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This paper proposes application-specific instructions and their bit manipulation unit (BMU), which efficiently support scram-
bling, convolutional encoding, puncturing, interleaving, and bit stream multiplexing. The proposed DSP employs the BMU sup-
porting parallel shift and XOR (exclusive-OR) operations and bit insertion/extraction operations on multiple data. The proposed
architecture has been modeled by VHDL and synthesized using the SEC 0.18 µm standard cell library and the gate count of the
BMU is only about 1700 gates. Performance comparisons show that the number of clock cycles can be reduced about 40%∼80%
for scrambling, convolutional encoding, and interleaving compared with existing DSPs.
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1. INTRODUCTION

With the rapid progress of communication technologies, var-
ious communication systems have been developed, such as
xDSL (digital subscriber line), WLAN (wireless local area
network), PLC (power-line communications), DMB (digi-
tal multimedia broadcasting), and IMT-2000 (International
Mobile Telecommunications-2000). These communication
systems require large computational power and low power
consumption. Therefore, ASIC (application-specific inte-
grated circuit) solutions have been widely used to implement
these communication systems.

However, conventional ASIC chips face several limita-
tions such as lack of flexibility for various communica-
tion standards, high development costs, and slow time-to-
market. Thus, there have been strong demands to imple-
ment communication systems using programmable proces-
sors. Recently, the concept of the software defined radio
(SDR) has been promoted [1]. SDR is a flexible communi-
cation system that supports multimode and multiband us-
ing programmable processors. Thus, implementation meth-
ods are changing from ASIC solutions to DSP (digital signal

processor) -based solutions that can have advantages in
several aspects. Programmable DSPs are greatly improving
time-to-market and allowing faster changes and upgrades
than hardwired ASIC chips. Hence, the market of ASDSP
(application-specific digital signal processor) compromising
advantages of both ASIC and DSP is growing [2].

General communication systems consist of functional
blocks, such as source coding, channel coding, modulation,
synchronization, demodulation, channel decoding, and so
forth. For example, Figure 1 shows the baseband processing
of the WLAN OFDM (orthogonal frequency-division multi-
plexing) modem system [3]. The binary input data is scram-
bled and encoded by a standard rate 1/2 convolutional en-
coder. The rate may be increased to 2/3 or 3/4 by puncturing.
The output of the convolutional encoder is interleaved and
modulated. The interleaver size and modulation method are
determined by the data rate. To facilitate coherent reception,
pilot values are added, and then OFDM symbols are gener-
ated. After this step, the frequency-domain signal is trans-
formed to the time-domain signal by applying the IFFT. The
OFDM receiver basically performs the reverse operations of
the transmitter.
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Each of these functions performs the similar operations
in various standards [4]. However, it has different charac-
teristics according to the standards. Hence, a flexible DSP-
based solution is more attractive than an ASIC solution.
However, among these functions pure software implemen-
tation onto a DSP is inefficient in some applications, such as
scrambling, convolutional encoding, puncturing, interleav-
ing, and so forth. These functions are generally not multiply-
intensive functions, but bit manipulation functions. In ASIC
design, these are implemented using simple components,
such as shift registers and XOR gates. However, DSPs have
MAC (multiply-accumulate) oriented datapaths and word-
based memories. Moreover, computational complexities of
bit manipulation functions are more significant than those
of MAC-based functions as data rates increase [5]. Hence,
special hardware and instructions are necessary for bit ma-
nipulation functions.

Hardware-based application acceleration in a DSP is
widely used in recent DSPs [6, 7, 8, 9, 10, 11, 12, 13].
Moreover, recent commercial DSPs are adopting application-
specific coprocessors for channel decoding in TMS320C6416
[14], filtering in MSC8101 [15], floating point/vector arith-
metic in Xtensa [16], and so forth. This paper proposes the
application-specific instructions and their BMU (bit ma-
nipulation unit) architecture having little extra hardware,
which effectively support scrambling, convolutional encod-
ing, puncturing, interleaving, and bit stream multiplexing.
To verify the architecture, the proposed architecture has been
modeled by VHDL and simulated.

This paper is organized as follows. Section 2 analyzes key
operations of bit manipulations used in communication sys-
tems and architectures of existing DSPs for bit manipula-
tions. Section 3 describes the proposed instructions and their

hardware architectures. Section 4 presents implementation
results and performance comparisons with existing DSPs. Fi-
nally, Section 5 contains conclusions.

2. BIT MANIPULATIONS AND EXISTING
DSP ARCHITECTURES

This section analyzes bit manipulation operations used in
various communication standards, and describes architec-
tures of existing DSPs for bit manipulation operations.

2.1. Bit manipulations

Bit manipulations are operations including bit setting, clear-
ing, rearranging, and so forth. These operations are accom-
plished by bit AND, bit OR, bit XOR, shift operations, and
so forth. In communication systems, function blocks such as
scrambling, convolutional encoding, puncturing, interleav-
ing, and bit stream multiplexing use bit manipulations.

In dedicated hardware, a scrambler and a convolutional
encoder are implemented using shift registers and XOR gates.
For example, Figure 2 shows the convolutional encoder [17].
During the encoding process, each input bit passes to a shift
register and the output of the encoder is derived by combin-
ing (XOR operations) the bits in the shift register determined
by the structure of the encoder in use. Scrambling and con-
volutional encoding can be characterized by the constraint
length, the code rate, and the generator polynomial, and they
require XOR operations of the shifted data.

Next, we consider puncturing, interleaving, and bit
stream multiplexing. Puncturing is a procedure for omitting
some of the encoded bits according to the puncturing pat-
terns. Figure 3 shows a puncturing example [17]. The shaded
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blocks represent the omitted bits. Interleaving is the oper-
ation of shuffling input bits and characterized by the size
of the interleaver and an interleaving scheme. Bit stream
multiplexing is used to merge encoded data according to the
code rates in the convolutional encoder. Although the opera-
tions have regular patterns, it is not easy to implement hard-
ware which can accommodate different characteristics of var-
ious communication standards. However, bit extraction and
insertion in arbitrary bit positions are common operations
for puncturing, interleaving, and bit stream multiplexing.

2.2. Existing DSP architectures for bit manipulations

Figure 4 shows computation units of a general DSP. The
data processing unit (DPU) of general DSPs consists of an
arithmetic unit, a logical unit, and a shifter. The repetitive
shift/XOR operations can be performed using the logical unit
and the shifter. First, the data is read from the register. Next,
the shifter shifts the data 1©. Finally, the logical unit performs
XOR operations 2©. However, conventional DSPs do not sup-
port parallel shift and XOR operations on multiple data. In
addition, a bit extraction operation is performed by a shift
left followed by a shift right, and then, the field in the source
is extracted 3©. A bit insertion operation can also be per-
formed using shift, AND, or OR operations.

Figure 5 illustrates bit extraction/insertion operations of
commercial DSPs. StarCore SC140 shown in Figure 5a sup-
ports extract and insert instructions [18]. The extract in-
struction extracts a bit field from a source data register and
passes to a destination data register, right-aligned and zero-
extended. The insert instruction inserts a bit field from a
source data register into a destination data register. The bits

outside of the inserted field in the destination register are
unchanged. TI (Texas Instruments) TMS320C6x shown in
Figure 5b supports an extraction operation according to off-
sets, and shuffling/deshuffling operations of two input words
[19]. TMS320C55x shown in Figure 5c supports the expand
and extract instructions [20]. In the expand operation, ac-
cording to the bit set to “1” in the bit-field mask, the corre-
sponding 16 LSBs (least significant bits) of the source accu-
mulator bits are extracted and packed toward the LSBs. The
result is stored in the destination register. In the extract op-
eration, according to the bit set to “1” in the bit-field mask,
the 16 LSBs of the source accumulator bits are extracted and
separated with “0” toward the MSBs (most significant bits).
The result is stored in the destination register.

The conventional DSPs can carry out the bit insertion
and extraction operations according to the specific rules.
However, they cannot arbitrarily extract separate bits in the
input data nor arbitrarily insert the extracted bits in separate
positions of the output data. Therefore, many clock cycles are
required to perform a series of the shift, insertion or extrac-
tion, and OR operations.

3. PROPOSED BITMANIPULATION
INSTRUCTIONS AND THEIR HARDWARE

This section presents three instructions for the bit manipula-
tion and their hardware architecture. The proposed instruc-
tions include SCB for scrambling, CONV for convolutional
encoding, and PUNC for puncturing, interleaving, and mul-
tiplexing. Figure 6 shows the proposed bit manipulation unit
including a shift-XOR array, a bit extraction/insertion logic,
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and a bit-loadable register. Mask1 andMask2 signals are used
to control the bit manipulation unit. The number of bits of
Mask1, N , and that of Mask2, M, can be arbitrarily cho-
sen.

3.1. SCB and CONV instructions for shift-XOR array

Figure 7 shows the operations of the proposed shift-XOR ar-
ray in detail. First, it receives the input data ofM+N bits and
Mask1, and generates the N shifted data that are shifted by
1 through N bits. Next, it performs parallel XOR operations
of the input data and the N shifted data selected by Mask1.
If the Xth bit of Mask1 is set to “1,” the X-bit shifted data
is XORed with the input data. Hence, the N output data are
generated and transferred to the switching unit.

The switching network stores all or some of theN output
data on the registers according to Mask1. Mask1 is the selec-
tion signal that enables the registers to store the only valid
outputs among the N output data. The logical equations be-
low represent operations of the shift-XOR array.

Output 1 = (Mask1(1) AND 1- bit shifted input) XOR
Input,
Output 2 = (Mask1(2) AND 2- bit shifted input) XOR
Output 1,
...
Output N = (Mask1(N) AND N- bit shifted input)
XOR Output N − 1.

The following statement shows the syntax of the SCB in-
struction. Mask1 and the input data (SRC) are specified in
the instruction syntax. If the Xth bit of Mask1 is set, the X-
bit shifted input data is XORed with the original input data,
and then the Output X is stored. Depending on Mask1 val-
ues, multiple outputs can be generated. Destination registers
are selected according to Mask1 values. The symbol “�” de-
notes the shift-right operation, the symbol “&” represents
bit concatenation, and the symbol “⇐” denotes assignment.
SRC represents the source register and DST represents the
destination register.
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Syntax: SCB Mask1, SRC
Description: Registers (Maximally N , selected by Mask1)

⇐ SRC XOR (SRC � (The shift amount determined by
Mask1)).

The following statement shows the syntax of the CONV
instruction. Mask1, two input data (SRC1, SRC2), and the
destination register are specified. Two input data, SRC1 and
SRC2, are concatenated and used as an input of the shift-
XOR array. The operations are the same as the SCB instruc-
tion. However, the only Output N (last output) is stored.

Syntax: CONVMask1, SRC1, SRC2, DST
Description: DST (Register) ⇐ (SRC1 & SRC2) XOR

((SRC1 & SRC2) � (The shift amount determined by
Mask1)).

Such parallel XOR operations and the storage the results
in the register bank can be completed in a single clock cy-
cle, and various operations can be performed according to
Mask1. The larger the number of bits, N andM, is, the more
input data bits can be processed simultaneously, which en-
hances the processing speed of the bit manipulations, such
as scrambling and the convolutional encoding. Thus, various
standards can be supported.

3.2. PUNC instruction for bit extraction/insertion
logic and bit-loadable register

The bit extraction/insertion logic extracts specific bits in the
N-bit input data according to Mask1 and inserts the ex-
tracted bits in the bit positions selected by Mask2. The bit
extraction/insertion logic can arbitrarily extract separate bits

in the input data and outputs the extracted bits to arbitrary
separate bit positions in the output data. The output data
manipulated by the bit extraction/insertion logic is stored in
the bit-loadable register. The bit-loadable register has a func-
tion of receiving Mask2 and loading input data only for the
bit positions specified by Mask2.

Figure 8 shows the operation of the bit extrac-
tion/insertion logic. Mask1 carries out the function of se-
lectively extracting some bits of the input data. The input
data bits in the bit positions where the corresponding bits
in Mask1 are set to “1” are selected. Mask2 carries out the
function of designating the bit positions of the output data
for outputting the selected bits by Mask1. The least signifi-
cant selected bit is transferred to the bit position of the out-
put data corresponding to the least significant bit of the bits
in Mask2 set to “1.” The next least significant selected bit is
transferred to the bit position in the output data correspond-
ing to the next least significant bit of the bits in Mask2 set to
“1,” and so on.

The output data of the bit extraction/insertion logic is
stored in the bit-loadable register shown in Figure 9. Hence,
the bit-loadable register loads only the input data bits in the
bit positions where the corresponding bits in Mask2 are set
to “1” while retaining the previously stored data bits in the
bit positions where the corresponding bits in Mask2 are set
to “0.”

The following statement shows the syntax of the PUNC
instruction. Mask1, Mask2, and the input data (SRC) are
specified. The bits selected by Mask1 are extracted and
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inserted in the arbitrary bit positions of the bit loadable reg-
ister specified by Mask2.

Syntax: PUNCMask1, Mask2, SRC
Description: Bit-loadable register (Bit positions selected

by Mask2)⇐ SRC (Bits selected by Mask1).
The bit manipulation of selecting all or some of the in-

put data bits according to Mask1 and storing the selected bits
in the bit positions, selected by Mask2, in the bit-loadable
register can be completed in a single cycle. Thus, using such
bit manipulation steps, the operation speed for extracting
bits from several data words and combining the extracted
bits into a single data word can be remarkably improved. In
particular, the bit-loadable register removes the use of mul-
tiple OR operations for combining the extracted bits, which
increases the operation speed further. These efficient opera-
tions can be employed in puncturing, interleaving, and bit
stream multiplexing.

3.3. Operation examples of the BMU

Operation examples of the bit manipulation unit are de-
scribed below. First, scrambling can be performed using the
shift-XOR array and the bit extraction/insertion logic. In
scrambling having the constraint length K and described by
the generator polynomial of (1), a scrambling code can be
obtained by XOR operations of the (K − 1 − A)-bit shifted
input data, the A-bit shifted input data, the 2A-bit shifted in-
put data, the 3A-bit shifted input data, . . . , the nA-bit shifted
input data, where n is a natural number, and nA is smaller
than or equal to (K − 1):

g(x) = xK−1 + xA + x + 1. (1)

The data shifts and XOR operations are carried out by the
shift-XOR array. The bit positions corresponding to the shift
amounts in Mask1 are set to “1” while the other bit positions

are set to “0.” After the XOR operations, the number of valid
output data bits from each XOR operation is (K − 1-shift
amount) bits. The maximal number of valid output data is
K − 1 bits, and the valid output data from each XOR oper-
ation should be combined into a single word. Such a com-
bining task can be carried out by the bit extraction/insertion
logic.

Convolutional encoding can also be performed by the
shift-XOR array. Assuming that the generator polynomial is
described by (2), the convolutional encoding is performed
by XOR operations of the (K − 1)-bit shifted data, the A-bit
shifted data, the B-bit shifted data, the C-bit shifted data, and
the original input data. The (K − 1)th, the Ath, the Bth, and
the Cth bit positions from the least significant bit in Mask1
are set to “1” while the other bit positions are set to “0.”When
the data is encoded according to a generator polynomial, the
bit extraction/insertion logic should combine the encoded
data according to the code rate:

g(x) = xK−1 + xA + xB + xC + 1. (2)

Puncturing and interleaving, which are omitting and in-
serting some data bits in the input data word, can be per-
formed by the bit extraction/insertion logic. The bit extrac-
tion/insertion logic receives the input data, Mask1, Mask2,
and then extracts some of the input data bits according to
Mask1. The extracted bits are stored in the bit-loadable reg-
ister according to Mask2. Hence, only the valid output data
bits are stored.

4. IMPLEMENTATION RESULTS AND
PERFORMANCE COMPARISONS

Figure 10 shows the proposed DSP architecture that has
one program memory, two data memories, PCU (program
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Table 1: The result of performance comparisons.

StarCore SC140 [22] TI 62X [23] Proposed DSP

Computation units
4 shifters, 4 shifters,

BMU
4 ALUs 4 ALUs

Convolutional encoding (cycles)
463 N.A. 152

(IS-95, K = 9, R = 1/2, 192 bits)

Block interleaving (cycles)
414 N.A. 91

(16∗6 bits)
Scrambling (MIPS)

N.A. 39×106 20× 106
(802.11a, 12Mbps)

Convolutional encoding (MIPS)
N.A. 77× 106 12× 106

(802.11a, 12 Mbps)

control unit), DALU (data arithmetic & logical unit), and
two AGUs (address generation units) [21]. The DALU con-
sists of the proposed BMU, two MACs, one shifter, one ALU,
and a register file. Each of the internal word lengths is 16 bit.
The instruction pipeline consists of six stages. The proposed
architecture has been modeled by VHDL and logic synthesis
has been performed using the SEC 0.18 µm technology. The
total gate count of the ASDSP is about 80 000 gates. Themax-
imum delay is about 3.54 nanoseconds and thus, the maxi-
mum operating frequency is about 280MHz. The proposed
DSP has been verified using the iPROVE FPGA board having
Xilinx Virtex-II. Moreover, we used assembly language and a
cycle accurate simulator.

The gate count of the proposed BMU is only 1 700 (N =
8, M = 16). The critical path of the accelerator is 2.01
nanoseconds with the 0.18 µm technology.

Table 1 shows the performance comparisons between the
proposed DSP and the conventional DSPs. Even though the
conventional DSPs adopt the VLIW (very long instruction
word) architecture having four shifters and four logical units,
the proposed DSP is found to be more efficient than the

conventional DSPs for scrambling, convolutional encoding,
and interleaving.

Comparing with StarCore SC140, the proposed architec-
ture can reduce the clock cycles about 67% for convolutional
encoding, and about 78% for block interleaving. Comparing
with TI 62x, the proposed architecture can reduce the clock
cycles about 48% for scrambling, and by about 84% for con-
volutional encoding.

5. CONCLUSIONS

This paper proposed the application-specific instructions
and their bit manipulation unit, which efficiently support
scrambling, convolutional encoding, puncturing, and inter-
leaving. The proposed BMU supports the parallel shift/XOR
operations and the bit extraction/insertion. The BMU ar-
chitecture has been modeled by VHDL and synthesized us-
ing the SEC 0.18 µm standard cell library. Performance com-
parisons show that the number of clock cycles can be re-
duced about 40% ∼ 80% compared with the existing DSPs,
and the gate count of the bit manipulation unit is only



2662 EURASIP Journal on Applied Signal Processing

about 1700 gates. The proposed architecture can easily im-
plement various communication standards, and thus, it can
be utilized for the next-generation communication plat-
forms.
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