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In radio astronomy, the radio spectrum is used to detect weak emission from celestial sources. By spectral averaging, observation
noise is reduced and weak sources can be detected. However, more and more observations are polluted by man-made radio
frequency interferences (RFI). The impact of these RFIs on power spectral measurement ranges from total saturation to subtle
distortions of the data. To some extent, elimination of artefacts can be achieved by blanking polluted channels in real time. With
this aim in view, a complete real-time digital system has been implemented on a set of FPGA and DSP. The current functionalities
of the digital system have high dynamic range of 70 dB, bandwidth selection facilities ranging from 875kHz to 14 MHz, high
spectral resolution through a polyphase filter bank with up to 8192 channels with 49 152 coefficients and real-time time-frequency
blanking with a robust threshold detector. This receiver has been used to reobserve the IITWZ35 astronomical source which has

been scrambled by a strong satellite RFI for several years.
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1. INTRODUCTION

Radio astronomy, in common with many other users of the
radio spectrum, has the advantage of a few protected fre-
quency bands. However, most scientific questions find their
answers in unprotected bands where radio astronomy is
not a primary user. Moreover, even in the protected bands,

out-of-band emission regulations are not always sufficient to
prevent the pollution of astronomical primary bands. As a re-
sult, an increasing number of observations become unusable
(see Figure 1d).

In practice, the signals received from astronomical ob-
jects are considered as correlated Gaussian noise. From the
power spectral shape, some astrophysical information, such
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Ficure 1: Examples of time-frequency planes. (a) The synthesized signal of interest (SOI) is buried in the system noise, a power spectral
averaging must be done to make the SOI profile visible (solid line). (b) The same SOI with several synthesized RFIs: (i) wideband RFI, (ii)
time-frequency located RFI, (iii) continuous frequency line. The averaged power spectrum is distorted. (c) Real SOI corrupted with RFI
from a LEO. (d) Zoom on the expected power spectra of the real SOI and what is really measured: observations are not possible.

as, the existence of an astronomical object, its mass, its red
shift, and its rotation speed, are extracted. Depending on
the radio telescope sensitivity, the signal of interest (SOI)
to system noise ratio is generally around —50 dB. However,
source detection can still be done by averaging the power
spectral information over a time 7 (see Figure 1a). If any RFI
emission occurs during this averaging time, the whole power
spectral estimation is corrupted (see Figures 1b and 1c), un-
less a fine time-frequency blanking of the input signal is ap-
plied prior to the averaging. In this case, the time-frequency
slots detected as polluted are removed so that only free time-
frequency slots will be averaged.

The first point is to ensure that time-frequency slots free
from interferences still exist between corrupted ones. Recent
radio spectrum experimental surveys [1, 2] have shown that
with 1 millisecond by 1kHz time-frequency slots, efficient
discrimination of most RFIs can be achieved. However, in
some specific bands, optimal time-frequency slots may be
narrower than a few hundred Hertz or shorter than a few
microseconds (radar case). In any case, to recover these po-
tential RFI free time-frequency slots, the digital receiver must
have some kind of time and frequency agility.

Another point is that the signal of interest (SOI) can be
completely buried in the system noise. Furthermore, RFI lev-
els can have very large fluctuations due to propagation and
moving effects. For example, it is common to measure RFI
to system noise ratio varying from insignificant to more than
60 dB. However, contrary to the field of telecommunication,
this problem cannot be overcome by an automatic gain con-
trol because of its negative impact on both sensitivity and cal-
ibration issues. On one hand, the least significant bit must be
preserved throughout the processing to keep the astronomi-
cal information available and, on the other hand, a high dy-
namic range must also be achieved to prevent any saturation
due to RFL

Unfortunately, classical receivers were not designed to
operate in such conditions. First, their poor dynamic range
spreads the RFI over the whole spectrum. Secondly, the
analog filters used in such systems do not provide enough
frequency selectivity. Thirdly, their spectral resolution and
channel selectivity are often too limited to extract the free
channels from the corrupted ones. Finally, their hardware ar-
chitecture is too specific to allow additional functions, such
as RFI detection, to be implemented. With this aim in view,
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FIGURE 2: (a) The decimeter radio telescope covers the frequency band between 10 MHz and 90 MHz with two polarizations. In this band, the
sky noise is predominant, so that mainly high-level radio sources such as the Sun or Jupiter can be observed. The RFI environment is quite
nonstationary due to ionosphere effects. To achieve efficient blanking, high frequency resolution down to few hundred Hertz is needed. (b)
The decameter radio telescope covers the frequency band between 1 GHZ to 4 GHz with two polarizations. In this band, sky noise is very low.
Thus, the measured signal (if no RFI) is dominated by system noise. Depending on the RFI, different time and frequency resolutions are
needed. (c) The surveillance antenna covers the frequency band between 10 MHz to 4 GHz. An automatic RFI survey is done with a classical
spectrum analyzer, but finer spectral analysis can be done with the digital receiver presented in this paper.

a new generation of digital receivers, with “software-defined
radio” capabilities, has been recently designed [3, 4, 5, 6].
These receivers differ from one another by their specifica-
tions such as the input bandwidth, the number of bits, the
number of channels, or other more specific parameters.

In this paper, the design of a robust and multipurpose
radio astronomy receiver is presented. It has been specifi-
cally designed for the Nangay Observatory’s single-dish tele-
scopes (France). Two radio telescopes and a surveillance an-
tenna are currently connected to this receiver (cf. Figure 2).
First, the overall architecture is given in Section 2. Then, the
band selection implementation is detailed in Section 3. The
high-resolution digital filter banks are described in Section 4.
Finally, recent results of a real-time RFI detection algorithm
implemented in the receiver and applied on actual observa-
tions are shown in Section 5.

2. ROBUST RECEIVER ARCHITECTURE

Figure 3 describes the global architecture of the robust re-
ceiver (RR). It can drive simultaneously 8 signals (RF)
coming from the different radio telescopes. Each RF sig-
nal is independently downconverted to an intermediate fre-
quency (IF) of 70 MHz, providing a final usable bandwidth of
14 MHz. These 8 IF signals are simultaneously digitized and
processed by 8 banks consisting of digital modules plugged
on PCI boards (HEPC9 and HERON modules from Hunt
Engineering). Each of these banks includes a 14-bit ADC
(analog device), 1 FPGA VIRTEX II 1000 (Xilinx), 1 FPGA
VIRTEX II 3000 (Xilinx) with 256 Mb external RAM and 2
DSP TMS320C6203 (Texas Instruments). An industrial PC

is used to drive 2 banks with data exchange capabilities. The
four necessary PCs are connected via a fast Ethernet link to a
central computer for further data analysis, compression, and
storage.

To increase the observational flexibilities of the receiver,
a switch matrix has been included in the analog downcon-
verter process. Depending on its configuration, any of the 8
RF inputs can be redirected to one or more of the 8 IF bands.
In particular, several subbands (contiguous or not) from the
same RF input can be processed in several digital banks run-
ning the same or different algorithms. For example, one bank
can make a coarse analysis of the signal in order to detect
some specific event. If detection occurs, it will trigger a fine
analysis of the same signal on a second bank. Such an appli-
cation is under development at Nangay Observatory to per-
form automatic detection and storage of Jovian bursts.

The primary function of the RR is to provide high-
resolution spectral analysis. This functionality has been im-
plemented in the two FPGAs (see the following sections),
leaving DSPs still available for post-detection RFI mitigation
techniques (see an example in Section 5).

3. BAND SELECTION IMPLEMENTATION

The global process is given in Figure 4. From the 14 MHz
bandwidth of the IF, a frequency bandwidth between
14 MHz and 875 kHz is digitally downconverted to baseband.
Downconversion is performed digitally in two steps. First,
undersampling is applied with a 56 MHz sampling clock.
Then, a direct digital synthesizer (DDS) followed by succes-
sive decimation filters selects the band of interest.
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FIGURE 3: Overview of the robust receiver. The flow can be reconfigured to share the calculation power between all the banks.
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FIGURE 4: Overview of digital downconversion and band selection process. The 14 MHz usable bandwidth is centerd at 70 MHz. The an-
tialiasing filter is a saw filter, which offers a better frequency rejection (70 dB). The bandwidth is selected between 875 kHz to 14 MHz through
a set of filters Hi,i = 1,...,6. The filter characteristics are given in Table 1. The output signal is a baseband complex signal coded with 16
bits. This design fits into an FPGA, VIRTEX II 1000 (Xilinx). The system clock is 56 MHz.

The DDS is a lookup table which contains the values of
a sine wave coded with 18 bits. Two multipliers are used to
produce the real and imaginary parts of the mixed signal. The
DDS system clock is 56 MHz.

The decimation filters have been optimized both to min-
imize the logic resources and to maximize the frequency se-
lectivity. Thus, five half-band filters have been implemented
to process the bandwidth selection. Given that half of their
coefficients are null, their implementation can be resource-
efficiently achieved by polyphase realization [7]. A final selec-
tive FIR filter with 83 coefficients completes the processing.
At each filtering step, the dataflow can be decimated by two.
The aliasing is limited by an efficient filter frequency selec-
tivity which yields to a final frequency rejection of 75 dB. In
terms of hardware implementation, with a good use of half-
band properties, coefficient redundancy, polyphase struc-
tures, and resource sharing, a reduction of the hardware re-
sources required is possible (see Table 1).

Finally, only 38 multipliers are used for the whole imple-
mentation of the DDC. This design has been fitted into an
FPGA VIRTEX II 1000 (Xilinx). The input flow is 56 MHz
with 14 bits real data, and the maximum output flow is
14 MHz with 16 bits complex data. The next step is the spec-
tral analysis.

4. SPECTRAL ANALYSIS IMPLEMENTATION

The spectral analysis has two functions. The first one is
to provide spectral information on the SOI for radio as-
tronomers. The second one is to make a segmentation of
the time-frequency plane with a view of performing the best
RFI blanking. High dynamic range considerations are still
present at this stage.

In practice, given the large flow of data to be processed,
classical radio telescope receivers use correlators that coarsely
quantize spectra in time, which generally allows RFI excision
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TaBLE 1: The decimating lowpass filters. The input and output signals of each filter are coded with 16 bits. Without any design optimization,
the implementation requires 226 multipliers. With design optimizations (polyphase structures, coefficient redundancy, and resource sharing
between real and imaginary parts), only 36 multipliers are needed. Their system clock is 56 MHz.

Filter name H1 H2 H3 H4 H5 He
Type Half-band Half-band Half-band Half-band Half-band FIR
Filter order 6 6 10 10 18 82
Normalized cutoff frequency 0.5-1/128 0.5 1/64 0.5-1/32 0.5-1/16 0.5-1/8 1/4
Attenuation (dB) 119 95 100 77 81 75
Number of bits for the coefficients 6 10 11 14 17
Number of multipliers without optimization 8 8 12 12 20 166
Number of multipliers implemented 2 3 3 5 21

only in the frequency domain. Some types of RFI are much
more effectively removed from data with high time resolu-
tion so a system has been designed in which resolutions in
the time and frequency domains can be chosen to suit the
situation.

Depending on the RFI properties (see the next section),
the time-frequency resolution must be reconfigured. Two
methods have been designed for the FPGA VIRTEX II 3000
(Xilinx). In both cases, the output is a power spectrum coded
with either 32 bits or 48 bits.

For high frequency selectivity, an 8192-bin polyphase fil-
ter bank [7] can be used (see Figure 5a). The impulse re-
sponse of the lowpass filter model is 49152 samples long.
Since no overlap is needed to maximize the sensitivity of the
power spectra estimation, this filter bank is critically deci-
mated. In Figure 5b, the performances in terms of frequency
selectivity are compared with those obtained from equiva-
lent weighted FFT. With this polyphase filter bank, the max-
imum frequency resolution is 107 Hz for an 875kHz band-
width.

For high time resolution, a 64-bin weighted FFT with
50% overlap can be downloaded in the FPGA. The maximum
time resolution is then 2.29 microseconds for 14 MHz band-
width but frequency resolution is only 218.79 kHz.

For an intermediate compromise between time and fre-
quency resolution, the number of FFT bins can be extended
up to 4096 with the same design.

Moreover, a parameterized scaling factor can be applied
according to the RFI context. Indeed, the management of the
dynamic is different depending on whether the filtered sig-
nal is pure noise (i.e., RFI free) or not. For the moment, this
parameter is set by the operator, but it is planned to make it
adaptative in the future.

Besides, a preintegration of the spectra can be done inside
the FPGA. The output spectra are sent to the DSPs for disk
storage or further processing such as RFI detection.

5. EXAMPLE OF REAL-TIME ROBUST
DETECTION ALGORITHM

Various methods have been experimented to eliminate those
RFI depending on the type of interferences and the type of
instruments [8, 9, 10, 11]. The present study focuses on time-
frequency blanking on data coming from a single dish.
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F1Gurk 6: Time-frequency block blanking (At = 1, Af = 3), blank-
ing threshold S = ypo + 9 * ono.

From the power time-frequency (T-F) plane generated in
the previous processing step, we want to separate all the T-
F points corrupted by an RFI (case named H1 hypothesis)
from those which are not (case named HO hypothesis).

The simple idea, which has been implemented, is to use a
power criterion to perform this discrimination. Other crite-
ria based on cyclostationary properties are also under study
[12].

Under the HO hypothesis, the measured signal is assumed
to be an almost white Gaussian noise (i.e., the system noise is
predominant). Thus, in the T-F plane, the threshold, S, cor-
responding to a given probability of false alarm, can be easily
derived:

S =umn, +C - oy, (1)

where C is a constant depending on the required discrimi-
nation rate, yp, is the mean of the T-F distribution under
the HO hypothesis and oy, is the absolute distance of the T-F
distribution under the HO hypothesis. Absolute distance has
been preferred to standard deviation because it is more ro-
bust to RFI and its implementation does not require mul-
tipliers. Given that the estimation of yp, and oy, must use
RFI free T-F points to guarantee the HO hypothesis, robust
estimators have been implemented.

Robust estimation can be done by median filtering or by
exploiting some RFI properties. For example, if the RFI has
narrowband properties, only a few frequency bins of the T-F
plane are polluted at a given time. Besides, among these bins,
only those with high power values may alter the estimation
of pr, and o, under the HO hypothesis. Thus, by discarding
these extreme and easily detectable values, a robust estima-
tion of pp, and oy, can be computed.

This technique has been used on the decimeter radio tele-
scope at Nangay to observe the mega maser IIIZW35 that
is located in the band also used by a constellation of LEO

Relative frequency (MHz)

F1GURE 7: Time-frequency block blanking (At = 1, Af = 3), blank-
ing threshold S = pp, +4 - Ono.

(low earth orbit) telecommunication satellites. Their TDMA
and FDMA modulations lead to RFI bursts spread in time
and frequency (see Figure 1c). The source cannot be seen
with traditional receivers (see Figure 1d).

In our experiment, the robust mean and absolute dis-
tances are estimated in real time as described previously. The
number of frequency bins is 2048. A block (At, Af) of the T-
F plane is blanked as soon as one of the T-F points inside the
block exceeds the threshold. To compare the different blank-
ing schemes, two complementary criteria are evaluated:

(1) loss of data which is the volume of data blanked over
the whole volume of data,

(ii) pollution level which is the ratio between the standard
deviation after blanking and the expected standard de-
viation under HO hypothesis; perfect blanking has an
ideal pollution level equal to one.

In this paper, two kinds of block patterns are compared with
two kinds of threshold.

(i) Time-frequency block blanking (At = 1,Af = 3). The
size of this block matches the T-F location of the RFI bursts.
Figure 6 gives the result for C = 9 and Figure 7 for C = 4. The
false alarm probability corresponds, respectively, to 0.4% and
3.5%.

(i) Full spectrum blanking (At = 1,Af = 2048). The
complete spectrum is blanked as soon as one channel exceeds
the threshold. This kind of blanking can be useful when the
RFI is suspected to have sidelobes that are difficult to detect.
The counterpart is that the loss of data is considerable and
may be unacceptable when the threshold is too low. This is
the case with C = 4. Figure 8 shows the result for C = 9.

In the case of IIIZW35 polluted by these LEO satellites,
the time-frequency block blanking method with C = 4 is
a good compromise (i.e., the loss of data and the polluted
level are minimized). The choice of (At,Af)is completely
dependent on the RFI context. For example, tests on radar
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have shown that the full spectrum blanking is well suited to
suppress this kind of broadband RFIL. The choice of C de-
pends on the astronomical and scientific needs. If the ob-
served source needs precise measurements, a low threshold
must set. The sensitivity will decrease but the data will be
very clean.

The algorithm has been implemented on a fixed point
DSP TMS320C6203 (Texas Instruments). The DSP/BIOS
runs 3 tasks: reading raw spectra from the FPGA chain, han-
dling the blanking, and writing processed spectra toward the
host PC. The code was optimized to speed up the calcula-
tion. The system was configured to record 2048 bins spectra
of 7 MHz bandwidth at a rate of 584 microseconds. This time
resolution is obtained with an integration of 8 spectra done
in the FPGA before detection.

6. CONCLUSIONS

In this paper, the digital implementation of a new generation
of radio astronomical receivers has been presented. The ro-
bustness of our system towards RFI is provided by improved
linearity, higher frequency rejection, and better spectral reso-
lution compared to current receiver designs. Thus, the signal
integrity can be preserved and real-time RFI mitigation tech-
niques can be envisaged. Our system is fully reconfigurable
and can be adapted to any RFI context. With a simple but
robust algorithm, a radio astronomical source that has been
unobservable for several years has been rediscovered. Now,
the key points are the implementation of other efficient RFI
mitigation algorithms and the improvement of receiver char-
acteristics such as bandwidth. These developments are essen-
tial for the next generation of radio telescopes such as the
frequency agile solar radio telescope (FASR) or the square
kilometer array (SKA).
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