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We present our contribution to the general-purpose-processor-(GPP)-based radio.We describe a baseband software-defined radio
testbed for the physical layer of wireless LAN standards. All physical layer functions have been successfully mapped on a Pentium
4 processor that performs these functions in real time. The testbed consists of a transmitter PC with a DAC board and a receiver
PC with an ADC board. In our project, we have implemented two different types of standards on this testbed, a continuous-
phase-modulation-based standard, Bluetooth, and an OFDM-based standard, HiperLAN/2. However, our testbed can easily be
extended to other standards, because the only limitation in our testbed is the maximal channel bandwidth of 20MHz and of
course the processing capabilities of the used PC. The transmitter functions require at most 714M cycles per second and the
receiver functions need 1225M cycles per second on a Pentium 4 processor. In addition, baseband experiments have been carried
out successfully.
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1. INTRODUCTION

New wireless communications standards do not replace old
ones; instead the number of standards keeps on increasing
and by now an abundance of standards already exists; see
Table 1.Moreover there is no reason to assume that this trend
will ever stop. Therefore the software-radio concept is emerg-
ing as a potential pragmatic solution: a software implemen-
tation of the user terminal able to dynamically adapt to the
radio environment in which the terminal is located [1].

Because of the analog nature of the air interface, a soft-
ware radio will always have an analog front end. In an ideal
software radio, the analog-to-digital converter (ADC) and
the digital-to-analog converter (DAC) are positioned directly
after the antenna. Such an implementation is not feasible
due to the power that this device would consume and other
physical limitations [2, 3]. It is therefore a challenge to de-
sign a system that preserves most of the properties of the

ideal software radio while being realizable with current-day
technology. Such a system is called a software-defined radio
(SDR).

Software-defined radio has both advantages for
consumers and manufactures because current products
support only a fixed number of standards. Figure 1 shows
the lifetime of products and wireless standards. One can see
that products support a fixed number of standards and in
time new standards emerge and old ones disappear, making
a product eventually obsolete.

Software-defined radios on the other hand will enable
consumers to upgrade their radio with new functionality,
for example, required by new standards, just by software up-
dates, without the need for new hardware. Moreover, manu-
facturers can upgrade or improve functionality of consumer-
owned products and SDR could result in shorter devel-
opment time, cheaper production due to higher volumes.
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Table 1: Overview of wireless standards [16].

Standard Frequency band Modulation type

CT2 864/868MHz GFSK

CT2+ 944/948MHz GFSK

DECT 1880–1900MHz GFSK

PHS 1893–1920MHz DQPSK

2402–2480MHZ (North America)

GFSKIEEE 802.15.4 2412–2472MHz (Europe)

2483MHz (Japan)

Bluetooth

2402–2480MHz (North America and Europe)

GFSK
2447–2473MHz (Spain)

2448–2482MHz (France)

2473–2495MHz (Japan)

HomeRF

2402–2480MHz (North America and Europe)

GFSK
2447–2473MHz (Spain)

2448–2482MHz (France)

2473–2495MHz (Japan)

5150–5250MHz (USA)

IEEE 802.11a 5250–5350MHz (USA) OFDM: 2/4/16/64 QAM

5725–5825MHz (USA)

2410–2462MHz (North America)

IEEE 802.11b 2412–2472MHz (Europe) GFSK/DBPSK/DQPSK/QPSK

2483MHz (Japan)

5150–5250MHz (USA)

5250–5350MHz (USA)

5725–5825MHz (USA)

HiperLAN/2 5150–5350MHz (Europe) OFDM: 2/4/16/64 QAM

5470–5725MHz (Europe)

5725–5875MHz (Europe)

5150–5250MHz (Japan)

IS-54/IS-136

824–849MHz

CDMA: π/4 DQPSK869–894MHz

1850–1910MHz

1930–1990MHz

IS-95

824–849MHz

CDMA: QPSK/OQPSK

869–894MHz

1850–1910MHz

1930–1990MHz

1920–1980MHz (Asia only)

2110–2170MHz (Asia only)

IMT-2000/UMTS

1920–1980MHz

CDMA: QPSK2110–2170MHz

1900–1920MHz

2010–2025MHz
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Table 1: Continued.

Standard Frequency band Modulation type

GSM

824–849MHz

GMSK

869–894MHz

880–915MHz

925–960MHz

1710–1785MHz

1805–1880MHz

1850–1910MHz

1930–1990MHz

PDC

810–826MHz

π/4 DQPSK

940–956MHz

1429–1441MHz

1453–1465MHz

1477–1489MHz

1501–1513MHz

Product I Product II Product IV

Standard 1
Standard 2
Standard 3 Product VI

Standard 4

Standard 5

Product III Standard 6
Product V Standard 7

· · ·

Time

St
an
da
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s

Figure 1: Standards support by products in time.
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Figure 2: Mapping of protocols in current designs on hardware/
software.

However the downside of SDR will be power consumption
as dedicated designs are more power efficient which is very
important for mobile applications.

2. SOFTWARE-DEFINED RADIO

Figure 2 depicts the mapping in current radio designs of
the different OSI1 layers on software/hardware. The physical
layer is generally implemented in hardware and higher layers
are often software based with the logical link control (LLC)

1Open system interconnection protocol model (OSI).

and medium access control (MAC) layer as a transition area.
In our SDR project [4], we research whether the lowest layer,
the physical layer, of wireless standards can be implemented
in software running on a general-purpose processor and es-
timate the costs of such an implementation with respect
to power consumption and computational power require-
ments.

So, we interpret SDR as an implementation technology
which differs from the views in [1, 5], that is, flexible, univer-
sal, radio systems at each layer of the OSI model from which
manufacturers, network operators, and consumers can bene-
fit. Our interpretation of SDR is more focussed on the phys-
ical layer, an implementation technology, invisible for con-
sumers. Moreover we want to investigate if we can use exist-
ing processing capabilities (e.g., a notebook’s CPU) for dig-
ital signal processing purposes, thereby possibly prolonging
the lifetime of a device. This saves hardware and Moore’s law
will lower in time the computational load as a percentage of
the computational capacity.

A flexible, all-standard, radio will always consume more
energy than a dedicated radio; thus the first application for a
flexible radio; will be an application where power consump-
tion is less an issue, an example being a flexible radio in a
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Figure 3: Project scope.

notebook. This application for SDR has three advantages.
First, we can use the processing capabilities of the general-
purpose processor for digital signal processing purposes. Sec-
ond, in comparison to SDR for mobile phones, our demon-
strator can consumemuchmore power (in the order of 1W).
Third, a notebook is very suited for demonstration purposes.

Table 1 gives an overview of important wireless stan-
dards together with the used frequency bands and modula-
tion type. It seems that each standard can be seen as a fam-
ily of standards, an example being GSM. Thus the number
of existing standards that manufacturers have to support is
even larger than one would initially expect. However, there
are also similarities among them; the used frequency bands
are between 0.8 and 6GHz with dominant frequency bands
around the 0.8GHz, 2GHz, 2.4GHz, and 5GHz. In addi-
tion, three types of transceivers are used, phase modulation,
OFDM (orthogonal frequency-division multiplexing), and
CDMA (code-division multiple access) transceivers.

In our SDR project, we decided not to focus on an all-
standard radio but to start with a software-defined radio for
wireless LAN standards first. The research is carried out by
two chairs of the University of Twente: the IC-Design group
which focusses on the RF part and the Signals and Systems
group focussing on the baseband part. At the project’s start
we also defined the scope of the project: the physical layer
excluding error-correction encoding/decoding. Recent liter-
ature [6] indicates, however, that especially error-correction
decoding (Viterbi algorithm) requires most of the computa-
tional power in the lower layers of a system. Figure 3 sum-
marizes the design goal of our project, a notebook with a
wideband RF front end with a software implementation of
the physical layer.

Wireless LAN standards use phase modulation or OFDM
in the 2.4GHz or 5GHz frequency band, so we decided in
our project to combine an instance of a phase-modulation
standard (Bluetooth) with an OFDM standard (Hiper-
LAN/2). Table 2 shows some characteristics of the physical
layer of both standards. HiperLAN/2 is a high-speed wire-
less LAN (WLAN) standard using OFDM. Its physical layer is
very similar to the 802.11a standard. Bluetooth on the other
hand is a low-cost, low-speed standard, designed for replac-
ing fixed cables. Bluetooth uses continuous-phase modula-
tion, Gaussian frequency shift keying (GFSK) which is also
used by other standards such as HomeRF and DECT.

This paper discusses only the digital baseband part of
the project. More information about the total project can
be found in [7] or at the project’s website [4]. The rest of
the paper is organized as follows. First the functional archi-
tecture of the physical layer of both standards is discussed,
which is followed by a description of the testbed. This paper

concludes by presenting real-world measurements done with
the testbed.

3. SDR BASEBAND TESTBED

In the first phase of the project, we built two separate re-
ceivers [8] in order to gain knowledge. After the first phase,
we concluded that a real-time software implementation of
the physical layer functions of the transmitter and receiver
on a Pentium 4 processor was possible. Therefore we started
in the second phase of the project with a real-time software
implementation of the Bluetooth and HiperLAN/2 receiver
and transmitter.

Although we show that a real-time software implementa-
tion of the receiver (and transmitter) functionality is possible
using the notebook’s processor, it requires, besides process-
ing power, a real-time operating system. Traditional operat-
ing systems such as Windows or Linux are non-real time; for
example, the latency of the system is undefined and can be
up to 100 milliseconds for Linux [9]. So it is possible that
our receiver program misses a buffer and data is lost. How-
ever, special patches can be applied to the Linux kernel for
example, which reduces this maximal latency to about 5 mi-
croseconds [9].2 In our testbed, we use large sample buffers
of 100 milliseconds to avoid the influence of the operating
system but additional research is needed to find the maximal
allowable latency which is probably determined by the MAC
layer. Furthermore, we have to investigate if this value can be
achieved in our testbed. So at the moment, our testbed can
only be used for continuous transmission of MAC bursts.

3.1. Functional architecture

Figure 4 depicts the functional architecture of the Bluetooth
transmitter and receiver. The first step in the transmitter is to
embed the raw bits into MAC bursts which are then BPSK
modulated at 1Mbp. The BPSK symbols are filtered by a
Gaussian lowpass filter and the filtered output is connected to
VCO that translates the amplitude variation into frequency
variations. At the receiver side, the first step is to select the
wanted Bluetooth channel and suppress all others which is
performed both digitally and by the analog front end. This
is achieved by mixing the wanted channel to baseband and
applying a lowpass filter. The next step is to demodulate the
FM signal into an AM signal by taking the derivative of the
phase. Because a frequency offset introduces an offset in the
AM signal, it has to be corrected before bit decision.

On the other hand, Figure 5 depicts the HiperLAN/2
physical layer architecture which is very different from the
Bluetooth architecture one. The HiperLAN/2 transmitter
starts with mapping raw bits on BPSK, QPSK, 16-QAM, or
64-QAM symbols, depending on the used mode. In the next
step, the QAM symbols are mapped on data carriers and an
OFDM symbol is constructed by adding pilot carriers, ap-
plying an inverse FFT, and adding a prefix, which results in

2A HiperLAN/2 MAC frame has a Duration of 2 milliseconds and the
shortest Bluetooth MAC frame is 0.625-millisecond long.
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Table 2: Some physical layer characteristics of Bluetooth and HiperLAN/2.

Parameter Bluetooth HiperLAN/2

Band 2.4–2.48GHz 5.15–5.725GHz

Channel spacing 1MHz 20MHz

Modulation GFSK OFDM: BPSK/QPSK/16 QAM/64 QAM

Nominal bit rate (no FEC) 172.8–723.2 kbps 12–72Mbps
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Figure 4: Functional architecture of the Bluetooth (a) transmitter and (b) receiver (functional layer excluding error-correction encod-
ing/decoding).
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Figure 5: Functional architecture of the HiperLAN/2 (a) transmitter and (b) receiver (functional layer excluding error-correction encod-
ing/decoding).
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Figure 6: Functional architecture of the Bluetooth-enabled HiperLAN/2 receiver (functional layer excluding error-correction encod-
ing/decoding).

a 20-MSPS signal. MAC bursts are then created by adding
special symbols, preambles, to the start of the MAC burst.

The HiperLAN/2 receiver starts by searching for the start
of an MAC burst. If it is found, it estimates the frequency
offset and channel parameters. After these steps, the data
OFDM symbols can be demodulated by first correcting the
frequency offset, performing an FFT, correcting the channel,

and detecting and correcting the phase offset by using the
pilot tones. The output is QAM symbols which have to be
demapped into raw bits.

Although the functional architecture of both standards
is very different, we have successfully integrated the Blue-
tooth receiver functionality into the HiperLAN/2 receiver
[10] (Figure 6) by using a (simplified) maximum a posteriori
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Figure 7: Component architecture of the SDR testbed.
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Figure 8: (a) DAC board and (b) ADC board.

probability (MAP) receiver which is a more advanced Blue-
tooth demodulation algorithm [11]. In this testbed, however,
we did not implement this receiver (yet) but used instead a
conventional receiver such as the one depicted in Figure 4.

3.2. Testbed setup

Figure 7 shows the component architecture of our SDR
testbed. The testbed consists of four components; a trans-
mitter PC, a DAC PC board (Figure 8a), a receiver PC, and
an ADC PC board (Figure 8b).

The transmitter PC continuously generates HiperLAN/2
or Bluetooth MAC bursts which are sent in real time to the
DAC board at 20 MSPS by using an Adlink cPCI-7300 dig-
ital I/O PCI card. This DAC board converts the digital sig-
nal into a complex analog baseband signal. The ADC board
samples the analog signal with 80 MSPS and the onboard
Intersil ISL5416 programmable down-converter decimates
the digital signal into a complex 20-MSPS signal in Hiper-
LAN/2 mode and into a 5-MSPS signal (including mixing
the wanted channel to baseband) for Bluetooth. This signal is
transported to the receiver PC by using another Adlink cPCI-
7300 digital I/O PCI card. The receiver PC performs all de-
modulation functions and demodulates the MAC bursts in
real time.

At this moment in time, the analog signal of the DAC
board is directly connected to the input of the ADC board

but in the near future we will conduct RF experiments, in
which the analog transmitter signal is upconverted to the 2.4
or 5GHz frequency band. The RF signal will then be con-
nected to the analog SDR front end [7] whose output signal
is fed to the ADC board.

4. MEASUREMENTS IN THE TESTBED

4.1. User scenarios

For both standards, Bluetooth and HiperLAN/2, we derived
a user scenario to estimate and measure the computational
requirements, assuming continuous transmission. This sce-
nario can be compared with a realistic scenario that includes
the influences of the higher OSI layers on the physical layer.

4.1.1. Bluetooth user scenario

The Bluetooth symbol duration is 1 microsecond and data
is transmitted in time slots with a duration of 625 microsec-
onds [12]. For estimating computational requirements, we
assume maximal transfer rate. In this mode, Bluetooth uses
a packet which spans 5 time slots and 1 time slot is used for
uplink communication.

4.1.2. HiperLAN/2 user scenario

AHiperLAN/2MAC frame consists of 5 parts and has a max-
imal duration of 2milliseconds [13].We assume that all parts
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Table 3: Computational load of the Bluetooth receiver and transmitter functions mapped on a Pentium 4 processor.

TX function M operations/s M cycles/s RX function M operations/s M cycles/s

MAC burst generation 1 1 Integer-to-float conversion 20 88

GFSK modulation 2100 440 FM-to-AM conversion 75 261

Float-to-integer conversion 80 320 Synchronization 1 27

Frequency offset correction 1 Not implemented

Bit decision 3 33

Total 2181 714 Total 100 437

Table 4: Computational load of the HiperLAN/2 receiver and transmitter functions mapped on a Pentium 4 processor for 64-QAMmode.

TX function M operations/s M cycles/s RX function M operations/s M cycles/s

QAMmapping 38 85 Integer-to-float conversion 80 351

IFFT 230 128 Synchronization and

Float-to-integer conversion 80 215 parameter estimation 4 60

Frequency offset correction 39 120

FFT 230 318

Channel equalization 39 79

Phase offset detection and correction 40 127

64-QAM demapping 77 204

Total 348 500 Total 509 1225

have equal duration and that we have to demodulate 2 parts
(one common and one user part).

4.2. Computational power requirements

We used the user scenarios of both standards for the im-
plementation of the transmitter and receiver. This section
presents the required computational power for each function
that is mapped on the Pentium 4 processor and the number
of cycles needed by the CPU for computing the function.

4.2.1. Software

The source code of the Bluetooth and HiperLAN/2 transmit-
ter and receiver is written in C and compiled with the Intel
compiler 7.1 under Linux, using floating-point precision be-
cause floating-point operations are as fast as fixed-point op-
erations on a Pentium 4 processor. Moreover, we used the
open-source FFTW library [14] for computing the inverse
FFT and FFT. As a DAC requires fixed-point numbers, the
transmitter has to convert the floating-point numbers into
fixed point. The receiver, on the other hand, receives fixed-
point numbers from the ADCs, so it has to do the inverse
process. It was observed that these conversions take a long
time to compute and therefore special SSE instructions [15]
are used for acceleration.

4.2.2. Timemeasurementmethod

Time measurements were performed on a Pentium 4 pro-
cessor at 2.8GHz by counting the number of cycles for each
function. A Pentium 4 processor is a very complex design
and therefore the number of cycles needed for computing a

particular function is influenced by many parameters such as
cache misses, memory alignment, and so forth. It is for that
reason that we used average values in these time measure-
ments. The number of cycles required for the whole receiver
or transmitter function (total values) is measured separately
and not determined by summing up all individual compo-
nents.

4.2.3. Results
Table 3 lists, for each function of the Bluetooth transmitter
and receiver, the number of required operations (multipli-
cations, additions, etc.) and how much cycles this function
needs on a Pentium 4 processor. Especially the GFSK mod-
ulation, conversion to fixed-point numbers of the Bluetooth
transmitter, and FM to AM conversion of the receiver require
most of the cycles. In the GFSK modulation function, a 60-
tap Gaussian filter is used that requires 1000 million addi-
tions plus multiplications per second. In our implementa-
tion, we replaced this filter by lookup tables as the output
value of the filter depends on the last 4 BPSK symbols. This
optimalization reduces the amount of computations signifi-
cantly.

Table 4 shows the number of required operations and
cycles for each function of the transmitter and receiver for
HiperLAN/2.

Computational intensive parts are the conversion to
floating-point precision, FFT and 64-QAM demapping in
the receiver, and conversion to fixed-point numbers in the
transmitter. Moreover, the HiperLAN/2 transmitter requires
less computational power than the Bluetooth transmitter, al-
though more bits are transmitted by the first one. The Hiper-
LAN/2 receiver requires on the other hand more cycles per
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second than the Bluetooth receiver, but the latter one oper-
ates also at a much lower sample rate.

4.2.4. Experiments

Baseband experiments have been performed with the setup
in Figure 7. In HiperLAN/2 mode, successful transmission
and reception of continuously transmitted MAC bursts is
achieved. For Bluetooth mode, however, baseband experi-
ments still have to be carried out but we do not expect prob-
lems as HiperLAN/2 is more demanding.

5. CONCLUSIONS

This paper describes a software-defined radio testbed for
wireless LAN standards. The physical layer of the Hiper-
LAN/2 standard has been implemented in software running
real time on a normal PC and baseband experiments have
verified the system. However, literature [6] shows that for
HiperLAN/2, one of the most demanding parts is the FEC
coding and FEC decoding (e.g., Viterbi algorithm) which we
did not implement in the project. Additional research has
to be carried out if this holds also for a Pentium 4 imple-
mentation and whether this limits a GPP-based software-
defined radio. Moreover, further research focusses on in-
creasing functionality of our testbed, such as implementation
of other standards and performing RF experiments.
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