
EURASIP Journal on Applied Signal Processing 2005:16, 2613–2625
c© 2005 Hindawi Publishing Corporation

Vector Processing as an Enabler for Software-Defined
Radio in Handheld Devices

Kees van Berkel
Philips Research, Technical University Eindhoven, Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Email: kees.van.berkel@philips.com

Frank Heinle
Philips Semiconductors, BL Cellular Systems, 90443 Nuernberg, Germany
Email: frank.heinle@philips.com

Patrick P. E. Meuwissen
Philips Research, Technical University Eindhoven, Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Email: patrick.meuwissen@philips.com

Kees Moerman
Philips Semiconductors, DSP Innovation Center, Waalre, The Netherlands
Email: kees.moerman@philips.com

Matthias Weiss
Philips Semiconductors, BL Connectivity, 01099 Dresden, Germany
Email: matthias.weiss@philips.com

Received 15 February 2004; Revised 23 February 2005

A major challenge of software-defined radio (SDR) is to realize many giga operations per second of flexible baseband processing
within a power budget of only a few hundredmW. A heterogeneous hardware architecture with the programmable vector processor
EVP as key component can support WLAN, UMTS, and other standards. A detailed rationale for the EVP architecture, based on
the analysis of a number of key algorithms, as well as implementation and benchmarking results are described.

Keywords and phrases: vector processing, software-defined radio, 3G baseband processing, wireless LAN, rake receiver.

1. INTRODUCTION

Future mobile handsets will need to support multiple wire-
less communication links, potentially including 2G cellular,
3G cellular, wireless local area network (WLAN), personal-
area network (PAN), broadcast, and positioning. A layered
structure of such a future network, adapted from [1], is
shown in Figure 1 and Table 1.

These layers are to be integrated in a common, flexible,
and seamless IP core network, supporting global roaming
and a single access number per user. This requires both hor-
izontal (intrasystem) and vertical (intersystem) handover, as
indicated by the arrows. For each of these layers there exists
a multitude of, often regional, standards. Some handheld de-
vices may have to support multiple standards per layer, for
example, in a world phone.

Individual standards typically evolve over the years to-
wards higher bit rates, more features, and more services. For
example, 3G cellular standards will need to support high-
speed downlink packet access (HSDPA), and for WLAN
multiple-antenna schemes are being studied (MIMO, IEEE
802.11 n).

For a given standard, new algorithms are continuously
developed to improve performance (lower bit error rate,
more efficient spectrum usage). Upgrading handsets by soft-
ware would then be attractive, possibly by downloading of
new software versions over the air interface.

In a typical scenario, multiple standards have to be sup-
ported in standby mode, plus one standard is active. In a
high-end scenario, however, several links may be active si-
multaneously, for example, GSM (standby), DVB-T (data
downlink), UMTS (uplink), Bluetooth, and GPS.

mailto:kees.van.berkel@philips.com
mailto:frank.heinle@philips.com
mailto:patrick.meuwissen@philips.com
mailto:kees.moerman@philips.com
mailto:matthias.weiss@philips.com


2614 EURASIP Journal on Applied Signal Processing

Fixed(wired)

Personal network

Hot spot

Cellular/3G

Cellular/2G

Distribution

Positioning

X X X X X X X X X X X X

Figure 1: Layered structure of an integrated, seamless future net-
work.

The combination of the above trends is sometimes re-
ferred to as 3G+ or 4G wireless. They form a powerful argu-
ment for so-called software-defined radio (SDR) [1].

In Section 2 we analyze the computational loads and flex-
ibility requirements of the various stages of the baseband
processing of an SDR. In Section 3, a number of baseband
algorithms are analyzed in detail for execution on a vector
processor. Detailed requirements for an SDR vector proces-
sor are collected in passing. Based on these requirements, two
vector processors are presented in Section 4: the OnDSP, ap-
plied in WLAN products, and the EVP (embedded vector
processor), being productized for 3G and beyond. Detailed
load numbers for baseband kernels, including benchmark-
ing are presented in Section 5. System results for WLAN and
for UMTS are given in Section 6.

2. HWARCHITECTURE FOR SDR BASEBAND

Estimates for the computational load (GHz) for baseband
processing are given in Figure 2, with [2] as main source.
Interestingly, the numbers roughly appear to apply to both
nonoptimized programs on a Pentium 3 as well as to opti-
mized (assembly) programs running on current DSPs used
in GSM handsets.

The digital baseband processing for SDR can be split into
three stages: a filter stage, a modem stage, and a codec stage,
as shown in Figure 3.

The loads are more or less evenly distributed across the
three baseband stages. Nevertheless, the stages have very dif-
ferent characteristics.

2.1. Filter stage

Various transmitter and receiver filters are required for
band limitation, for example, root-raised cosine filters and
sample-rate conversion. Given their high computational load
(e.g., 2–5 billion multiplications and additions per second
for UMTS), their regularity, and the commonality among
the algorithms involved, full programmability would add

insufficient value to compensate for the additional power
consumption. A configurablemultistandard filter is more ap-
propriate.

2.2. Modem stage

The modem stage, sometimes called “inner transceiver” or
“signal conditioner,” appears to be the most diverse across
the different standards. It includes functions such as rake re-
ception, correlation, synchronization, joint detection, equal-
ization, FFT, OFDM (de)mapping, interference cancellation,
and so forth. Furthermore, new modulation schemes are
proposed within the ongoing evolution of standards to im-
prove throughput and performance. Also manufacturers are
challenged to differentiate their products by improving algo-
rithms to reduce BERs or transmit power for the same BER.
This is the stage where dBs can be gained or lost by choos-
ing and optimizing the right or wrong algorithms. This is the
stage where programmability offers most value.

2.3. Codec stage

The codec stage, sometimes called “outer transceiver” in-
volves a variety of functions: (de) multiplexing, (de) punc-
turing, (de) interleaving, and a variety of channel codecs
(e.g., convolution, Turbo, Reed-Solomon). The performance
of these functions is determined by standard algorithms,
and allows little differentiation among manufacturers. Given
the considerable similarities among standards and algo-
rithms, and given the considerable processing requirements
for higher bit rates (> 100Mbps), a fully programmable so-
lution does not appear to be justifiable. See also Sections 5.4
and 6.

2.4. Baseband hardware architecture

The above observations on the different baseband stages re-
sult in a proposal for a multistandard hardware architecture
(Figure 4), comprising:

(i) a general purpose microcontroller for link/MAC layer
processing and for controlling baseband and RF tasks;

(ii) a configurable filter processor;
(iii) a programmable vector processor for number crunch-

ing, mostly in the modem stage;
(iv) a conventional DSP for intrinsically “scalar” algo-

rithms, for example, speech codecs;
(v) one or more multistandard weakly configurable chan-

nel decoders, for example, Viterbi, Turbo.

3. VECTORIZATION OF BASEBAND KERNELS

Making vector parallelism explicit in program code is com-
monly called “vectorization.” Depending on the algorithm at
hand, this can be relatively straightforward, or it may require
some ingenuity. Unfortunately, the state-of-the-art of vector-
izing compilation today cannot fully exploit the architectures
discussed in Section 4 and at the same time achieve efficient
code for SDR. Although we have been able to generate code



Vector Processing for Software-Defined Radio 2615

Table 1: Layers of a future seamless network.

Layer Link range (log10 m) Up/down Mobility Standards (examples)

Positioning 6-7 d Full GPS, Galileo

Distribution 5-6 d Full DAB, DVB-T/H

Cellular/2G 4-5 d,u Full GSM, IS95, PHS

Cellular/3G 3-4 d,u Full UMTS, CDMA2000, TD-SCDMA

Hot-spot 2-3 d,u Local 802.11 a,b,g, wifi

Personal 1-2 d,u Local Bluetooth, DECT

Fixed 0-1 d,u None POTS

802.11a

UMTS

GSM

DVB-T

GPS

Load estimates (GHz)

11n(MIMO)

HSDPA, MIMO

EDGE, GPRS

Doppler
compensation

Galileo

0.1 0.3 1 3 10 30

Figure 2: Load estimates for various SDR standards.

of acceptable efficiency for some algorithms, we rely onman-
ual vectorization for the time being. Vectorization of several
key algorithms is presented below. In the sequel we assume
a vector processor that supports P (P a power of 2) identi-
cal operations to be executed in parallel (single-instruction
multiple-data (SIMD)), as well as load (store) operations of
P adjacent values from (into) a vector memory.

3.1. Golay correlator for UMTS-FDD

In a UMTS-FDD receiver, a Golay correlator is used for initial
acquisition of a basestation signal. It is basically a filter (1)
designed specifically to detect correlation peaks of the 256-
chip long primary synchronization code (PSC [3]) transmit-
ted during the first 10% of each timeslot on the primary syn-
chronization subchannel (P-SCH) [4]:

y(k) =
255∑

n=0
PSC(255− n)× x(k − n) (1)

with PSC(i) ∈ {−1, +1} and x is one of the sample phases
of the over-sampled input stream of complex (I,Q) numbers.
The structure of PSC(i) allows a factorization of the Golay
correlator into five stages, as shown in (2). The alternative
output stage y′(k) is used only during initial frequency offset
estimation.

Input x, output y, and intermediate signals ys can be
stored in cyclic buffers of appropriate sizes. With sharing of

Control

R
F/
IF

D
/A

A
/D

Fi
lt
er
s

M
od

em

C
od

ec
,(
de
)m

u
x

A
pp

lic
at
io
n
pr
oc
es
si
n
g

Digital baseband

Figure 3: A crude SDR architecture with the baseband section split
into filters, modem, and channel codec.

subexpressions, each output y(k) requires 13 complex addi-
tions/subtractions, 14 memory reads, and 14 memory writes
(of complex values). In principle, these operations can be ex-
ecuted in parallel. However, as all operands reside in different
locations of the various buffers, the resulting parallel accesses
to memory become highly irregular, incompatible with vec-
tor processing:

y1(k) = x(k − 6) + x(k − 4) + x(k − 2)− x(k),

y2U(k) = y1(k − 1) + y1(k),

y2L(k) = y1(k − 1)− y1(k),

y3(k) = y2U(k − 8) + y2L(k),

y4U(k) = y3(k − 48) + y3(k − 32) + y3(k − 16)− y3(k),

y4L(k) = y3(k − 48)− y3(k − 32) + y3(k − 16) + y3(k),

y(k) = y4U(k − 192)− y4L(k − 128)

+ y4U(k − 64) + y4L(k),

y′(k) = ∣∣y4U(k − 192)
∣∣2 − ∣∣y4L(k − 128)

∣∣2

+
∣∣y4U(k − 64)

∣∣2 +
∣∣y4L(k)

∣∣2.
(2)

Vectorization of the Golay correlator becomes rela-
tively straightforward when P successive output symbols
y(k), y(k + 1), . . . , y(k + P − 1) are computed in parallel.
The resulting program follows the sequence of stages of (2),



2616 EURASIP Journal on Applied Signal Processing

Memory
Micro-

controller
Application
processing

Interconnect

(Multiple)
RF trx/rcv

Configur.
channel
filters

Vector
processor DSP

Configur.
channel
decoder

Figure 4: Schematic hardware architecture for SDR/BB.

where each + (or−) operation now specifies P complex addi-
tions (or subtractions), and each reference to the data mem-
ory now specifies the load (or store) of P adjacent complex
samples from (or to) memory. Note that, at least for the early
stages, load operations from memory may be nonaligned.
That is, the load address need not be an integer multiple of
P.

In summary, so-called “inner-loop vectorization” of the
Golay correlator is cumbersome, whereas “outer-loop vec-
torization” is rather straightforward. This is typical for algo-
rithms for which successive output values can be computed
independently. Similar results apply to many kinds of FIR fil-
ters.

3.2. Rake receiver for UMTS-FDD

Rake receivers are commonly used for (W)CDMA, because
of their ability to combine signals from multiple delay paths.
On a conceptual level (Figure 5), a UMTS rake receiver con-
sists of

(i) a delay line to compensate the various path delays,
(ii) a so-called master rake to receive the common pi-

lot channel to perform channel estimation, frequency-
offset estimation, and code tracking,

(iii) a number of so-called slave rakes to receive the various
UMTS data channels and control channels, and

(iv) a scaler and quantizer to reduce the dynamic range be-
fore entering the channel decoder.

The master rake controls the channel-dependent parame-
ters (path attenuation, phase distortion, frequency offset, and
time synchronization) of the slave rakes. Each master rake
finger includes a channel estimator, a frequency offset es-
timator, and a delay locked loop (code tracker). Using the
known pilot signal, these blocks can reconstruct the path
characteristics of the mobile channel.

Each slave rake (3) consists of F rake fingers (i.e., the F
inner summations), each of which is tuned to a different de-
lay path T−τp of the same physical channel. Each finger per-
forms the inverse function of the spreading performed by the
transmitter. First, the path-dependent channel delay is com-
pensated using a delay line. Then, the signal is decorrelated
with the complex conjugate of the spreading code c(k, i), and
accumulated over the same spreading factor S used by the

Input signal from RF interface

Delay line

“E
ar
ly
”
si
gn

al

“P
u
n
ct
u
al
”
si
gn

al

“L
at
e”

si
gn

al

Master rake
1 2 N

Input signal
multiplexing

Channel-estimate
signal multiplexing

6 6 6 6 6 6 6 6

Slave
rake 1

Slave
rake 2

Slave
rake 3

Slave
rake 4

PhCH1
symbol

PhCH2
symbol

PhCH3
symbol

PhCH4
symbol

Sc
al
in
g
an
d
qu

an
ti
za
ti
on

To outer receiver

Figure 5: UMTS rake receiver (simplified).

transmitter. These steps (called decorrelation and “integrate
and dump”) are referred to as despreading. Finally, the sig-
nals of the F fingers are weighted and combined to improve
the bit error rate at the output of the slave rake:

y(k) =
F−1∑

p=0
w∗p (k)×

S−1∑

i=0
c∗(k, i)× x

(
k · S + i + T − τp

)
,

c(k, i) = cscr(k · S + i)× cch(i),

(3)

where
(i) y is the output signal (symbols),
(ii) k is the symbol time,
(iii) x is the input signal (chips),
(iv) F is the number of delay paths (fingers),
(v) wp is the weight factor for path p,
(vi) S is the spreading factor,
(vii) cscr is the scrambling code,
(viii) cch is the channelization code,
(ix) T is the delay line length,
(x) τp is the delay of path p.
Three scenarios for vectorization of the slave rake will

be explored: symbol parallelism, finger parallelism, and chip
parallelism.

With the symbol parallelism scenario (“block processing”
in [5]) P successive output symbols are computed in parallel,
similar to the outer-loop vectorization of the Golay correla-
tor. For this scheme to work,



Vector Processing for Software-Defined Radio 2617

(i) P different phases of the spreading-code generator
must be computed in parallel, with a distance of S
code-chips between two successive phases;

(ii) the incoming data xmust be laid out such that P values
with stride S can be read simultaneously.

Both requirements are hard to satisfy, especially if differ-
ent rakes operate with different spreading factors. The main
problem, however, is that the latency scales with P × F × S.
This latency can become prohibitive for large S, and is fa-
tal for the UMTS fast power-control loop. For this reason,
Walther [5] proposes a combination of symbol parallelism
(for small F and for the pilot channel) and finger parallelism
(for large S).

With finger parallelism, min(P,F) rake fingers are com-
puted in parallel (the outer summation), one data chip
at a time. This scheme requires F different phases of the
spreading-code generator, where each phase corresponds
with a path delay. The data chips are read sequentially, re-
sulting in a considerable overhead, especially for small F and
small S [5]. Furthermore, vector parallelism is limited to F,
and hence does not scale with P. For F, a maximum value of
six is often quoted, but under favorable conditions lower val-
ues are practical, and beneficial for low power consumption.

With chip parallelism, we have arrived at the innermost
loop of (2), and we will aim at exploiting vector parallelism
within a single rake finger [6, 7]. We assume for the moment
that S = 2MP for some integer M. The spreading-code gen-
erator now has to produce P successive code chips in parallel.
Unlike the rake solutions based on finger and symbol paral-
lelism, the code generator must also leap by P symbols at a
time. A solution with a high throughput (300MHz), and a
low set-up time (few clock cycles) is described in [8]. With
the input sample phases separated in memory, P data chips
can be read in parallel as adjacent, nonaligned complex sam-
ples.

Since the active fingers are processed sequentially, the
processor load is proportional to F. Furthermore, chip par-
allelism scales well with P, that is, a wider data path yields a
proportionally lower load. The latency is determined by the
number of symbolsK processed in the inner loop of the algo-
rithm. For example, with K×S bounded to 512 chips, the re-
sulting latency can comfortably accommodate UMTS power
control.

Unlike symbol and finger parallelism, chip parallelism re-
quires so-called intravector addition. That is, the inner sum-
mation of (3) must support the summation of P complex
values in a single instruction [6]. The case S < P is identical,
except that the intravector addition produces P/S symbols.

3.3. Symbol-timing estimation for 802.11a

The symbol-timing estimation, also referred to as clear
channel assessment (CCA), incorporates a rough symbol-
timing estimation procedure in the 802.11a WLAN stan-
dard. It serves as a final preamble indicator by detecting
the transition between the short and the long symbol field.
If an 802.11a preamble is confirmed, fine symbol-timing
estimation is performed on the long symbol portion by

frequency-domain processing [9]. Below, we address the
rough symbol estimation.

The rough symbol-timing estimator performs two tasks:

(1) it indicates the presence of an 802.11a preamble by de-
tecting its unique transition from a short symbol se-
quence to a long symbol sequence,

(2) it estimates the start of the long symbol field with an
accuracy of ±31 samples.

Based on extensive simulation it was chosen to base the es-
timation on the calculation of two sliding vector products,
called autocorrelator functions (ACFs). The ACFs are com-
pared by a threshold, which avoids division. The first ACF
called acf16 tracks the end of the short symbol field accord-
ing to the metrics:

A16(k) =
k∑

i=k−31
r ∗ (i)r(i− 16), (4)

P32(k) =
k∑

i=k−31

∣∣r(i)
∣∣2. (5)

Those can be iterated as

A16(k)=A16(k − 1) + r∗(k)r(k − 16)− r∗(k − 32)r(k − 48),
(6)

P32(k) = P32(k − 1) +
∣∣r(k)

∣∣2 − ∣∣r(k − 32)
∣∣2. (7)

Their combination yields the detection indicator

I16(k) =
∣∣A16(k)

∣∣2 − TlP32(k)P32(k − 16), (8)

k̂64 = min
(
k | I64(k) > 0

)
, (9)

where the value of Tl depends on the SNR. A short symbol
field has a period of 16 samples, and hence also of 64 samples.
To remove this ambiguity, I16(k) is calculated. If I16(k) < 0,
that is, there is no autocorrelation with a period of 16, the
computation of a similar ACF is started to detect the begin-
ning of the long symbol field with a period of 64.

Outer-loop vectorization, that is, computing P outputs in
parallel, can be applied to acf16 (5), to power computation
(7), and to the detection indicator (8). The minimum value
of this indicator k̂16, its index k, and the break condition (9)
have to be computed sequentially. This can be done on the
fly, that is, in parallel with the vector operations above.

3.4. Fast Fourier transform

The FFT is one of the fundamental DSP algorithms. Together
with its inverse, it is a key algorithm for OFDM standards
such as 802.11a (cf. Section 6.1). The basic computation of a
radix-2 FFT is the butterfly applied to pairs of complex sam-
ples, say, 2× 12 bits:

y0 = x0 + ω × x1,

y1 = x0 − ω × x1,
(10)



2618 EURASIP Journal on Applied Signal Processing

where ω is a complex root of unity. An N = 2n point FFT is
generally organized as a cascade of n stages each comprising
N/2 butterflies. On a vector processor, a group of P/2 but-
terflies can be computed in parallel conveniently, assuming
N ≥ 2P. Depending on the particular FFT algorithm and on
the stage, the two input vectors of such a group can be plain
output vectors of different groups of the preceding stage, or
permutations thereof. Such permutations (a.k.a. vector shuf-
fles) must be supported in an SDR vector processor.

Most FFT algorithms require a presorted input block, or
require some postsorting of the output block (bit-reversal or
digit reversal). So-called self-sorting FFTs [10] avoid this, and
can lead to particularly efficient vectorized FFT solutions.

3.5. Viterbi decoding

Viterbi decoders are probably the most common channel de-
coders for convolutional codes. They are rather computa-
tionally intensive and comprise two distinct types of com-
putation: trellis construction and trace back. Trellis construc-
tion allows fairly straightforward vectorization, assuming the
availability of vector permutations, similar to those used for
FFT. Trace back, however, is inherently sequential, requiring
scalar read accesses into the trellis stored in the vector mem-
ory.

For small constraint lengths of the convolutional code,
or for large P, trace back tends to take more time than trel-
lis construction. In practice, the two may well be in balance.
Hence, ideally, both types of computation can be scheduled
in parallel on the vector and scalar parts of a vector processor
[11].

3.6. SDR vector processor requirements

From the vectorized baseband kernels above we can now col-
lect the requirements for an SDR vector processor.

(R1) In addition to the 16-bit data types common for DSPs,
8-bit data types are useful for the incoming radio sig-
nals. They allow a higher memory density, and twice
the parallelism in the SIMD data path. Support for
complex arithmetic will benefit all presented kernels,
except the Viterbi decoder.

(R2) Vectorization of most presented algorithms scale well
with P. In practice, a limit will occur for 64 complex
samples for the 802.11a algorithms. As shown later on,
a much narrower machine will cover many of today’s
standards. In order to be prepared for future evolution,
including multitasking, it is valuable to keep the vector
processor scalable, that is, to parameterize its architec-
ture and its implementation (including tools) by P.

(R3) Orthogonal to pure SIMD parallelism, VLIW (very
long instruction word [12]) parallelism can further ac-
celerate the rake (pipelinedmemory access + code gen-
eration + decorrelation + integration, Section 3.2) as
well as the FFT (a pipelined multiply + add/subtract +
shuffle, Section 3.4).

(R4) The speed-up that can be achieved by combining vec-
tor and VLIW parallelism is limited by the fraction of

the program code that can be vectorized. This limi-
tation is known as Amdahl’s law [12]. For example,
when 90% of an algorithm can be sped up by a fac-
tor P = 32, the overall speed-up is less than a fac-
tor eight! In order to counter this limitation, a par-
allel speed-up is also required for the nonvectorizable
parts of an algorithm. Examples of the latter were the
minimum/index calculations of the symbol-timing es-
timator (Section 3.3) and the trace-back function of
the Viterbi decoder (Section 3.5). To further counter
Amdahl’s Law, parallel address calculations and loop
control are critical, even more so than for traditional
DSPs [13].

(R5) Beyond “pure” SIMD, shuffling of data within a vector
[14] is key to both FFT (Section 3.4), and Viterbi trellis
construction (Section 3.5). Furthermore, such a shuf-
fle operation can support vector rotation, which can
be used to implement nonaligned read access to vector
memory as required, for example, for Golay correla-
tion (Section 3.1) and rake reception (Section 3.2).

(R6) Also intravector operations (a.k.a. vector reductions)
are important, for example, for rake integration
(Section 3.2).

(R7) A useful, but rather CDMA-specific capability is the
“generate the next P successive code chips” instruction
for a variety of composite codes.

(R8) As we aim at handheld devices, small silicon area (in-
cluding data and program memories) is essential, as
well as low power consumption.

(R9) The processor must be conveniently programmable,
supported by effective and efficient tools.

Note that (R2), (R3), and (R4) deal with computational per-
formance (effective number of operations per second), and
that (R5), (R6), and (R7) deal with functional capabilities.

4. VECTOR PROCESSORS: OnDSP AND EVP

As we have seen in Section 3, vector processing can be used
to exploit the abundant and often regular parallelism en-
countered in many baseband algorithms. Using SIMD in-
structions (single-instruction multiple-data) arithmetic op-
erations or load/store operations can be applied to P (e.g.,
P = 16) samples in parallel.

The basic features of a vector-processor suitable for SDR
are listed below, with reference to Figure 6 and the require-
ments of Section 3.6 (Rn).

(i) The dominant data size is 16 bits as in conventional
DSPs, with some support for 8-bit and 32-bit data.
Hence a single SIMD vector comprises P 16-bit ele-
ments, 2P 8-bit elements, or P/2 elements of 32 bits.
Accumulator registers have extension bits to support
high-resolution accumulation. The main data types
are integer and fixed point, with support for complex
numbers (2× 8 or 2× 16 bits) (R1).

(ii) The vector memory supports one vector read or vector
write (P words) per clock cycle.



Vector Processing for Software-Defined Radio 2619

P
ro
gr
am

m
em

or
y

V
LI
W

co
n
tr
ol
le
r

A
C
U

· · · · · ·

Vector FU

Vector register file

Vector memory

P words wide 1 word wide

Scalar RF

Scalar FU

Figure 6: A generic vector-processor architecture.

P
ro
gr
am

m
em

or
y

V
LI
W

co
n
tr
ol
le
r

A
C
U

8 words wide 1 word wide

· · · · · ·

Vector memory

4 vector registers

Load/store

ALU

MAC

Shift

4 scalar regs.

Load/store

ALU

MAC

Shift

Figure 7: The OnDSP architecture.

(iii) The VLIW execution model supports parallelism
among multiple vector functional units (FUs), for ex-
ample, MAC, ALU. This VLIW parallelism comes in
addition to vector parallelism (R3).

(iv) On top of that a VLIW instructionmay also specify sev-
eral operations on scalar functional units (R4).

(v) To keep many functional units busy, there is ex-
tensive support for address calculations (ACUs, e.g.,
postincrement, modulo) and for zero-overhead loop-
ing (R4).

Compared to other programmable architectures, SIMD ex-
ecution results in low power consumption (R8), because
the “overhead” of address calculations, address decoding, in-
struction fetching/decoding, and control is shared by P oper-
ations. A similar reasoning holds for silicon area per MOPS.

With the above in common, two vector processor in-
stances have been developed within Philips: OnDSP targeting
WLAN, and EVP targeting 3G and beyond.

4.1. OnDSP

The OnDSP vector processor is a key component of several
multistandard programmable wireless LAN baseband prod-
uct ICs [15]. The application of vector processing to WLAN
will be addressed in Section 6.1.

The OnDSP architecture is depicted in Figure 7. The
vector size equals P = 8 (128 bits). A single VLIW in-
struction can specify a number of vector operations, for
example, load/store, ALU, MAC, address calculations, and

P
ro
gr
am

m
em

or
y

V
LI
W

co
n
tr
ol
le
r

A
C
U

16 words wide 1 word wide

· · · · · ·

Vector memory

16 vector registers

Load/store unit

ALU

MAC/shift unit

Shuffle unit

Intravector unit

Code generation unit

32 scalar regs.

Load/store U

ALU

MAC U

AXU

Figure 8: The EVP architecture.

loop-control ((R3), (R4)). OnDSP supports a couple of spe-
cific vector instructions, including word insertion/deletion,
sliding, and gray coding/decoding. Data addresses must be
a multiple of P. Program code is compressed vertically
(“tagged VLIW” [16]).

In a 0.12 µm CMOS process, OnDSP measures about
1.5mm2 (250 kgates), runs 160MHz (worst-case commer-
cial), and dissipates about 0.8mW/MHz including a typical
memory configuration (R8). A macroassembler is used for
VLIW scheduling, although optimization by hand is used for
critical code.

4.2. EVP

The EVP (embedded vector processor) is a productized ver-
sion of the CVP [7]. Although originally developed to sup-
port 3G standards, the current architecture proves to be
highly versatile. Care has been taken to cover the OnDSP ca-
pabilities for OFDM standards.

The EVP architecture is depicted in Figure 8. The main
word width is 16 bits, with support for 8-bit and 32-bit data
(R1). The EVP supports multiple data types, including com-
plex numbers (R1). For example, a complex vector multipli-
cation uses P multipliers to multiply 1/2p complex numbers
each two clock cycles.

The SIMD width is scalable (R2), and has been set to
P = 16 (256 bits) for the first product instance EVP16. The
maximum VLIW-parallelism available equals five vector op-
erations plus four scalar operations plus three address up-
dates plus loop-control. Specific FUs of the EVP include the
following ((R3), (R4)).

(i) The shuffle unit can be used to rearrange the elements
of a single vector according to an arbitrary pattern
(R5).

(ii) The intravector unit supports operations such as add
(or take the maximum of) the elements of a single vec-
tor, possibly split in,M segments of P/M elements each
(R6), withM a power of 2.



2620 EURASIP Journal on Applied Signal Processing

Table 2: Load (MHz) of a UMTS-FDD rake finger.

Processor Ref. Load (MHz) Arithmetic resources (complex arithmetic)

EVP16 [7] 0.5 16×(MAC+ ALU + PN gen.)

Tigersharc [6] 1 2× 8×(MAC+ ALU)

4 UMTS DP [18] 6 4×(MAC+ ALU + PN gen.)

UMTS DP [18] 25 1×(MAC+ ALU + PN gen.)

TI C62 [19] 40 –

Carmel [18] 125 2 MAC + ALU

TI C54x [18] 300 1 MAC/ALU

(iii) The code generation unit supports CDMA-code gen-
eration: in a single clock cycle 16 successive complex
code chips are generated (R7). The unit can be config-
ured for a variety of codes (UMTS, CDMA2000, GPS,
etc.) and for cyclic redundancy checks (CRC).

In a 90 nm CMOS process, the EVP16 core measures about
2 mm2 (450 kgates), runs 300MHz (worst-case commer-
cial), and dissipates about 0.5mW/MHz (core only) and
1mW/MHz including a typical memory configuration (R8).
These numbers are based on gate-level simulations of anno-
tated netlists.

Programs are written in EVP-C, a superset of ANSI-C.
Programs written in plain C will be mapped on the scalar
part of the EVP, and hence will not utilize the vector FUs.
The extensions include vector data types and function intrin-
sics for vector operations, all in a C-like syntax. The EVP-C
compiler takes care of register allocation (scalar and vector
registers) as well as VLIW instruction scheduling (scalar and
vector operations combined). The EVP tool flow (R9) fur-
ther comprises an EVP-C host-emulation library, a linker, a
bit-true/cycle-true simulator, a profiler, and an integrated de-
bugger.

5. RESULTS FOR BASEBAND KERNELS

The results of mapping the baseband kernels of Section 3
onto the vector processors of Section 4 are presented below,
together with relevant benchmarking.

5.1. Golay correlator for UMTS-FDD

On the EVP16 as many as 1/2p = 8 complex additions/ sub-
tractions (2× 16 bit) can be computed in parallel. Automatic
scheduling of the EVP-C version of the Golay correlator on
the EVP16 requires 22 cycles for 1/2p symbols. Manual opti-
mization of thememory accesses and schedule reduces this to
16 cycles for 1/2p symbols. Note that the 16 adders are busy
for 13/16 of the time (Section 3.1). Assuming correlation on
two sample phases of 4MHz each, the EVP16 load becomes
2× 4.106× 16 cycles /(1/2p = 8), or approximately 16MHz.

5.2. Rake receiver for UMTS-FDD

On the EVP the inner loop of the rake (Section 3.2) keeps
most FUs busy. A single EVP VLIW instruction (1/ fc
throughput) specifies

(i) load and align a sample vector of P data chips,
(ii) auto increment by P of the pointer to these chips,
(iii) generate a vector of the next P code chips,
(iv) correlate a vector of data and a vector of code chips,
(v) intra-add result to one or few symbols (S ≤ P) or to

one partial symbol (S > P).

For the UMTS-FDD chip rate of 3.84MHz this implies an
EVP16 load of about 0.3MHz per rake finger for the chip-rate
processing (3), including loop preambles and postambles for
blocks of 512 chips. Including some symbol-rate processing
this will increase to 0.4-0.5MHz, depending on the spreading
factor.

Table 2 summarizes the load (MHz) of a rake finger on
various programmable DSPs.

5.3. Fast Fourier transform

Both OnDSP and EVP exploit pipeline parallelism (imple-
mented by means of VLIW) among

(i) a complex vector multiplication,
(ii) a vector addition/subtraction, and
(iii) a vector permutation (between the butterfly stages).

For a complete 64-point FFT, the OnDSP and EVP16 require
160 and 64 cycles, respectively, based on manually scheduled
code. Normalized on the respective processor SIMD widths
(P = 8 and P = 16), EVP16 is somewhat faster because
its add/subtract instruction allows implicit scaling between
stages. Note that all 16 EVP16’s multipliers are active during
48/64 clock cycles!

The prototype EVP-C compiler requires 79 cycles, about
25% more than the hand-scheduled assembly code.

Table 3 shows the cycle counts for a 64-point FFT (incl.
bit-reversal) for a number of DSPs. The numbers from [17]
have been scaled from a 256-point FFT in proportion to the
number of butterflies. The column “code” specifies whether
the program has been compiled “out-of-the-box”, that is,
without any manual intervention, or whether it has been
hand optimized at the assembly level.

5.4. Viterbi and turbo decoding

The EVP allows parallel computation of trellis construc-
tion on the vector FUs, and trace back (on the scalar FUs)
[11]. Table 4 benchmarks several DSPs for a 12 kbps UMTS



Vector Processing for Software-Defined Radio 2621

Table 3: Cycle counts for a 64-point FFT.

Processor Ref. Code Clock cycles SIMD

EVP16 – Optimized 64 16× 16

OnDSP – Optimized 160 8× 16

Tigersharc [6] Optimized 174 2× 8× 16

VIRAM – Optimized 357 16× 32

TMS320C6203 [17] Optimized 646 N.A.

Altivec MPC7447 [17] Optimized 956 8× 16

Carmel 10xx [17] Out-of-the-box 5568 N.A.

AMD K6-2E+/ACR [17] Out-of-the-box 10 751 N.A.

Table 4: Viterbi and turbo decoding on several DSPs.

Viterbi Turbo

Processor Ref. Cycles Butterflies Cycles /symbol

/symbol /cycle

EVP16 [7, 11] 37 3.5 55

Tigersharc [6] 70 1.8 70

TMS320C64 [20] 170 0.8 440

Altivec [14] 260 0.5 –

AMR voice channel (constraint length K = 9). The 3.5 but-
terfly operations/clock cycle for EVP16 translates to 10 cy-
cles/symbol for a decoder with constraint length 7.

Table 4 also provides load numbers for turbo decoding
(3GPP, with 6 iterations). The EVP16 cycle count is an esti-
mate, based on hand schedules.

6. SDR RESULTS

In the preceding sections we have presented a vector-
processor architecture for SDR using several baseband algo-
rithms from the UMTS andWLAN domain as drivers. In ad-
dition to its efficiency for isolated algorithms, the resulting
architecture (cf. Figure 4) needs to be assessed in an overall
system context.

6.1. Wireless LAN

The Philips 802.11 a,b,g baseband implementation (product
SA250) is based on the OnDSP vector processor [15]. Below
we focus on the IEEE 802.11a standard. From Section 5.4,
we can conclude that for the symbol rates at hand (up
to 54MHz) it is not practical to map Viterbi decoding
on a vector processor. Hence, the OnDSP is employed for
(de)modulation tasks, while hardware accelerators support
Viterbi decoding, (de)interleaving, and de(scrambling). The
main tasks for the vector processor are

(i) preparing transmission data (TX),
(ii) equalizing and tracking when receiving data (RX),
(iii) burst detection and acquisition.

The OnDSP cycle counts of Table 5 yield an OnDSP load of
110MHz. For the EVP16, with twice the parallelism, this will

go down to approximately 55MHz. In addition to meeting
the OnDSP load constraint, the OnDSP can also cope with
the tight real-time constraints for synchronization.

Interestingly, software flexibility does not increase the sil-
icon area for this application. Unlike, for example, [21], the
same hardware is used for synchronization and FFT.

6.2. UMTS-FDD

Today’s GSM handsets deploy programmable DSPs for all
baseband signal processing, with all the associated flexibility
benefits. Moreover, it has allowed concurrent and indepen-
dent evolution of DSP architectures (following Moore’s law)
and algorithmic improvement. Different groups of designers,
often in different companies used the DSP architecture and
tools as interface between them.

For 3G standards, such as UMTS, this is not entirely prac-
tical, at least for the time being. From Section 5.4 we can see
that Turbo decoding alone requires about 55 clock cycles per
symbol on the EVP16. For UMTS 3GPP R’99 this results in
an acceptable 35MHz load for a 640 kbps channel. For 3GPP
release 5, however, a 14Mbps data rate would result in an
EVP16 load in excess of 700MHz, and a power consumption
close to 1watt in 90 nm CMOS. Accordingly, we choose the
architecture of Figure 4. This hardware-software partitioning
is markedly different from [22], where all channel (de) cod-
ing is also mapped on DSP software.

Furthermore, 3G+ standards show a much more dy-
namic computational load than 2G standards, both due to
the nature of the employed algorithms and the large number
of different use cases. This can be illustrated for four UMTS
scenarios [3].

(1) UMTS idle mode, only multicell synchronization.



2622 EURASIP Journal on Applied Signal Processing

Table 5: OnDSP load for the critical loop of the 802.11a (de)modulator (cycles per OFDM symbol of 4 microseconds).

OnDSP load (de)modulator task TX (cycles) RX (cycles)

Symbol (de)mapping 35 35

Pilot generation 55 –

Pre (post) scaling 35 35

Tracking – 36

Channel correction – 39

OFDM (de)mapping 35 35

Afc(I) FFT 160 160

TS frequency shift 40 –

Phase-error correction – 39

CP insertion/removal 35 –

Control code 40 40

Overall peak load 435 414

Overall peak load (Mhz) 109 104

Table 6: EVP16 loads for the modem stage; 4 scenarios.

EVP16 load (MHz)

UMTS task 1 2 3 4

PSCH search (Golay) 18 18 18 18

CPICH search 98 17 17 17

CPICH despreading – 4 22 33

CPICH symbol rate – 1 1 2

DCH despreading – 3 16 16

DCH symbol rate – 1 6 6

HS-SCCH despreading – – – 15

HS-SCCH symbol rate – – – 1

HS-DSCH despreading – – – 12

HS-DSCH symbol rate – – – 22

Overall peak load 116 44 80 142

Overall average load 4 28 64 126

(2) UMTS R’99 connected mode with flat fading con-
ditions (1 rake finger only), 3 dedicated channels
(DCH), and neighbor-cell broadcast channel (BCH)
monitoring.

(3) UMTS R’99 connected mode in a scattering environ-
ment with multiple paths (six rake fingers) with the
same transport channel configuration as before.

(4) UMTS R’99 connected mode in a scattering environ-
ment with multiple paths (six rake fingers) with the
same transport channel configuration plus an HSDPA
(high speed downlink packet access) link (3GPP R5)
with 15 downlink channelization codes.

The EVP16 load numbers for these four scenarios, based on
simulation of kernels, are summarized in Table 6. Note the
variation in load distributions! More advanced receiver algo-
rithms such as interference cancellation, chip-rate equaliza-
tion, or joint detection will be required in the future, both
to increase the system capacity and to improve the reception

quality. This is, from our point of view, one of the most com-
pelling justifications for SDR.

6.3. Multistandard considerations
EVP16 load numbers for the modem stage for various wire-
less standards are shown in Figure 9. Note the considerable
headroom available on EVP16 for most standards.

The available headroom can be used to

(i) introduce improved but more demanding algorithms,
(ii) scale the supply voltage to reduce power consumption,

and, in principle,
(iii) run multiple standards simultaneously.

The latter introduces intrastandard resource sharing,
substantially reducing the additional costs for adding a radio
standard. For the combination ofWLAN and UMTS, includ-
ing intersystem handover, this is illustrated in Figure 10. Sup-
porting multiple standards simultaneously requires a care-
fully coordinated use of the resources in the SDR architecture
of Figure 4.



Vector Processing for Software-Defined Radio 2623

802.11a

UMTS

GSM

DVB-T

GPS

EVP (MHz)

11n(MIMO)

HSDPA

EDGE

Doppler compensation

Galileo

50 100 150 200 250 300

EVP in 90 nm
CMOS

Figure 9: Estimated EVP16 load numbers for the modem stage of various receivers.

25

55

75

100

125
MHz

Initial
acquisition

UMTS
connected

UMTS connected/
WLAN acquisition

WLAN connected/
UMTS monitoring

P-S

C
P
IC
H
se
ar
ch

P-S P-S

CPICH search

Rake
chip-rate
processing

Rake sym-rate proc.

P-S P-S

CPICH search

Rake
chip-rate
processing

Rake sym-rate proc.

WLAN acquisition

Intersystem handover

P-S P-S

CPICH search

WLAN receiver

Time

Figure 10: Handover from UMTS to WLAN, with load indications for the EVP16. P-S = PSCH search.

7. CONCLUSION

The modem stage of an SDR requires software flexibility to
cope with the multitude of wireless standards, their evolu-
tion, and with algorithmic improvement (including bug fixes
and in-field upgrades) without the need to respin an IC. Vec-
tor parallelism in combination with VLIW can offer the com-
putation power required for this. The OnDSP has demon-
strated this for several WLAN ICs. The EVP16, with its pow-
erful FUs (shuffle, intravector, code generation) outperforms
conventional DSPs by an order of magnitude or more, in
a power-efficient way. Accordingly, the EVP16 can be a key
component of an SDR, where it can save silicon area by both
intrastandard and interstandard reuse. With 300MHz, the
EVP16 can potentially handle multiple standards simultane-
ously.

ACKNOWLEDGMENT

The contributions of Srinivasan Balakrishnan, Nur Engin,
Rick Nas, and Rob Takken (all with Philips Research Labs),
and of Wim Kloosterhuis, Jean Paul Smeets, and Mahima
Smriti (all with Philips Semiconductors) are gratefully ac-
knowledged.

REFERENCES

[1] R. Becher, M. Dillinger, M. Haardt, and W. Mohr, “Broad-
band wireless access and future communication networks,”
Proc. IEEE, vol. 89, no. 1, pp. 58–75, 2001.

[2] R. Kokozinski, D. Greifendorf, J. Stammen, and P. Jung, “The
evolution of hardware platforms for mobile ‘software de-
fined radio’ terminals,” in Proc. IEEE 13th International Sym-
posium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC ’02), vol. 5, pp. 2389–2393, Lisbon, Portugal,
September 2002.

[3] 3GPP TS 25.211, “Physical channels and mapping of trans-
port channels onto physical channels (FDD) - (Release 5),” v.
5.5.0 (2003-09).

[4] 3GPP TS 25.213, “Spreading and modulation (FDD) - (Re-
lease 5),” v. 5.5.0 (2003-12).

[5] U. Walther, “Signalprozessorarchitecturen für den Mobilfunk
der 3. Generation,” Ph.D. Dissertation, Technische Universität
Dresden, Germany, 2002.

[6] J. Fridman and Z. Greenfield, “The TigerSHARC DSP archi-
tecture,” IEEE Micro, vol. 20, no. 1, pp. 66–76, 2000.

[7] K. van Berkel, P. P. E. Meuwissen, N. Engin, and S. Balakr-
ishnan, “CVP: a programmable Co vector processor for 3G
mobile baseband processing,” in Proc. World Wireless Congress
(WWC ’03), San Francisco, Calif, USA, May 2003.

[8] R. J. M. (Rick) Nas and K. van Berkel, “High-Throughput,
Low Set-up Time Reconfigurable Linear Feedback Shift Reg-
ister,” Philips PR-TN-2004/00899.



2624 EURASIP Journal on Applied Signal Processing

[9] B. Stantchev, An approach to synchronized detection in DFT-
based receivers, Ph.D. thesis, Shaker Verlag, Aachen, Germany,
2002.

[10] F. Arguello, J. D. Bruguera, and E. L. Zapata, “A parallel archi-
tecture for the self-sorting FFT algorithm,” Journal of Parallel
and Distributed Computing, vol. 31, no. 1, pp. 88–97, 1995.

[11] N. Engin and K. van Berkel, “Viterbi decoding on a coproces-
sor architecture with vector parallelism,” in Proc. IEEE Work-
shop on Signal Processing Systems (SIPS ’03), pp. 334–339,
Seoul, Korea, August 2003.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, San Francisco,
Calif, USA, 3rd edition, 2003.

[13] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Proces-
sor Fundamentals: Architectures and Features, Berkeley Design
Technology, Fremont, Calif, USA, 1994–1996.

[14] L. Gwennap, “G4 is first PowerPC with altivec,” in Micropro-
cessor Rep., pp. 17–19, November 1998.

[15] J. Kneip, M. Weiss, W. Drescher, et al., “Single chip pro-
grammable baseband ASSP for 5 GHz wireless LAN appli-
cations,” IEICE Transactions on Electronics, vol. E85-C, no. 2,
pp. 359–367, 2002.

[16] M. Weiss and G. P. Fettweis, “Dynamic codewidth reduction
for VLIW instruction set architectures in digital signal pro-
cessors,” in Proc. 3rd International Workshop on Signal and
Image Processing (IWSIP ’96), pp. 517–520, Manchester, UK,
November 1996.

[17] Embedded Microprocessor Benchmark Consortium. http://
www.eembc.com/.

[18] U. Walther, F. Tischer, and G. P. Fettweis, “New DSPs for next
generation mobile communications,” in Proc. Global Telecom-
munications Conference (GLOBECOM ’99), vol. 5, pp. 2615–
2619, Rio de Janeireo, Brazil, December 1999.

[19] P. R. Dent, “W-CDMA reception with a DSP based soft-
ware radio,” in Proc. 1st International Conference on 3G Mo-
bile Communication Technologies, pp. 311–315, London, UK,
March 2000.

[20] T. Horner and J. Nikolic-Popovic, “Application of TMS320-
C6400 in 3G Wireless Infrastructure Transceiver,” 2000,
http://focus.ti.com/pdfs/univ/01-Wireless.pdf.

[21] T. H. Meng, B. McFarland, D. Su, and J. Thomson, “Design
and implementation of an all-CMOS 802.11a wireless LAN
chipset,” IEEE Commun. Mag., vol. 41, no. 8, pp. 160–168,
2003.

[22] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill,
“A software-defined communications baseband design,” IEEE
Commun. Mag., vol. 41, no. 1, pp. 120–128, 2003.

Kees van Berkel is a Fellow at Philips
Research Laboratories, Eindhoven. He re-
ceived an M.S. degree (cum laude) in elec-
trical engineering from the Delft Univer-
sity of Technology in 1980 and a Ph.D. de-
gree in 1992 from the Technical University
Eindhoven (TU/e). Since 1996, he has been
a Visiting Professor at the Department of
Mathematics and Computer Science, Tech-
nical University Eindhoven (TU/e). From
1986 until 2000, he led the team that pioneered the synthesis, test,
and application of asynchronous VLSI circuits based on hand-
shake circuits. He contributed more than 25 scientific publica-
tions, 7 patents, and the book Handshake Circuits. Today, these cir-
cuits find application in ICs for pagers, corded phones, contactless
smartcards, controllers, and more. During the late 1990s, his re-
search focus moved to architectures for mobile wireless terminals.

He initiated and coarchitected the CVP, the predecessor of the EVP.
His current research interests include software-defined radio, signal
processing algorithms, vector processing, VLSI architectures, DSP
architectures, memory architectures, and interconnect-centric de-
vice architectures.

FrankHeinlewas born in 1968. He received
his Dipl.-Ing. (M.S.) degree and Dr.-Ing.
(Ph.D.) degree from the University of Er-
langen, Germany, in 1994 and 1998, respec-
tively. From 1994 to 1997, he was work-
ing as a Research Assistant at the University
of Erlangen on multirate signal processing.
Since 1997, he has been with Philips Semi-
conductors, Nuernberg, Germany, working
on signal processing and baseband architec-
tures for various mobile communication systems including IS-136,
UMTS, and TD-SCDMA. His research interests include mobile
communications, software-defined radio, signal processing algo-
rithms and architectures.

Patrick P. E. Meuwissen received his M.S.
degree in information technological science
from the Faculty of Electrical Engineering,
Technical University Eindhoven (TU/e) in
1997. Currently, he is a Senior Scientist
in the Embedded Systems Architectures on
Silicon Group, Philips Research Laborato-
ries, Eindhoven, The Netherlands. There, he
coarchitected the CVP, the predecessor of
the EVP. He was also heavily involved in the
creation of the initial CVP tools, and used these to perform the first
algorithm mapping experiments. In February 2005, he completed
his studies at the Philips Research “Architecture School.” His cur-
rent research interests include system architecture, embedded sys-
tem design, hardware-software codesign, and VLSI systems for new
multimedia applications like 3DTV.

Kees Moerman is currently working as
Chief Architect in the DSP Innovation Cen-
ter, Philips Semiconductors. As such, he is
responsible for the technical roadmap of the
DSP cores as used in, for example, the Nex-
peria Mobile architecture, including “classi-
cal” DSP cores as reacquired from Adelante
Technologies, and the new vector process-
ing core architecture as described in this pa-
per. Before joining Philips Semiconductors
in 1995, he worked for 10 years at Pijnenburg Micro-electronics
BV, The Netherlands, on the design of embedded microcontroller
and DSP cores, and the corresponding software development envi-
ronments and tools. He holds an M.S. degree in physics and infor-
mation technology which he received from the Utrecht University,
The Netherlands, and has 15+ years of experience in DSP architec-
ture and design.

Matthias Weiss received his M.S.Sc./Dipl.-
Ing. degree in electrical engineering from
Berlin University of Technology, Germany,
and his Ph.D. degree from Dresden Univer-
sity of Technology, Germany, in 1995 and
2003, respectively. Since 1992, he has been
involved in DSP architectures and his Ph.D.
thesis discussed a framework for automat-
ing the design of digital signal processors.

http://www.eembc.com/
http://www.eembc.com/
http://focus.ti.com/pdfs/univ/01-Wireless.pdf


Vector Processing for Software-Defined Radio 2625

In 1999, he cofounded Systemonic, a fabless WLAN company,
where he headed the DSP Architecture Group and developed the
OnDSP platform, the core of the company’s WLAN baseband IC.
After the acquisition of Systemonic by Philips in 2002, he worked
in the EVP Architecture Definition Team. Since 2003, he has been
heading the ultra-wideband (UWB) baseband development. His
research interests are digital signal processing algorithms, DSP
and microprocessor architectures, and DSP design automation. He
holds the Erwin-Kirch Award, isMember of the IEEE, and authored
more than 20 papers and patents in the field of DSP processing, in-
venting the productized TVLIW compression scheme and scalable
DSP architecture OnDSP. He isManager of the System Architecture
Team in Philips Semiconductors, Dresden.


	1. INTRODUCTION
	2. HW ARCHITECTURE FOR SDR BASEBAND
	2.1. Filter stage
	2.2. Modem stage
	2.3. Codec stage
	2.4. Baseband hardware architecture

	3. VECTORIZATION OF BASEBAND KERNELS
	3.1. Golay correlator for UMTS-FDD
	3.2. Rake receiver for UMTS-FDD
	3.3. Symbol-timing estimation for 802.11a
	3.4. Fast Fourier transform
	3.5. Viterbi decoding
	3.6. SDR vector processor requirements

	4. VECTOR PROCESSORS: OnDSP AND EVP
	4.1. OnDSP
	4.2. EVP

	5. RESULTS FOR BASEBAND KERNELS
	5.1. Golay correlator for UMTS-FDD
	5.2. Rake receiver for UMTS-FDD
	5.3. Fast Fourier transform
	5.4. Viterbi and turbo decoding

	6. SDR RESULTS
	6.1. Wireless LAN
	6.2. UMTS-FDD
	6.3. Multistandard considerations

	7. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

