxy SMC Ring Nebula
Acquisition date 31/05/1999 24/05/1999 16/10/1998
Center wavelength 334.4nm 801.2nm 501.2nm
Bandwidth 37.4nm 153.9nm 2.7nm
Exposure time 200's 100's 100's

TABLE 3: Statistics of the three astrophysical images used for near-lossless compression experiments; all values are expressed as digital counts

(squared, for variance), typical of uncalibrated data.

Name Minimum Maximum Mean Variance Noise o
u5fw0106r 304 4095 324.592 792.830 1.04
u5wob405r 304 4095 325.469 1502.920 1.29
u531010er 303 4095 326.403 517.191 0.80

RLPE+CTX+AC and JPEG-LS, carried out in terms of PSNR
and MAD, on Globular Cluster and SMC. On both images
RLPE attains a steady gain of about one dB on JPEG-LS, for
bit rates greater than 1bpp, slightly lower elsewhere. Since
both methods are near lossless, errors of decoded values are
likely to be uniformly distributed in (-4, §), with the quan-
tization step size A = 28 + 1. Hence, MSE = (A2 — 1)/12 and
from (3) the relationship between the MAD (&) and PSNR
will be

PSNR(¢p) = 10log,, 12 + 20log,, gfs

[8]— but near-lossless compression is not. The consequence
is that MADs larger and larger than those of RLPE are no-
ticed as the bit rate decreases. The scale on ordinate was
shrunk by a factor thirteen with respect to that of Figure 5,
in order to accommodate the large range of MAD in the
JPEG2000 plot. Besides being near-lossless, RLPE outper-
forms JPEG2000 also in PSNR. For rates higher than 1bpp,
the PSNR gain of RLPE over JPEG2000 is about 2 dB. Equiv-
alently, RLPE saves 0.39bpp in the reversible case, corre-
sponding to 83 dB PSNR. As the bit rate decreases, this gain
vanishes and the two plots cross each other at approximately

—20log,,(20 +1) (4) 0.1 bpp. This effect is typical of all DPCM schemes and is due
to the quantization noise feedback loop at the encoder.
if gf; = 4095, (4) becomes The previously noticed error trends also reflect the vi-
sual quality of the decompressed images. Figure 7 shows Ring
PSNRgp) = 83 — 20log,,(28 + 1) (5)  Nebula compressed at six different bit rates, including the

which is in accordance with the plots in Figure 5, for bit rates
greater than 0.5 bpp, that is, as long as quantization errors are
independent of the data that is quantized.

Performance comparisons between RLPE and JPEG2000
have been carried out on the Ring Nebula test image and are
shown in Figure 6. Unlike JPEG-LS, JPEG2000 is not Le-
bounded, but L,-bounded, which means that lossless com-
pression is attainable —thanks to short 5/3 wavelet filters

lossless case, by RLPE (with CTX and AC) and JPEG2000.
When the rate is high (0.913bpp for RLPE and 0.912 for
JPEG2000), the visual appearance of the two images is quite
similar, notwithstanding the former exhibits MAD equal to
one, the latter to 6, and the difference in PSNR is around
2dB. Both compressed images are hardly distinguishable
from the original (MAD = 0), even though JPEG2000 yields
a perceivably smoother result. However, as the bit rate per
pixel decreases, the JPEG2000 versions become smoother



Virtually Lossless Compression of Astrophysical Images 2529
TABLE 4: Bit rates on disk for lossless compression of different observations of the u5fw010 scene (Globular Cluster M30).
Name RLPE+CTX+AC RLPE+AC JPEG-LS RLPE+Rice JPEG2000 ZOP-Rice
u5fw0101r 2.56 2.70 2.76 2.93 2.98 3.19
u5fw0102r 2.06 2.09 2.22 2.38 2.42 2.67
u5fw0103r 2.56 2.71 2.76 2.93 2.99 3.19
u5fw0104r 2.63 2.79 2.81 2.98 3.03 3.23
u5fw0105r 2.61 2.76 2.82 2.96 3.01 3.24
u5fw0106r 2.41 2.50 2.63 2.80 2.84 3.04
u5fw0107r 2.55 2.68 2.76 2.93 2.98 3.19
u5fw0108r 2.38 2.47 2.59 2.77 2.82 2.99
u5fw0109r 3.36 3.61 3.49 3.78 2.83 4.00
u5fw010ar 2.00 2.03 2.17 2.33 2.37 2.63
u5fw010br 2.38 2.47 2.59 2.75 2.81 3.00
u5fw010cr 2.38 2.47 2.59 2.77 2.83 3.00
Average 2.49 2.61 2.68 2.86 291 3.11
TaBLE 5: Bit rates on disk for lossless compression of observations of u5wob40 scene (SMC).
Name RLPE+CTX+AC RLPE+AC JPEG-LS RLPE+Rice JPEG2000 ZOP-Rice
u5wob401r 2.32 2.38 2.51 2.66 2.72 2.93
u5wob402r 3.11 3.27 3.31 3.56 3.52 3.77
u5wob403r 2.09 2.12 2.25 2.42 2.46 2.70
u5wob404r 2.84 2.96 3.10 3.33 3.31 3.52
u5wob405r 2.41 2.48 2.61 2.76 2.82 3.02
u5wob406r 3.12 3.27 3.33 3.55 3.54 3.76
u5wob407r 1.91 1.91 2.04 2.24 2.25 2.53
u5wob408r 2.02 2.03 2.18 2.36 2.39 2.63
u5wob409r 2.77 2.87 3.07 3.28 3.28 3.42
u5wob40ar 2.79 2.88 3.09 3.33 3.30 3.45
u5wob40br 2.80 2.89 3.06 3.30 3.27 3.40
Average 2.56 2.64 2.77 2.98 2.98 3.19
TABLE 6: Bit rates on disk for lossless compression of observations of u531010 scene (Ring Nebula).
Name RLPE+CTX+AC RLPE+AC JPEG-LS JPEG2000 RLPE+Rice ZOP-Rice
u5310109r 2.23 2.27 2.47 2.51 2.64 2.87
u531010am 2.34 2.39 2.63 2.68 2.79 2.99
u531010br 2.36 2.53 2.64 2.67 2.68 2.98
u531010cr 2.35 2.52 2.63 2.67 2.67 2.97
u531010dr 2.35 2.52 2.62 2.65 2.67 2.97
u531010er 2.24 2.36 2.49 2.56 2.57 2.87
u531010fr 2.24 2.36 2.49 2.56 2.56 2.87
u531010gr 2.24 2.36 2.49 2.56 2.57 2.87
Average 2.29 2.41 2.55 2.60 2.64 2.92

TaBLe 7: Computing times (on 1.8GHz Pentium PC) of
RLPE+CTX+AC, JPEG-LS, and JPEG2000 for an 800 x 3200, 12
bit frame.

Processing RLPE+CTX-AC JPEG-LS JPEG2000
Encoder 25s 0.05s 3.6s
Decoder ls 0.03s 4s

and smoother, mainly because MAD increases from 6 to
53, since the difference in PSNR vanishes at 0.111bpp.

The grainy appearance of the nebula completely disappears,
replaced by an artificially uniform smoothness. At the low-
est bit rate (0.111 bpp), JPEG2000 yields a result definitely
unacceptable: all fine details have been removed and ring-
ing artifacts appear around stars. Conversely, in the near-
lossless RLPE-compressed versions, the grainy appearance of
the nebula becomes coarser and coarser as the bit rate de-
creases. Also at the lowest bit rate (0.111 bpp), even if a strip-
ing distortion markedly appears in the dark background, the
image has still a certain fidelity to the original.
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FIGURE 5: Lossy compression performances of RLPE+CTX+AC and JPEG-LS. Globular Cluster: (a) PSNR versus bit rate, (b) MAD versus

bit rate. SMC: (c) PSNR versus bit rate, (d) MAD versus bit rate.

To provide a deeper insight into the difference between
near-lossless and lossy compressions, or better between Lo, -
bounded and L,-bounded compressions, the amplitude dis-
tributions of compression-induced errors have been plotted
in Figure 8 for RLPE and JPEG2000 at high and low bit rates.
The distribution of errors introduced by RLPE is practically
uniform at high rate, slightly decaying at low rates, because
quantization errors are no longer independent of prediction
errors that are quantized. In both cases, however, their dis-
tribution has no heavy tails. Instead, JPEG2000 exhibits tails
more pronounced than those of a Gaussian function. Loga-
rithmic scale on the y-axis is used throughout, for displaying
convenience.

Second-order statistics of the compression-induced er-
rors have been investigated as well. Figure9 shows the
original Ring Nebula and the pixel map of errors introduced
by RLPE and by JPEG2000 at the same bit rate of 0.111 bpp,
corresponding to approximately identical 66 dB PSNR. Dis-
played errors have been linearly stretched and biased to avoid
negative values. While the distortion introduced by RLPE is
substantially similar to pure noise, especially in the body of
the nebula, the error map produced by JPEG2000 contains
plenty of fine spatial details (including edges of stars) that
have been destroyed by compression. An analysis of the spa-
tial correlation coefficient (CC) of each error map reveals
that RLPE yields CC equal to 0.19 (average between row
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FIGURE 6: Lossy compression performances of RLPE+CTX+AC and JPEG2000. Ring Nebula: (a) PSNR versus bit rate. (b) MAD versus bit

rate.

and column directions); conversely, the average CC of the
JPEG2000 error map is 0.28, thereby revealing that what has
been removed by compression is more likely to be a corre-
lated signal.

4.4. Virtually lossless compression

The analysis reported has pointed out that quality evaluation
of compressed astrophysical images cannot rely on PSNR dis-
tortion measurements only. We notice that the wavelet-based
JPEG2000 algorithm achieves the effect of progressively “de-
noising” the image as the target compression ratio increases.
This fact is not surprising, since it has been demonstrated
that suppression of small wavelet coefficients, which hap-
pens because of quantization, yields a powerful method for
image denoising, established also in the field of astrophysi-
cal image processing [32]. Image denoising may also become
the key to compression of astronomical images [4], when
the bottleneck of a very low bit rate imposes a reduction in
image entropy, selectively obtained by denoising the back-
ground only. However, what may appear as “noise” is likely
to be informative to an astrophysicist. Therefore, the data
may become little useful once they have been compressed
by means of an otherwise advanced L,-bounded method like
JPEG2000.

On the contrary, near-lossless methods, like JPEG-LS and
RLPE seem to be more suitable than JPEG2000 for locally
preserving even subtle objects of variable coarseness. The
main reason of that is the quantization noise-shaping effect
achieved by L.-bounded image encoders, like those based
on DPCM. Indeed, noise modeling was found to be the key
to compression of astrophysical images [33].

The term virtually lossless compression, which motivates
the present paper, is now discussed in greater detail. It indi-
cates that the distortion introduced by compression should

appear as an additional amount of noise, being uncorrelated
and having space-invariant first-order statistics such that the
overall probability density function (PDF) of the noise cor-
rupting the decompressed data, that is, intrinsic noise plus
compression-induced noise, closely matches the noise PDF
of the original data. This requirement is trivially fulfilled
if compression is lossless, but may also hold if the differ-
ence between uncompressed and decompressed data exhibits
a peaked and narrow PDF without tails, as it happens for
near-lossless techniques, whenever the user defined MAD
is sufficiently smaller than the standard deviation o, of the
background noise. Both MAD and o, are intended to be ex-
pressed either in physical units, for calibrated data, or as dig-
ital counts otherwise. Therefore, noise modeling and estima-
tion from the uncompressed data becomes a major task to
accomplish a virtually lossless compression [11]. The under-
lying assumption is that the dependence of the noise on the
signal is null, or weak. However, signal independence of the
noise may not strictly hold for astronomical images, espe-
cially for weak signals, dominated by shot noise. This fur-
ther uncertainty in the noise model may be encompassed by
imposing a margin on the relationship between target MAD
and RMS value of background noise.

In the present case, the noise standard deviation o, of
the three test images, whose statistics are reported in Table 3,
was measured by means of the scatterplot-based method de-
scribed in [34, 35], and found to be 0, = 1.04, 0, = 1.29,
and o, = 0.80, for Globular Cluster, SMC, and Ring Neb-
ula, respectively. Near-lossless compression is crucial for Ring
Nebula, as it visually appears from Figure 7. In fact, near-
lossless compression with MAD = § = 1 (i.e., quantiza-
tion step size A = 2§ + 1 = 3) would yield an RMS dis-
tortion € = v/2/3 ~ 0.82, slightly greater than the noise RMS
value 0, = 0.80, which would have the effect of increasing
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FiGure 7: Compressed 256 X 256 details taken from Ring Nebula obtained at the same bit rates per pixel bpp, with exception of lossless
versions included for both RLPE and JPEG2000 (JP2K). RLPE for (a) 0.111 bpp, MAD=5; (b) 0.179 bpp, MAD=4; (c) 0.207 bpp, MAD=3;
(d) 0.447 bpp, MAD=2; (e) 0.913 bpp, MAD=1; (f) 2.24 bpp, MAD=0. JP2K for (g) 0.111 bpp, MAD=53; (h) 0.179 bpp, MAD 32; (i) 0.207
bpp, MAD =20; (j) 0.447 bpp, MAD =10; (k) 0.912 bpp, MAD =6; (1) 2.63 bpp, MAD =0.

by a factor greater than /2, after decompression. Equiva-
lently, the intrinsic SNR of the uncompressed image would
be decremented by 3 dB after compression/decompression.
In this specific case, virtually lossless compression should bet-
ter coincide with lossless compression. Near-lossless com-
pression of Ring Nebula with MAD equal to one is unable
to retain the quality of the data, because the compression-
induced MSE is not one order of magnitude lower than o2,
as it would be recommended for virtually lossless compres-
sion. However, when the extremely concentrated error PDF,
produced by RLPE when § = 1 and shown as first entry in

Figure 8, is convolved with the intrinsic noise PDF, assumed
to be tailed, the overall PDF will be approximately unchanged
in shape, even if doubled in variance. This behavior explains
why some of the RLPE-compressed versions of Ring Nebula
are more similar to the original than to the corresponding
JPEG2000 versions. The reason is that tails in the error PDF
may give rise to, or suppress, local “noise” patterns, whose
presence, or absence, is unlikely to be found in the uncom-
pressed image.

The rationale of virtually lossless compression can be
summarized by the following protocol. Measure the noise
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FIGURE 8: Reconstruction error distributions for near-lossless/lossy coding of Ring Nebula. RLPE for bit rate of (a) 0.913 bpp, (b) 0.111 bpp.
JPEG2000 for bit rate of (c) 0.912 bpp, (d) 0.111 bpp.

(a) (b) (c)

FiGuRre 9: Original 256 X 256 details of Ring Nebula: (a) pixel differences with 0.111 bpp, (b) RLPE decompressed version, and (c) JPEG2000
decompressed version.

RMS, 0,5 if 0, < 1, lossless compression is mandatory. Other-
wise, if 1 < 0, < 3, near-lossless compression with MAD = 1
(hence, A = 3) might be attempted. For 3 < g, < 5, com-

pression with MAD = 1 is recommended, to avoid wast-
ing bits encoding the noise. In the general case, the rela-
tionship between MAD and oy, also including a margin of
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approximately one dB, is

MAD = [max {0,

0, — 1
TH (6)

This protocol is substantially in accordance with the results
reported by Maris et al. [5]. The main difference is opera-
tive. In [5] the step size of the UTQ to quantize the ana-
log signal is designed in such a way that compression must
be lossless thereafter. In the present case, the signal may
have been previously quantized based on different require-
ment; afterwards a check on the noise is made to decide
whether lossless compression is really necessary, or near-
lossless compression could be used instead without penalty,
being de facto virtually lossless. Depending on the applica-
tion context and the type of data, the relationship (6) may
also be relaxed, for example, by imposing that the ratio
MSE(noise)/MSE(compression) is greater than, say, 3 dB, in-
stead of the 10 + 11 dB, given by (6).

5. CONCLUDING REMARKS

The key to achieve a compression preserving the scientific
quality of the data, for either astrophysical or remote-sensing
applications, is represented by the following twofold recom-
mendation: (1) absence of tails in the PDF of the error be-
tween uncompressed and decompressed image, in order to
maximize the ratio v/MSE/MAD, that is, RMSE/MAD, or
equivalently to minimize MAD for a given RMSE; (2) MSE
lower by one order of magnitude than the variance of back-
ground noise o2. Near-lossless methods are capable of fulfill-
ing such requirements, provided that the quantization step
size A is chosen as an odd integer such that A =~ ¢,. If the
data is intrinsically little noisy, the protocol may lead to the
direct use of lossless compression, that is, A = 1, to obtain
what has been denoted as virtually lossless compression.
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