
EURASIP Journal on Applied Signal Processing 2005:16, 2598–2612
c© 2005 P. Belanović et al.

A Consistent DesignMethodology for
Wireless Embedded Systems

P. Belanović
Institute for Communications and RF Engineering, Vienna University of Technology, Gusshausstrasse 25/389,
1040 Vienna, Austria
Email: pbelanov@nt.tuwien.ac.at

B. Knerr
Institute for Communications and RF Engineering, Vienna University of Technology, Gusshausstrasse 25/389,
1040 Vienna, Austria
Email: bknerr@nt.tuwien.ac.at

M. Holzer
Institute for Communications and RF Engineering, Vienna University of Technology, Gusshausstrasse 25/389,
1040 Vienna, Austria
Email: mholzer@nt.tuwien.ac.at

G. Sauzon
Infineon Technologies, St.-Martin-Strasse 53, 81669 Munich, Germany
Email: guillaume.sauzon@infineon.com

M. Rupp
Institute for Communications and RF Engineering, Vienna University of Technology, Gusshausstrasse 25/389,
1040 Vienna, Austria
Email: mrupp@nt.tuwien.ac.at

Received 29 January 2004; Revised 15 February 2005

Complexity demand of modern communication systems, particularly in the wireless domain, grows at an astounding rate, a rate
so high that the available complexity and even worse the design productivity required to convert algorithms into silicon are left
far behind. This effect is commonly referred to as the design productivity crisis or simply the design gap. Since the design gap is
predicted to widen every year, it is of utmost importance to look closer at the design flow of such communication systems in
order to find improvements. While various ideas for speeding up designs have been proposed, very few have found their path
into existing EDA products. This paper presents requirements for such tools and shows how an open design environment offers a
solution to integrate existing EDA tools, allowing for a consistent design flow, considerably speeding up design times.

Keywords and phrases: single system description, virtual prototyping, system on chip, automatic verification.

1. INTRODUCTION

Complexity of modern communication systems, particularly
in the wireless domain, grows at an astounding rate. This
rate is so high that the demand of algorithmic complexity
now significantly outpaces the growth in available complex-
ity of underlying silicon implementations, which proceeds

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

according to the famous Moore’s law [1], that is, available
complexity doubles every 16 to 18 months. Furthermore,
algorithmic complexity even more rapidly outpaces design
productivity, expressed as the average number of transistors
designed per staff/month [2, 3, 4]. In other words, current
approaches to wireless embedded systems design are prov-
ing inadequate in the struggle to keep up with system com-
plexity. This problem, first introduced as design productivity
crisis in 1999 by Sematech (www.sematech.org), is nowadays
well known under the name the productivity gap or design
gap.

mailto:pbelanov@nt.tuwien.ac.at
mailto:bknerr@nt.tuwien.ac.at
mailto:mholzer@nt.tuwien.ac.at
mailto:guillaume.sauzon@infineon.com
mailto:mrupp@nt.tuwien.ac.at
file:www.sematech.org


A Consistent Design Methodology for Wireless Embedded Systems 2599

Many concepts so far have been proposed to solve the
two problems: (1a) introducingmore parallelism and reusing
intellectual property (IP), (1b) special hardware (HW) ac-
celerators, and (1c) trading design time against complexity
and (2a) virtual prototyping (VP), (2b) optimal HW/SW
codesign, (2c) cosimulation on different design levels, and
(2d) using new languages to overcome the fragmentation of
the design process, to name the most common ones.1 While
some commercial EDA tools adopted a few of such solutions
as their tool features, no tool allows for all of them.

Before a consistent proposal is presented, addressing ad-
equately all of these features, the advantages and disadvan-
tages of each of them will be discussed briefly in Section 2.
This discussion also allows for defining the requirements
of a future solution. This paper presents an integrated de-
sign methodology and its implementation in the form of
an open design database supporting all of the requirements
defined in Section 2 including a single system description
(SSD) by a database approach as well as automatic VP gener-
ation. Section 3 presents the details of such a design database
[5, 6]. An SSD allowing to convert designs to various design
levels (Section 3.1) and the binding of several domain spe-
cific modeling languages (DSML) into this integrated design
methodology are described (Section 3.2). Included in the in-
tegration are well-established languages, such as VHDL, as
well as notable new system-level modeling languages like
SystemC. Also the development environment for algorithms
COSSAP from SYNOPSYS as well as its used C deriva-
tive programming language GenericC is supported. The in-
clusion of virtual prototyping in C++ is demonstrated in
Section 4 supporting rapidHW/SW co-design.With the pro-
posed design methodology, soft guidelines along the design
path ensure that all major steps can be performed automati-
cally, speeding design time up considerably. In Section 5 con-
sistent testing at all abstraction levels of the design process
derived automatically from the SSD is demonstrated in de-
tail. Finally, an industry-developed wireless communication
design (UMTS receiver for a cellular phone) is presented in
Section 6, utilizing the new design flow and resulting pro-
ductivity improvements are reported.

2. REQUIREMENTS FOR SHORT DESIGN CYCLES

While possible solutions for dealing with the complexity as
well as the productivity gap were quickly listed in the intro-
duction, in this section we will discuss more thoroughly the
various solutions and their impact on the design.

More parallelism and reusing IP seems to be a simple an-
swer to solve the complexity problem. However, more paral-
lelism is equivalent to more chip area and thus more power
demand. In particular in the field of mobile wireless com-
munication, this is not an acceptable solution. Reusing IP
does only help speeding up design processes once the IP has

1In our notation, (1a), (1b), and (1c) are solutions for the complexity
gap while (2a), (2b), (2c), and (2d) denote solutions for the productivity
gap.

been created. Thus, at the beginning of a new product de-
sign, there simply is no IP that can be reused. Also building
IP in a reusable fashion, that is, parameterised, costs con-
siderably more time than building a block based on fixed
constraints. Unfortunately, time-to-market is very decisive in
wireless modem design: launching six months early triples
profits, six months late results in breaking even [7].

Special HW accelerators are currently offered by many
start-up companies especially for the 3G market. Sandbridge
(www.sandbridgetech.com), Intrinsity (www.intrinsity.
com), Tensilica (www.tensilica.com), and Adelante Tech-
nologies (www.adelantetech.com) are typical examples
offering fixed or configurable HW accelerators for a typical
DSP structure tailored to support the needs of a 2.5G
and 3G manufacturer. Most impulses to offer even more
flexible structures that can be specified and modified by
the designer himself are still coming from universities
[8, 9, 10] and seem to be far from being included in com-
mercial electronic design automation (EDA) tools. Even
more advanced tools that are reconfigurable at run time
are in an early research stage at universities [11, 12] and
some are even announced by some start-up companies
(www.picochip.com, www.quicksilvertech.com).

Trading design time against complexity has been used in
the past in almost every complex design, in particular in
those designs based entirely on µPs and DSPs. When the
time-to-market of the product was known to be, say, three
years, then Moore’s law predicted availability of a four times
higher complex processor. Thus, the design engineers sim-
ply assumed a processor with such complexity available at
the time of product introduction and started the functional
integration process for it. By the time the integration pro-
cess was finished, the processor was available and the prod-
uct was assembled. In particular, in GSM phone develop-
ment this process was quite successful, relying simply on the
next-generation DSP of a specific family. Once the complex-
ity gap widened, one could still start a design process built on
this tradeoff with the drawback that some features would not
be offered in the first product, but only a year or two later,
when the faster processor would be available. However, now
with even shorter time-to-market constraints and a widening
complexity gap between demanded and available complexity,
this predictive-design method is outdated and can only offer
small advantages.

Virtual prototyping (VP) has been introduced in the de-
sign process a couple of years ago [13, 14, 15, 16] and was
quickly adopted by design houses [17]. The VP consists of a
complete description of HW and SW components in a soft-
ware form that can be simulated on a general platform. It
includes in particular an interface description between the
various HW and SW entities, allowing to simulate the com-
munication between these blocks (transaction-level model-
ing). The timing granularity can differ in themodel of the VP
from untimed (timing is neglected) to cycle true (RTL mod-
eling) descriptions. Also hybrid forms exist like bus-cycle ac-
curate, where the system behaves only cycle true at the bus
interface. Since SW development is in general much faster
than the corresponding HW development, the VP, notably

file:www.sandbridgetech.com
file:www.intrinsity.com
file:www.intrinsity.com
file:www.tensilica.com
file:www.adelantetech.com
file:www.picochip.com, www.quicksilvertech.com


2600 EURASIP Journal on Applied Signal Processing

untimed or bus-cycle accurate, implemented is much earlier
available than the real-time platform. It thus allows an ear-
lier development of the SW related programs since it is no
longer required to wait until the final working HW platform
is available. While being a successful instrument over the past
years in 2G and 2.5G development, the VP generation be-
comes burdensome in 3G development. Since the required
complexity in 3G is expected to be 100 to 1000 times higher
than in 2G, a fully detailed VP does not only require much
more SWdesign but it also runs very slowly on available stan-
dard platforms (like Pentium or Sparc-based computers).

Optimal HW/SW codesign has been a research effort over
many years. Heuristics like simulated annealing (SA) used in
the COSYMA system [18], genetic algorithm (GA), and tabu
search are usually used to tackle the NP complete problem
of HW/SW partitioning. A comparison of those algorithms
is given in [19]. Even evolutionary algorithms are applied to
that problem, which is shown in [20]. Despite those efforts,
such solutions are not found in commercial EDA tools. The
reason for this seems to be that their assumptions are not
sufficiently practical, that is, the required information can-
not easily be extracted from the high-level design. Typically, a
complete metric for a HW and SW solution is required a pri-
ori in order to decide how to optimally partition the design.
However, such knowledge is not known beforehand. The im-
plementation effort in 3G wireless is so high that an a priori
realisation of the system would be too expensive.

Simulation times are growing tremendously. In [21] an
example is presented, where four seconds of real-time take
five minutes of simulation time in C at the algorithmic de-
sign level (assuming processor clock at 150MHz, bus clock
at 50MHz). If simulated on gate level, the simulation time
alone would take 1.25 years. Since testing is typically per-
formed by simulation and cosimulation, testing time is in-
creasing in 3G designs. Today, about 70% of development
time is spent on verification and testing [15, 22]. In order
to decrease such extensive times, cosimulation on different
design levels promises to be a good solution. Since higher-
level models require less simulation time, it is of advantage
to run only the function under test on the lower design level
while the remaining parts still run on higher levels. Cosimu-
lation has been offered by SYNOPSYS (www.synopsys.com)
and CADENCE (www.cadence.com) as a possibility to run
instruction-set simulators (ISS) for various DSPs in parallel
with their algorithmic design tools COSSAP and SPW, re-
spectively. SYNOPSYS for example offers cosimulation of C
(SystemC) and VHDL on their CoCentric System Studio de-
sign environment. However, there is no automatic interface
generation to connect the C programs to the VHDL pro-
grams and the designer has to write this for each block man-
ually, a time consuming process that is known to be error-
prone.

New languages have been proposed very often during
the past years depending on the application fields like UML
(www.uml.org) by the object management group (OMG)
and SDL [23] by the International Telecommunication
Union (ITU-T). Even JAVA (www.sun.com) has found some
attraction. However, it is not easy to convince chip designers

with 15 years of VHDL or VERILOG experience to use a
new language just because some other parts of the design
team may profit from it. SystemC [24] (www.systemc.org)
seems to be a much better approach since C has been used
almost for all design stages, the design engineers being at
least familiar with it. The library extension of C++, SystemC
v2.0, allows to specify fixed-point arithmetic as well as ab-
stract interfaces between entities. The extension towards HW
description follows almost entirely the concept of VHDL,
thus allowing VHDL designers to reuse their experience in
a slightly different language. However, with the advent of
SystemC, not all problems have been solved, SystemC basi-
cally offers a uniform language platform on which the design
problems can be solved.

A major problem which causes design delays is the frag-
mentation of the design process. Due to the large scope and
extremely heterogeneous nature of modern wireless com-
munication designs, their development suffers from incom-
patible system descriptions. These descriptions are rewrit-
ten by corresponding experts converting them into other,
more suitable description forms. The outcome of this is seri-
ous communication obstacles between design teams due to
different approaches and languages. Also inconsistent ver-
ification, lack of design tools for supporting necessary de-
sign steps, and difficulties in the discovery and fixing of bugs
[25, 26] are evident.

These problems arise from the fragmentation of the de-
sign process into domain-specific efforts. A formal method-
ology to keep the design integrated and progress consistent
through the development process is missing. In [27] such an
integrated environment named POLIS has been reported for
typical control-oriented, reactive systems based on high-level
languages like ESTEREL [28] and LUSTRE [29], supported
by a PTOLEMY [30] environment and based on extended
finite state machines (EFSM). Such an environment allows
to design a problem in graphical form and to map it onto
microcontrollers. There is also related work in the field of
model-integrated computing (MIC) including treatment of
DSMLs and their integration [31, 32, 33]. An extended ap-
proach based on the MIC environment for the integration of
different tools is presented in [34]. An open standard called
Open Access for the data exchange among IC design tools is
driven by the Open Access Coalition (www.si2.org). Within
this standard the main focus is on the integration of tools for
layout.

Based on this discussion, the requirements of a design
method allowing for fast design cycles in wireless chip design
are the following.

(1) Support of different design levels at the same time: only
through a mixed-level approach, where cosimulation of dif-
ferent abstraction levels is performed, can testing times be
brought down.

(2) Translational tools allowing to derive other descriptions
automatically: in order to have a consistent process that is
not hampered by manual rewrites of one and the same de-
sign many times, thus producing errors and slowing down
the design process, it is imperative to use translational tools
in order to provide consistency and speed.

file:www.synopsys.com
file:www.cadence.com
file:www.uml.org
file:www.sun.com
file:www.systemc.org
file:www.si2.org


A Consistent Design Methodology for Wireless Embedded Systems 2601

(3) A single system description: although translational
tools may convert one design description into another, in-
formation may get lost by this process. An SSD keeping all
information in a database can prevent such a problem. The
translational tools thus need to be linked to such an SSD in
order to decide what information is needed for a requested
transformation. An SSD can guarantee the consistency in the
design which is especially important when an error appears
at a different design level than it was produced.

(4) A single design language: is quite advisable since de-
sign can be performed in terms of refinement steps rather
than rewrite or reformulate operations. Refinement2 is typ-
ically a much more efficient design method and not as error
prone. SystemC seems to be a good compromise since ANSI-
C has a wide acceptance for the algorithm development, the
architectural language elements are very similar to VHDL or
VERILOG and thus can be used by designers for architecture
definitions as well as for lower design description on RTL.
Also, C as simulation language runs relatively fast in simula-
tions, a further advantage.

(5) An open design environment: in order to save devel-
opment time, EDA tools should follow an open standard
(like VSIA) so that an integrated design environment can
be linked to such tools that are most favoured by the de-
sign groups. Also, once new tools are available, like tools for
automatic floating-point to fixed-point conversion or opti-
mal HW/SW partitioning, these tools can seamlessly be inte-
grated into such environment and do not require slow manual
processes.3

(6) Virtual Prototyping: speeding up the design process by
implementing SW and HW in a parallel manner rather than
sequentially is certainly obligatory. A flexible VP design can
also support various design levels including platform-based
designs. In this context, a VP can insure that refinement
techniques are applied, a single description language is used
throughout the design, and testing can be performed at dif-
ferent design levels. Although no commercially available VPs
are known to the authors, VSIA (www.vsia.org) has defined
specification rules for VPs.

3. INTEGRATED DESIGNMETHODOLOGY

As explained in the previous section, an integrated design
methodology is required to work with existing EDA tools.
Since the information required for various tools is never
identical, a consistent design methodology needs to utilise a
so-called SSD, containing all design information. Depending
on the applied tool, only part of this information, specific

2Note that the refinement technique together with the one-code
paradigm is one of the crucial elements in rapid prototyping as well [26].

3Note that Sematech in its original report in 1999 concluded the follow-
ing: (1) for every $1 invested in EDA tools, an additional $2 to $5 are spent
on integration into the design flow; (2) no EDA vendor or using company
can supply all the tools needed today; (3) promote rapid integration of new
tools from industry and university research; (4) create chip hierarchical de-
sign system technical date (CHDStd) standard. None of these have become
reality.

to this tool, is presented to the designer. This section ex-
plains the details of such an SSD and how it supports various
DSMLs.

3.1. A single system description

An elaborated solution of an SSD is the implementation in
the form of an SQL-DDB [5, 35] running on a SUN work-
station. A database representation is not bound to specific
language constraints and thus offers great flexibility in cap-
turing the miscellaneous aspects of a design. Additional ad-
vantages of the DDB approach are fast access, data security
by the capability to grant permissions to the developers, a
high popularity, as well as compatibility with major database
management systems (DBMS) fromMicrosoft, IBM, Oracle,
and the open source DBMS MySQL.

A framework reflecting these obligations is shown in
Figure 1. It depicts the DDB surrounded by the required
tools each with dedicated interfaces to incorporate the var-
ious EDA tools and stays open for incorporating other tools
as the empty tool box in the figure indicates. The various de-
sign teams provide inputs, such as desired system behaviour
and structure, constraints, and tool options. Also, the design-
ers receive outputs, like status of the system description, re-
sults of simulations, estimates of hardware costs, timing, and
so forth. Typically, the outputs of the database are handed to
the tools which present them in form of their GUIs to the de-
signer. Some of the tools supported by the SSD are commer-
cially available, favoured by the various design teams, while
others are specially written to perform missing tasks, usually
performedmanually by designers in the past. As long as some
design steps are not covered by available tools, for example
HW/SW partitioning, a database modification tool is avail-
able, simply allowing the designer to enter manually derived
values. The database is thus enriched and the system descrip-
tion is refined on its way to implementation. Note that the
database system does not require a specific order of which
various tools need to be performed. For example, some de-
signers prefer to perform floating-point to fixed-point con-
version after the HW/SW partitioning. As long as the suc-
ceeding tool is provided with sufficient information, it can
be started. Such open environment has not only the advan-
tage that new commercial tools can be incorporated but it
also provides a realistic platform to investigate the perfor-
mance of new research tools. A possible design flow exam-
ple is indicated in Figure 1. At first a COSSAP project is read
into the SSD. In the second step the content of the database
can be investigated over the HTML Visualization. As the last
step, a virtual prototype is automatically generated out of the
database content.

3.2. Inclusion of domain-specificmodeling languages

The underlying concept of the translational tools allowing to
import designs into the database is two-tiered, consisting of
a parser and a scanner, as Figure 2 illustrates. Both parts to-
gether establish the system description interface (SDI). The
parser is adapted to the EDA tool or the description lan-
guage and translates the information contained in the code
to an XML-based intermediateformat (IF), which has been

file:www.vsia.org


2602 EURASIP Journal on Applied Signal Processing

User interface

Us
er
in
ter
fac
e User interface

U
se
r
in
te
rf
ac
e

Synopsys
CoCentric

Systemc studio
HTML

visualization
(HTML Viz)

C++
Graph
classes

Virtual
prototype
(VSIA)

System

Single
system

description
(SSD)

Atair
open compiler
environment

(OCE)

Synopsys
COSSAP

2

3

1

U
ser

in
terface

Us
er
in
ter
fac
eUser interface

User interface

Interface

Interface

Interface

In
terface

In
ter
fac
e

In
te
rf
ac
e

Interface

In
ter
fac
e

Figure 1: Interaction of the single system description with different design tools via interfaces providing a consistent design flow.

SDI

EDA tool Parser IF Scanner DDB

Figure 2: Concept of the system description interface.

especially developed to represent the content of the database
in a textual description, containing all relevant information,
such as module instances, signal interconnections, and port
declarations.

The SSD as the central repository of the consistent de-
sign environment has been designed to generally fit system
descriptions and also design properties. The system descrip-
tion part supports concepts as modules or entities, their hier-
archy, and interconnections. This concept allows to store de-
sign languages with concepts of parallel processing and pro-
cedures. On the other hand, synchronous reactive languages
like ESTEREL cannot directly be mapped to the DDB. The
core of the underlying DDB structure is shown in Figure 3.

In addition to such concurrent concepts, sequential parts
of system descriptions, such as processes and operation se-
quences are also supported. The nomenclature of all concepts
in the database structure implementing the single system de-
scription was strongly inspired by SystemC. All entities that
make up the system are instances ofmodules. These instances
form one or more layers of hierarchy. Each of the instances
can contain one or more processes. All processes in the sys-
tem run concurrently. Processes are internally formed by ba-
sic blocks. Within such basic blocks sequences of operations
are identified. Communication between instances, processes,
and operations is achieved through data. Data connecting

several instances has several aliases; one within the context
of each of the connected instances. An alias has an alias type,
such as input, output, in-out port, or internal signal. Data
has a data type, such as a signal, variable, or constant. Op-
eration also has an operation type, such as addition (+),
multiply-accumulation (MAC), or left bitwise shift (�).

Figure 4 shows a graphical representation of a small de-
sign written in SystemC. Example 1 which is an instance of
Example has inputs (in1, in2, in3, in4) and an output (out1).
It contains three blocks: two adders (add 1, add 2) and one
multiplication (mul 1), and their corresponding processes.
The add blocks are connected with the multiplier internally
with the signals int1 and int2. Here, the alias concept is use-
ful to identify these signals with the internal output signals
of the add blocks and the input signals of the multiplier. A
cut-out of the XML-based IF of this example is presented in
Figure 5.

A scanner tool processes this IF and enriches the DDB
accordingly. In this simple case the module table holds the
names for the used modules Example, add, and mul. Inside
of the instances table, Example 1, add 1, add 2, and mul 1
can be found and the alias table stores the ports in 1, in 2,
in 3, in 4, out 1, and the internal signals int1 and int2. The
two-stage structure facilitates the development of new in-
terfaces in such a way that the developer of the parser can
neglect everything related to database management, that is,
adding or deleting modules, removing redundant informa-
tion, updating of attributes and so forth. This task is fulfilled
by the scanner tool, which depends only on the IF and the
current contents of the DDB.

As an example, one of the realised SDI implementations
is presented, where for example the algorithm design team
favours COSSAP as a graphical representation of the design



A Consistent Design Methodology for Wireless Embedded Systems 2603

Design properties System description

Process
property

Process Instance

Module

Block
property

Basic
block

Basic
block con

Operation Data Alias

Operation
type

Data
type

of
type

has

has
reads

writes

is ofis of

has

has

has has

has

has

Hierarchy

Figure 3: The structure of the design database (DDB).

Example 1 (Example)

add 1 (add)
in1

in2

in3

in4

Addition

add 2 (add)

Addition

int1

int2

mul 1 (mul)

Multiplication
out1

Figure 4: Design example.

at system level. To provide a complete representation of the
COSSAP model within the DDB, the information on the
architectural structure as well as on the functionality and
behaviour of each component is extracted from the COS-
SAP project. A COSSAP project stores its model architecture
in a nonhierarchical way in a file pair named after the top
module, suffixed “.v arc” and “.v ent.” The description lan-
guage used in these files is VHDL compliant. A parser for
VHDL has been implemented to create the IF representation
of the model architecture (see left-hand part of Figure 10 fur-
ther ahead). This parser is based on two open source tools:
Flex (www.gnu.org/software/flex/flex.html), a lexical ana-
lyzer, and Bison (www.gnu.org/software/bison/bison.html),
a parser generator. The scanner, a set of PERL scripts,

Figure 5: XML-based intermediate format.

processes the achieved IF and adds the information to the
DDB. Each component of the COSSAP model has its own
GenericC file containing the behavioural model. GenericC
is a derivative of C and proprietary standard of COSSAP. A
parser for these files was implemented to make them ANSI-
C compliant for further processing. The developer of the
GenericC files has to adhere to a guideline catalogue, to en-
able a smooth automatic transition to ANSI-C. These guide-
lines consist mainly of name conventions and have negligi-
ble impact on the COSSAP development routine. In partic-
ular, the proposed guidelines did not limit the creativity of

file:www.gnu.org/software/flex/flex.html
file:www.gnu.org/software/bison/bison.html


2604 EURASIP Journal on Applied Signal Processing

Figure 6: HTML visualisation of the database content. Hierarchical
view of the modules.

Figure 7: HTML visualisation of the database content. Data flow
graph of modules.

the algorithmic design team and were thus quickly adopted
throughout the algorithmic design team. While other SDIs
for the SSD exist (e.g., for reading SystemC v1.0 designs), we
will focus on the COSSAP SDI in this paper.

3.3. HTML visualisation

As mentioned before, some design steps are not supported
by automatic tools yet. To facilitate manual interaction with
designer, GUIs for viewing information and changing en-
tries are provided. To support the designers working on
the development of the system, whose description resides in
the database, with a visual representation of the system, an
HTML visualisation over a web browser has been developed.
This software program, implemented as a PERL CGI script,
provides an easily extendable view of the database contents.
Since it is a CGI script, a dynamic view of the system descrip-
tion, immediately reflecting any changes and updates, is pro-
vided. Different views of the database content can be repre-
sented over a browser. For example, the hierarchy of instances
in the system is represented graphically (Figure 6), where it
can be seen that the modules add 1, add 2, and mul 1 are in-
stantiated inside the module Example 1. Figure 7 depicts the
data flow graph of the modules in Example 1.

4. VIRTUAL PROTOTYPING

The HW/SW partitioning process transforms a system-level
specification into a heterogeneous architecture composed
of hardware and software modules. A software simulation
of this simulatable model is called virtual prototype (VP)
[13, 14, 15, 16]. Generally, the VP reflects a platform-based
design (PBD), typically a DSP surrounded by multiple HW
accelerators (HA). Those HW accelerators are called VP
components if they are used inside a VP simulation. Sev-
eral properties of abstraction layers are proposed for a VP,
as they can be time related (e.g., untimed, timed functional,
bus-cycle accurate, cycle true), data related (e.g., floating-
point and fixed-point representations), and communication
related (e.g., synchronous data flow (SDF), transaction-level
modeling (TLM) [36], open core protocol international part-
nership OCP [37]).

A crucial point in the partitioning for a SoC-design is a
carefully designed interface, connecting hardware and soft-
ware parts. Whereas hardware development, and especially
its testing, can be done rather independently from the soft-
ware development, development and testing of the software
has to wait until the hardware has been designed. In the case
of an application-specific integrated circuit (ASIC), verifi-
cation cannot start until the first engineering samples have
been manufactured (Figure 8).

The VP technique on the other hand enables earlier de-
velopment and testing of the software. In this technique, SW
reflects the behaviour of the HW and implements the HW
interface to the SW, as it will be realised later in HW. Such a
VP can be implemented faster than the HW itself, because
all the HW implementation details specific to the chosen
technology can be neglected and high-level description lan-
guages can be used instead of hardware description languages
(HDLs).

Other advantages of a VP are its capability to serve as
a reference (golden) model for the HW accelerators, whose
functionality it mirrors at the bus interface as well as to sup-
port refinement steps: a first version of the VP can be gen-
erated without considering any architecture or timing (un-
timed). Then, in a next step, the specific HW target platform
can be included with a DSP-core element, a bus, and various
HW accelerators, which communicate bus-cycle accurate. As
a last step, the internal behaviour of the HW accelerators has
to be transformed to a cycle-true model. This step is usu-
ally called high-level synthesis and is investigated by many
research projects like for example in [38] and also adopted
in commercially available tools (behavioural compiler from
SYNOPSYS). A survey of high-level design transformation
techniques is given in [39]. In that sense, VP also supports
a refinement-step-based design, which allows a much more
consistent forgoing than switching between description lan-
guages.

4.1. On automatic VP generation

In the following we present an automatic generation method
for a VP tailored for platform-based designs, which allows
for a further decrease of development time as shown in



A Consistent Design Methodology for Wireless Embedded Systems 2605

Traditional design cycle

Algorithmic

Hardware

Software

System design cycle with VP

Algorithmic

VP

Hardware

Software

Automatic VP generation

Algorithmic

VP (automatic)

Hardware

Software

Time savings
=

profit boost

Time savings
=

profit boost

Figure 8: Decrease of design time by virtual prototyping and automatic generation of virtual prototypes.

A

B

C D E

B A

C D

E
HA1 HA2 DSP

Bus interface Bus interface Bus interface

System bus

Algorithm

Virtual prototype

Direct I/O

Virtual prototype
component

Bus cycle-
true interface

Figure 9: Reuse of algorithmic description for virtual prototype generation.

Figure 8. Specific results utilizing this method are reported
in Section 6.

A DSP structure enriched by hardware accelerators com-
municating via a common bus was selected for the design
requiring the VP to reflect the DSP as well as to support
its hardware accelerators communication (see also Figure 12
further ahead). Note that at the algorithmic level, the de-
sign information is free of communication details. Thus, in
order to achieve communication of the VP components via
the chosen PBD, an object-oriented environment in C++ has
been created, containing classes for functional blocks, ports,
FIFOs, and scheduling. While this implementation implies

a certain HW platform, much emphasis was put on the fact
that this platform is very general, a DSP with a common bus
structure for its HW accelerator units. The automatism was
implemented for COSSAP designs based on GenericC de-
scriptions only. However, the methodology was left open for
supporting other descriptions, like SystemC.

In order to provide a quick conversion to VP as well as
short simulation times, it was decided that the VP should not
be too detailed (Figure 9). A compromise was made, model-
ing only the HW/SW interface in cycle-true detail. On the
one hand it supports the fast codevelopment of HW and SW
engineers and on the other hand simulation times can be



2606 EURASIP Journal on Applied Signal Processing

HW/SW
partitioning
information

table

COSSAP
∗.v arc∗.v ent

∗.gc

COSSAP
guidelines

System
description

interface (SDI)
for COSSAP

Design
data-
base

(DDB)

VPG

VP components

Bus interface

C A

B

Scheduler

Figure 10: Design process for VP generation.

In

In

In

FIFO

FIFO

FIFO

· · ·
bool executeCheck()
· · ·
Bool BLOCK run()
· · ·
CDLPort <Int> InFixed;
CDLPort <float> InData;
CDLPort <int> InSoft;
CDLPort <int> OutData;
CDLPort <int> OutFixed;
· · ·
CDLBlock∗∗ succlist;

// Member list for
// BLOCK run()
· · ·

Out

Out

List of next
input ports

List of next
input ports

Class Channel Decoding: public CDLBlock

Figure 11: A virtual prototype block class.

shortened considerably by reusing the algorithmic descrip-
tion for the DSP accelerators. Such devices are simply mod-
eled by a register interface that can be accessed by the DSP
via a common bus. It is thus only necessary to model the
processing unit (StarCore-DSP) by an instruction-set simu-
lator (ISS) running the SW part of the design. All other mod-
ules later being realized as hardware accelerators are simply
copied from the COSSAP description also supporting veri-
fication of the design. Moreover, a VP with such properties
can serve as a base for prototyping and still be used for fur-
ther refinements steps towards a whole cycle-true design.

The implementation of such a VP representation needs
a simulation environment that allows for simulation of par-
allel processes. Hardware description languages like SystemC
and VHDL can be used for that task, because they provide
statements for concurrent processing. For the presented VP
another simulation interface has been chosen, that has been
proposed by the Virtual Socket Interface Association (VSIA)
[17]. This VSIA-compliant simulation uses a static schedul-
ing, achieving faster simulation compared to the event-based
simulation of SystemC and VHDL. Even compared to a plain
C++ implementation, the VSIA implementation introduces
negligible overhead.

Thus as already mentioned in Section 2, some ap-
proaches for an automatic partitioning into HW/SW parti-
tioning exist, partitioning in real-world examples is based on
much more complicated scenarios even often not based on
technical issues. Sometimes implementation in software is
preferred in order to stay as long as possible flexible to react
to changes in the standard for the implemented algorithm.
For this reason the HW/SW partitioning information can be
performed manually based on the experience of the various
design engineers. This information is manually written into
a so-called HW/SW partitioning table (HSP), an extension to
the DDB. It is possible to flag each single instance or each
instance of a certain module type of the system description
as hardware or software (Figure 10). Automatic partitioning
embedded in the presented design flow is discussed in [40].

For each module supposed to be implemented in hard-
ware, a C++ file pair, consisting of header and class file, is
created automatically. These module classes are derived from
the CDLBlock class, which is the centre of the VP component
infrastructure. Figure 11 depicts the outline of such a mod-
ule.

Each derived module instantiates its ports and FIFOs; for
each input port a FIFO is provided. The core of each block



A Consistent Design Methodology for Wireless Embedded Systems 2607

is the “BLOCK run().” In this procedure the extracted and
styled functional part of the GenericC code from a COSSAP
project is inserted automatically. Also a C++ file pair for the
top module, containing the structure of the VP component,
is created automatically. Within the constructor of this class,
all instances characterised as HW are instantiated and inter-
connected.

Furthermore, an additional function is provided to ver-
ify that sufficient data for at least one execution of a block is
available at the input ports supporting the scheduling capa-
bilities of the VP design. The top module class has a member
function acting as a scheduler. Assuming a directed graph
structure of the architecture, a scheduler was implemented
obeying a recursive depth-first search algorithm [41]. On this
account, each block manages a list of its successors which
has been set up when the interconnections of all instances
were established. The scheduler is responsible for calling each
block as often as possible, that is, as long as sufficient data is
supplied at the input ports.

Such automatic VP generation requires to restrict the
programming freedom of the algorithmic designers. A design
style sheet providing guidelines with do’s and don’ts was pro-
vided to the algorithmic designers. These guidelines include
naming conventions for ports, as well as for the correspond-
ing data rates, and internal states of the modules in COSSAP,
in order to allow simple and unique automatic recognition.
For example, over input ports of each block in the COS-
SAP design data, values or parameters can be applied, but
in the architectural implementation they are handled differ-
ently. In order to automate the VP generation it is necessary
to give a dedicated prefix to each port name (Input para or
Input data). According to that naming convention also the
names for the port rates require a prefix (Rate Input para
or Rate Input data). The algorithmic designers did not find
such guidelines very restricting and quickly adopted their al-
gorithmic design towards it. This step allowed to convert a
fixed-point design from algorithmic design level to VP auto-
matically.

Previous implementations of VPs have for the most part
focused on their use, in the hardware/software cosimulation
of the embedded system [15, 42].While these early efforts are
targeted towards increasing the efficiency and quality of the
design process through novel modifications of the cosimula-
tion process, a transition method (even a manual one) from
an algorithmic description to the VP was not shown. A first
automatic approach is presented in [14] achieving a speedup
in the order of five to eight times compared to a manual VP
creation, but it does not support PBDs. In particular, it does
not consider the architectural needs of complex SoC, consist-
ing of several hardware accelerators, and a bus system.

5. CONSISTENT TESTING BY AUTOMATIC TOOLS

According to [15, 22] about 70% of development time is ver-
ification and testing in 3G wireless designs. Time-consuming
parts of testing are the individual test pattern generations
performed manually for each design level. It is thus very

DMA
StarCore
DSP

HA1 HA2

RAM

Direct I/O

System
bus

· · ·

Figure 12: Target hardware platform based on a StarCore DSP.

beneficial to convert these test patterns starting from the al-
gorithmic level automatically down to the subsequent levels.

At the VP level, a decision of HW/SW partitioning has
beenmade. The test patterns for the individual blocks have to
be provided in a certain order and size as well as in a format
specified at the VP design. Thus, the challenge in testing is
to provide means for automatically converting high-level test
patterns into these specific formats.

5.1. Overview of hardware platform

While the testing process in general is rather independent of
the HWplatform, the actual format is not. Therefore, we first
describe more details of the HW platform utilising a Star-
Core DSP (www.starcore-dsp.com). The hardware platform
targeted in this work is a SoC based on a StarCore DSP, as
represented in Figure 12.

In addition to the StarCore DSP, the platform includes
several hardware accelerators. Just like the DSP, the HA
blocks are connected through the system bus to all the other
components. Additionally direct I/O interface for HAs are
provided, which can be used to connect to components out-
side the embedded SoC, such as the antenna subsystem. The
platform also includes a bank of random access memory
(RAM) for use by all the system components. Direct mem-
ory access (DMA) services are provided to the DSP, as well
as to the HA by a dedicated DMA controller, which is also
connected to the system bus.

After HW/SW partitioning is performed on the
algorithmic-level description of the system, the algorithmic
functions assigned to hardware are implemented as separate
HAs, whereas functions assigned to software are realized in
software running on the DSP.

5.2. Reuse of test patterns

The development of the hardware implementation proceeds
in parallel to the development of the other firmware, where
both rely on the VP representation. Therefore, it has to be

file:www.starcore-dsp.com


2608 EURASIP Journal on Applied Signal Processing

Data
in

Data
out

Parameter
in

Parameter
out

Test
generator
script

Formal
interface

specification

Direct I/O C test
program

Memory
image

StarCore
testcase

Figure 13: Automatic environment for reuse of test patterns.

ascertained that both the VP model and eventually its hard-
ware implementation are functionally equivalent to the orig-
inal COSSAP model. For this purpose, the automatically
generated verification environment presented here reuses all
test patters in the COSSAP model and applies them to both
the VP and the HW model. Both models exist as part of the
same platform (see Figure 12) and for this reason each VP
component is tested with the same test bench in both envi-
ronments.

The automatic environment for reuse of test patterns is
shown in Figure 13. The test bench consists of a C program
running on the StarCore DSP, a memory image resident in
the system’s RAM, as well as direct I/O test patterns to be
supplied to the VP component during testing. The verifica-
tion environment includes the automatic generation of test
benches immediately from COSSAP test patterns. The inputs
into the test generator script (TGS) are a formal specification
of the interface between the StarCore DSP and the VP com-
ponent under test as well as the data and parameter dump
files containing the COSSAP test patterns. The output of the
test generator script is a test bench, which runs in both the
VP simulation environment and on the actual hardware plat-
form.

TGS creates amemory image containing the test patterns,
suitably annotated with the timing information (as found in
the COSSAP dump files) and the VP component interface
information (as found in the formal interface specification).
The C test program is generic and is therefore applicable to
any memory image and thus any test bench, without modi-
fication. In other words, all case-specific information is cap-
tured in the memory image only. When the test patterns in
COSSAP include direct I/O data, such data is simply copied
into the test bench and applied directly to the VP compo-
nent through its I/O ports, both in the VP simulation and
on the actual HW platform. It is not stored in the memory
image, because it is not communicated to the VP component
through the system bus and is thus not handled by the C test
program.

5.3. The VP as goldenmodel for the HW

At the time the VP has been automatically created and its
functionality at the bus interface has been tested using the
verification environment explained in the section before, it
can be further used as a golden model for the HW develop-
ment.

The VP component organises the synchronous data flow
between its inner functional components using a FIFO class.
In order to provide a verification facility while running a
VP simulation, the implementation of the FIFO blocks in-
cludes a bi-directional insertion/extraction feature. In other
words, in addition to simply being passed from one func-
tional block to another, data probes can be handed to output
(dump mode) files as well as read from input files (pump
mode) independently. This file input/output functionality
exists in every FIFO in the VP model and thus offers max-
imum flexibility in inspecting and/or inserting test patterns
at any point within the VP structure, depicted in Figure 14.
Provided that the HW developer organises the internal HW
accelerator design in the same functional fragmentation (e.g.,
a corresponding VHDL entity for each C++ class in the VP
component), the test patterns generated by the VP blocks can
be adopted to verify the proper functionality of the VHDL
entities.

Note that the fragmentation into several blocks in the VP
component is very coarse as it mirrors the highest abstrac-
tion level, the algorithmic description in COSSAP. Thus the
impact on the creativity of the HW developer with respect to
design and optimisation issues at the RT-level is negligible.
Experience from HW development (by industrial collabora-
tion) revealed that the demand for test patterns at predefined
points is much higher than the demand for less structural re-
quirements.

As mentioned before the internal representation of the
VP component is generally untimed to offer highest simu-
lation speed, just in opposition to the cycle-true HW im-
plementation. Therefore, the data probes from the VP can-
not contain timing information below the bus-cycle accurate
level. Since the sequence of the values, sent from one inter-
nal block to the next, remains unaffected, the verification of
the corresponding VHDL entities is enabled. A file format
has been defined which captures the necessary information
to identify the source block, the port name, the bus cycle, and
the numbering of the generated value. A convenient way to
analyse the corresponding test pattern files is via the Open
Source tool TkDiff (http://sourceforge.net/projects/tkdiff/),
offering graphical support for the comparison of text files.

6. EXAMPLES OF UMTS DESIGNS

According to the design flow presented in Section 4, the en-
tire COSSAP project for a UMTS baseband processing unit
(UMTS BPU) has been analysed by the SDI and imported
to the DDB. After partitioning of the algorithmic descrip-
tion of the UMTS BPU into SW and HW components, ten
VP peripherals have been generated. Four of them assem-
ble the UMTS cell phone receiver part and will be discussed

http://sourceforge.net/projects/tkdiff/


A Consistent Design Methodology for Wireless Embedded Systems 2609

HW/FW
interface

VP peripheral (C++)

BlockX.cpp BlockY.cpp BlockZ.cpp

Test in Test out

HW/FW
interface BlockX.cpp BlockY.cpp BlockZ.cpp

HW peripheral (VHDL)

B
u
s

B
u
s

TkDiff GUI

Test in Test out

Figure 14: VP as a golden model for HW implementation.

HW/FW
interface

Parameter

Data

Configuration

Deinterleaving

CRC check

Scheduler

DTX
removing

Segmentation
into

code blocks

Rate
matching

Channel
decoding

B
u
s

Class DUD: public CDLVp

Figure 15: VP block diagram of the peripheral for decoding of user data (DUD).

more thoroughly in the following. Each of the four parts re-
alizes the complete or partial functionality of (a) delay pro-
file estimation (DPE), (b) frame and slot synchronisation
(SYNC), (c) rake receiver (RAKE), and (d) decoding of user
data (DUD). As a detailed example, Figure 15 depicts the
DUD peripheral to expose the VP infrastructure of the au-
tomatically generated HW peripheral.

This DUD consists of six blocks, representing the digi-
tal signal processing for the decoding of user data accord-
ing to 3GPP TS25.212, and additional three blocks (config-
uration, HW/FW-interface, and scheduler) generated by the
VP in order to support scheduling. The configuration block
collects the initial parameters of the six signal processing
blocks, which cannot be passed by the HW/FW interface
during run-time and delivers them to each block to set up
the specific behaviour, for instance switching the data pro-
cessing from a slot to a frame basis. Note that the COS-
SAP developer has the possibility to change the parame-
ters of a block before each block invocation. In the VP as
well as in the real HW implementation this is different;

it is only possible to update the parameters of the blocks
between two peripheral invocations. The HW/FW interface
communicates via the on-chip bus with the StarCore DSP,
configures the DUD peripheral, fills the FIFOs of the dein-
terleaving block with data and triggers the scheduler func-
tion.

To achieve the time savings due to the presented automa-
tion, it was necessary to port the HW peripherals manu-
ally from the COSSAP project to the VP representation (ex-
cept for the RAKE receiver because of its extraordinary size).
Within this process the expenditure of human labour, mea-
sured in person hours (PH), for translating the behavioural
model of each module into a C++ file pair has been docu-
mented. In order to predict the time expenditure of the re-
maining blocks, we assume the time expense for each task
is proportional to the lines of code (LOC) of the Gener-
icC files of the corresponding modules. The results are listed
in Table 1, showing also that the efficiency (avg. PH/LOC
= 0.017) of the manual work is roughly constant for each
module.



2610 EURASIP Journal on Applied Signal Processing

Table 1: Algorithmic complexity and time expense of the manually
generated VP peripherals (PH= person hour, LOC= lines of code).

HW peripheral LOC PH PH/LOC
DPE 1653 25 0.015
SYNC 2422 39 0.016
DUD 2398 43 0.018

Table 2: Infrastructural complexity and time expense of the man-
ually generated VP peripherals (PH = person hour, NIB = number
of instantiated blocks).

HW peripheral NIB PH PH/NIB
DPE 5 8 1.60
SYNC 7 17 2.43
DUD 6 12 2.00

In a second step, the creation of the C++ files for the
top module, which instantiates, interconnects, and config-
ures the blocks, has been accomplished. The time spent is
assumed to be proportional to the number of instantiated
blocks (NIB), further on referred to as infrastructural com-
plexity. The results are listed in Table 2 showing an avg.
PH/NIB = 2.0.

As the HW/FW interface has to be described manually
with respect to the underlying architecture, its development
time is not taken into account for the evaluation of time re-
duction. Assuming that the averaged values of the PH/LOC
and PH/NIB ratios obtained fromUMTS receiver are reliable
metrics for the remaining peripherals of the whole UMTS
BPU, it is possible to estimate the design effort for the man-
ual generation of all VP peripherals. An amount of 774 PH
for 121 NIBs and 31 266 LOCs was estimated. Employing the
presented automatic approach, each of the VP peripherals is
generated within seconds.

Note that in an industrial development such mapping
from the fixed-point algorithmic model to the VP model is
not performed just once. Many revision levels are required
until the functionality of all modules is satisfactory. Now, in
the middle of the design process, our development routine
revealed revision levels for the peripherals of already more
than fifty; and at each revision version, in which especially
the infrastructure (e.g., number of ports, connections) has
been changed to a certain degree, this approach exposes its
superior performance, applying the automatic mapping pro-
cedure. The time savings accumulate to many thousand per-
son hours over an entire design. Its application in an indus-
try project, where an ISS of a StarCore together with the
debugging facilities of the CodeWarrior environment from
Metrowerks has been used, proved that the modification of
an existing COSSAP project necessary to be compliant to
the GenericC guidelines causes negligible effort, while the
speedup of development time is substantially. Note, however,
that this simple arithmetic does not show the only benefit
of the proposed method. A manual process would have con-
sumed not only thousands of additional hours but also many
more hours required to find the manually generated bugs,
whereas an exhaustively tested tool is almost error free.

7. CONCLUSIONS

The automated environment for VP generation presented
here has been successfully applied in an industrial design
flow, showing significant speedup in creation of VPs, with
savings in the order of hundreds of person hours per revision.
Simultaneously, this approach also eliminates human-related
errors, thus improving quality. Additionally, work presented
here shows better performance benefits, increased flexibil-
ity, and wider applicability compared to previously presented
automated techniques. Future work on the presented envi-
ronment includes generation of VPs in standards other than
VSIA, such as SystemC, CoMET from Vast System Tech-
nology (www.vastsystems.com), or SEAMLESS from Men-
tor Graphics (www.mentor.com). Also processing of algo-
rithmic descriptions developed in environments other than
COSSAP are of interest. Furthermore a direct binding of the
presented VP environment with more of the numerous com-
mercial algorithmic- and architecture-level tools is expected
to increase automation and thus significantly gain design ef-
ficiency.

ACKNOWLEDGMENTS

The authors would like to acknowledge the ongoing coop-
eration with Infineon Technologies and in particular thank
Thomas Herndl, Ahmad Sarashgi, Wolfgang Haas, Sasha
Simeunovic, and Johann Glaser for their collaboration. This
work has been funded by the Christian Doppler Laboratory
for Design Methodology of Signal Processing Algorithms.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated cir-
cuits,” Electronics Magazine, vol. 38, no. 8, pp. 114–117, 1965.

[2] P. Fisher and D. Cottrell, “Emerging standards in the elec-
tronic design automation (EDA) industry,” in Electronic Sys-
tems Design Seminar, UC Berkeley, Calif, USA, October 1999.

[3] R. Subramanian, “Shannon vs Moore: the digital signal pro-
cessing in the broadband age,” in Proc. IEEE Communication
Workshop, Aptos, Calif, USA, May 1999.

[4] R. Subramanian, “Shannon vsMoore: driving the evolution of
signal processing platforms in wireless communications,” in
Proc. IEEE Workshop on Signal Processing Systems (SIPS ’02),
San Diego, Calif, USA, October 2002.

[5] P. Belanović, M. Holzer, D. Mičušı́k, and M. Rupp, “Design
methodology of signal processing algorithms in wireless sys-
tems,” in Proc. International Conference on Computer, Com-
munication and Control Technologies (CCCT ’03), pp. 288–
291, Orlando, Fla, USA, July 2003.

[6] M. Holzer, P. Belanović, and M. Rupp, “A consistent design
methodology to meet SDR challenges,” in Wireless World Re-
search Forum (WWRF9 ’03), Zurich, Switzerland, July 2003.

[7] R. Baines and D. Pulley, “A total cost approach to evaluating
different reconfigurable architectures for baseband process-
ing in wireless receivers,” IEEE Commun. Mag., vol. 41, no. 1,
pp. 105–113, 2003.

[8] R. Leupers and P. Marwedel, “Retargetable code generation
based on structural processor descriptions,” Design Automa-
tion for Embedded Systems, vol. 3, no. 1, pp. 1–36, 1998.

[9] J. Brakensiek, B. Oelkrug, M. Bucker, et al., “Software radio
approach for re-configurable multi-standard radios,” in Proc.
13th IEEE International Symposium on Personal, Indoor and

file:www.vastsystems.com
file:www.mentor.com


A Consistent Design Methodology for Wireless Embedded Systems 2611

Mobile Radio Communications (PIMRC ’02), vol. 1, pp. 110–
114, Lisboa, Portugal, September 2002.

[10] P. M. Heysters, H. Bouma, J. Smit, G. J. M. Smit, and P. J. M.
Havinga, “A reconfigurable function array architecture for 3G
and 4G wireless terminals,” in Proc. World Wireless Congress
(WWC ’02), pp. 399–405, San Francisco, Calif, USA, May
2002.

[11] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor with
a reconfigurable coprocessor,” in Proc. 5th Annual IEEE Sym-
posium on FPGAs for Custom Computing Machines (FCCM
’97), pp. 12–21, Napa Valley, Calif, USA, April 1997.

[12] M. B. Taylor, J. Kim, J. Miller, et al., “The Raw microproces-
sor: a computational fabric for software circuits and general-
purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25–35,
2002.

[13] C. A. Valderrama, A. Changuel, and A. A. Jerraya, “Virtual
prototyping for modular and flexible hardware-software sys-
tems,” Design Automation for Embedded Systems, vol. 2, no. 3-
4, pp. 267–282, 1997.

[14] A. Hemani, A. K. Deb, J. Oberg, A. Postula, D. Lindqvist, and
B. Fjellborg, “System level virtual prototyping of DSP SOCs
using grammar based approach,” Design Automation for Em-
bedded Systems, vol. 5, no. 3-4, pp. 295–311, 2000.

[15] A. Hoffmann, T. Kogel, and H. Meyr, “A framework for fast
hardware-software co-simulation,” in Proc. Design, Automa-
tion and Test in Europe (DATE ’01), pp. 760–765,Munich, Ger-
many, March 2001.

[16] N. Voros, L. Sánchez, A. Alonso, A. Birbas, M. Birbas, and A.
Jerraya, “Hardware/software co-design of complex embedded
systems: an approach using efficient process models, multi-
ple formalism specification and validation via co-simulation,”
Design Automation for Embedded Systems, vol. 8, no. 1, pp. 5–
49, 2003.

[17] U. Bortfeld and C. Mielenz, “C++ system simulation inter-
faces,”Whitepaper, July 2000.

[18] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosyn-
thesis for microcontrollers,” IEEE Des. Test. Comput., vol. 10,
no. 4, pp. 64–75, 1993.

[19] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Comparing
three heuristic search methods for functional partitioning in
hardware-software codesign,” Design Automation for Embed-
ded Systems, vol. 6, no. 4, pp. 425–449, 2002.

[20] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis us-
ing evolutionary algorithms,” Design Automation for Embed-
ded Systems, vol. 3, no. 1, pp. 23–58, 1998.

[21] CoWare, “SoC platform-based design using Conver-
genSC/SystemC,” July 2002, http://www.coware.com.

[22] B. Bailey, “The Waking of the Sleeping Giant-Verification,”
April 2002, http://www.mentor.com/consulting/techpapers/.

[23] U. Glässer, R. Gotzhein, and A. Prinz, “The formal semantics
of SDL-2000: Status and perspectives,” Computer Networks,
vol. 42, no. 3, pp. 343–358, 2003.

[24] T. Grötker, S. Liao, G.Martin, and S. Swan, SystemDesign with
SystemC, Kluwer Academic, Boston, Mass, USA, 2002.

[25] M. Coors, H. Keding, O. Lüthje, and H. Meyr, “Design and
DSP implementation of fixed-point systems,” EURASIP J.
Appl. Signal Process., vol. 2002, no. 9, pp. 908–925, 2002.

[26] M. Rupp, A. Burg, and E. Beck, “Rapid prototyping for wire-
less designs: the five-ones approach,” Signal Processing, vol. 83,
no. 7, pp. 1427–1444, 2003.

[27] F. Balarin, E. Sentovich, M. Chiodo, et al., Hardware-Software
Co-Design of Embedded Systems: The POLIS Approach, Kluwer
Academic, Boston, Mass, USA, 1997.

[28] G. Berry, S. Moisan, and J. Rigault, “ESTEREL: Towards a
synchronous and semantically sound high level language for
real-time applications,” in Proc. IEEE Real-Time Systems Sym-
posium (RTSS ’83), pp. 30–37, IEEE Computer Society Press,
Arlington, Va, USA, December 1983.

[29] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language LUSTRE,” Proc.
IEEE, vol. 79, no. 9, pp. 1305–1320, 1991, Special Issue “An-
other Look at Real-Time Programming”.

[30] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
a framework for simulating and prototyping heterogeneous
systems,” International Journal in Computer Simulation, vol. 4,
no. 2, pp. 155–182, 1994, Special Issue on Simulation Software
Development.

[31] J. Sztipanovits, “Advances inmodel-integrated computing,” in
Proc. 18th IEEE Instrumentation and Measurement Technology
Conference (IMTC ’01), vol. 3, pp. 1660–1664, Budapest, Hun-
gary, May 2001.

[32] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
integrated development of embedded software,” Proc. IEEE,
vol. 91, no. 1, pp. 145–164, 2003.

[33] J. Gray and G. Karsai, “An examination of DSLs for concisely
representing model traversals and transformations,” in Proc.
36th Annual Hawaii International Conference on System Sci-
ences (HICSS ’03), vol. 9, Big Island, Hawaii, USA, January
2003.

[34] G. Karsai, “Design tool integration: an exercise in seman-
tic interoperability,” in Proc. 7th IEEE International Confer-
ence and Workshop on the Engineering of Computer Based
Systems (ECBS ’00), pp. 272–278, Edinburgh, UK, April
2000.

[35] J. Groff and P. Weinberg, SQL: The Complete Reference,
McGraw-Hill, Osborne, Emeryville, Calif, USA, 2nd edition,
2002.

[36] L. Cai and D. Gajski, “Transaction level modeling in system
level design,” Tech. Rep., Center for Embedded Computer Sys-
tems, Irvine, Calif, USA, 2003.

[37] A. Haverinnen, M. Leclercq, N. Weyrich, and D. Wingard,
“White Paper: SystemC based SoC CommunicationModeling
for the OCP Protocol,” OCP International Partnership, Port-
land, Ore, USA, October 2002.

[38] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A high-
level synthesis framework for applying parallelizing com-
piler transformations,” in Proc. 16th International Confer-
ence on VLSI Design, pp. 461–466, New Delhi, India, January
2003.

[39] W. Wu and A. Jantsch, “A survey of design transfor-
mation techniques,” Tech. Rep., Departement of Electron-
ics, Royal Institute of Technology, Kista, Sweden, 1999.
http://www.ida.liu.se/∼eslab/SAVE/.

[40] B. Knerr, M. Holzer, and M. Rupp, “HW/SW partitioning us-
ing high level metrics,” in Proc. International Conference on
Computing, Communications and Control Technologies (CCCT
’04), pp. 33–38, Austin, Tex, USA, August 2004.

[41] R. Sedgewick, Algorithms, Addison-Wesley, Boston, Mass,
USA, 1988.

[42] J. Cockx, “Efficient modeling of preemption in a virtual pro-
totype,” in Proc. 11th International Workshop on Rapid Sys-
tem Prototyping (RSP ’00), pp. 14–19, Paris, France, June
2000.

http://www.coware.com
http://www.mentor.com/consulting/techpapers/
http://www.ida.liu.se/~eslab/SAVE/


2612 EURASIP Journal on Applied Signal Processing

P. Belanović received his B.E. and M.S.
degrees from the University of Auckland,
New Zealand, and Northeastern University,
Boston, in 2000 and 2002, respectively. His
research focused on the acceleration of im-
age processing algorithms with reconfig-
urable platforms, both in remote sensing
and biomedical domains, as well as custom-
format floating-point arithmetic. Currently
he is a Ph.D. candidate at the Vienna Uni-
versity of Technology, Austria, focusing on the design method-
ologies for embedded systems in wireless communications, virtual
prototyping, and automated floating-point to fixed-point conver-
sion.

B. Knerr studied communications en-
gineering at the University of Saarland
and the Technical University of Hamburg-
Harburg, respectively. He finished the
Diploma thesis about OFDM communica-
tions systems and graduated with honours
in 2002. He worked for one year as a soft-
ware engineer for the UZR GmbH & Co
KG, Hamburg, on image processing and 3D
computer vision. In June 2003 he joined the
Christian Doppler Laboratory for Design Methodology of Signal
Processing Algorithms at the Vienna Technical University as a Ph.D.
candidate. His research interests are in HW/SW partitioning, mul-
ticore task scheduling, static code analysis, and platform-based de-
sign.

M. Holzer received his Dipl.-Ing. degree in
electrical engineering from the Vienna Uni-
versity of Technology, Austria, in 1999. Dur-
ing his Diploma studies, he worked on the
hardware implementation of the LonTalk
protocol for Motorola. From 1999 to 2001
he worked at Frequentis in the area of auto-
mated testing of TETRA systems and after-
wards until 2002 at Infineon Technologies
on ASIC design for UMTS mobiles. Since
2002 he has a research position at the Christian Doppler Labora-
tory for Design Methodology of Signal Processing Algorithms at
the Technical University of Vienna.

G. Sauzon received his Engineer degree
from ENSERG, Grenoble, France. He joined
Infineon Technologies in 1999, focusing on
the architecture definition of a UMTS re-
ceiver. His work also included analysis of
design flows and development of virtual
prototypes for architecture verification. His
current interests are focused on verification
of baseband processors.

M. Rupp received his Dipl.-Ing. degree in
1988 from the University of Saarbrücken,
Germany, and his Dr.-Ing. degree in 1993
from the Technische Universität Darmstadt,
Germany, where he worked with Eber-
hardt Hänsler on designing new algorithms
for acoustical and electrical echo compen-
sation. From November 1993 until July
1995 he had a postdoctoral position at the

University of Santa Barbara, California, with Sanjit Mitra where he
worked with Ali H. Sayed on a robustness description of adaptive
filters with impacts on neural networks and active noise control.
From October 1995 until August 2001 he was a member of the
technical staff in the Wireless Technology Research Department of
Bell-Labs where he was working on various topics related to adap-
tive equalization and rapid implementation for IS-136, 802.11, and
UMTS. He is presently a Full Professor for digital signal processing
in mobile communications at the Technical University of Vienna.
He is an Associate Editor of the IEEE Transactions on Signal Pro-
cessing and of EURASIP JASP and is an elected AdComMember of
EURASIP. He authored and coauthored more than 100 papers and
patents on adaptive filtering, wireless communications, and rapid
prototyping.


	1. INTRODUCTION
	2. REQUIREMENTS FOR SHORT DESIGN CYCLES
	3. INTEGRATED DESIGN METHODOLOGY
	3.1. A single system description
	3.2. Inclusion of domain-specific modeling languages
	3.3. HTML visualisation

	4. VIRTUAL PROTOTYPING
	4.1. On automatic VP generation

	5. CONSISTENT TESTING BY AUTOMATIC TOOLS
	5.1. Overview of hardware platform
	5.2. Reuse of test patterns
	5.3. The VP as golden model for the HW

	6. EXAMPLES OF UMTS DESIGNS
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

