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This paper introduces some novel digital signal processing (DSP)-based approaches to some of the most fundamental tasks of
radio receivers, namely, channel equalization, carrier synchronization, and I/Q mismatch compensation. The leading principle is
to show that all these problems can be solved blindly (i.e., without training signals) by forcing the I and Q components of the
observed data as independent as possible. Blind signal separation (BSS) is then introduced as an efficient tool to carry out these
tasks, and simulation examples are used to illustrate the performance of the proposed approaches. The main application area of
the presented carrier synchronization and I/Q mismatch compensation techniques is in direct-conversion type receivers, while the
proposed channel equalization principles basically apply to any radio architecture.
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1. INTRODUCTION

In order to increase the receiver flexibility while also empha-
sizing the receiver integrability and other implementation-
related aspects, the design of radio receivers is no longer
dominated by the traditional superheterodyne architec-
ture. Instead, alternative receiver structures, like the direct-
conversion [1, 2] and low-IF [1, 3, 4] architectures, are re-
ceiving more and more interest. The analog front-end of
these types of receivers is partially based on complex or I/Q
signal processing [5, 6, 7]. More specifically, the frequency
translation from radio frequencies (RF) closer to baseband
is carried out using I/Q downconversion. Since, in theory,
the I/Q downconversion corresponds to a pure frequency
translation, the fundamental image signal problem is basi-
cally avoided during the downconversion. In this manner, the

This is an open access article distributed under the Creative Commons
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requirements for RF image rejection filtering are greatly re-
laxed in practice [1, 2, 3, 4].

The assumption of infinite image signal rejection during
the downconversion is strictly valid only if amplitudes and
phases of the analog front-end I and Q branches are per-
fectly matched [7]. In practice, this is not the case. Some
mismatch or imbalance will always exist due to imperfec-
tions of practical analog electronics. Amplitude imbalances
of 1%-5% and phase imbalances of 1-5° represent feasi-
ble design figures [1, 2, 3, 4]. This corresponds to approx-
imately 25-40 dB image signal attenuation. These levels of
image attenuation are clearly insufficient in low-IF-type re-
ceivers where the image band can carry a signal with much
higher power level than the desired signal. Some digital sig-
nal processing (DSP)-based approaches to improve this im-
age attenuation in IF receivers are presented, for example,
in [7, 8, 9, 10]. In direct-conversion receivers, the image
signal is inherently a self-image (the desired signal itself at
negative frequencies), and the analog front-end image at-
tenuation might be sufficient with low-order modulations.


mailto:mikko.e.valkama@tut.fi
mailto:markku.renfors@tut.fi
mailto:visa.koivunen@hut.fi

Blind I/Q Signal Separation in Receiver Signal Processing

2709

However, with higher-order modulations, such as 16- or
64-QAM, the distortion due to self-image cannot be ne-
glected and again some kind of compensation is needed
[11, 12, 13]. This is also one of the topics of this paper.
The idea in this paper is first to show that I/Q mismatch
causes crosstalk between the I and Q components. Then this
crosstalk or mixing of the I and Q is removed using blind
signal separation (BSS) techniques [14, 15, 16]. Compared
to the other available solutions in the literature [12, 13],
the proposed concept is especially attractive since no known
training signals are needed. Also the ability to follow possi-
ble time dependencies in the mismatch parameters (due to,
e.g., temperature changes) is another highly desirable fea-
ture.

Another challenging practical problem in radio commu-
nications is carrier synchronization [6]. In practice, it is un-
likely that the frequency and relative phase of the receiver
local oscillators exactly match those of the received carrier.
In case of linear modulations, a constant phase offset intro-
duces a constant rotation to the received constellation which
needs to be compensated unless differential phase modula-
tion is used. Even a bigger problem is caused by errors or
offsets in frequency which basically result in time-varying ro-
tation of the constellation. This is obviously unacceptable for
most modulation types and needs to be efficiently compen-
sated for. In this paper, the carrier offsets are shown to re-
sult in time-varying leakage between the I and Q, and car-
rier tracking is implemented with adaptive signal separa-
tion methods. Furthermore, when combined with the previ-
ous I/Q mismatch compensation, a single BSS stage can ac-
complish both tasks jointly in a blind manner. These kinds
of approaches have not been considered in the literature so
far.

In addition to the above front-end-related issues, the dis-
tortion due to transmission channel [6, 15] is inevitable in
any radio receiver and needs to be addressed with care. As
will be shown, a general bandpass channel can be viewed
to cause frequency-selective crosstalk between the transmit-
ted I and Q data. Based on this, convolutive mixture (or
FIR-MIMO) separation techniques working on the observed
I and Q signals are applied to implement channel equaliza-
tion.

The organization of the paper is as follows. The direct-
conversion receiver architecture is shortly reviewed in
Section 2, and the basic principles of blind signal separation
techniques are presented in Section 3. In Section 4, appropri-
ate MIMO signal models for both I/Q mismatch and carrier
offsets are derived, and a signal separation-based approach
for blindly compensating these impairments is proposed. Ex-
ample simulation results are also given to illustrate the ef-
ficiency of the proposed concepts. In Section 5, bandpass
channel distortion is shown to result in frequency-selective
1/Q signal mixing, and, stemming from this analysis, a blind
signal separation-based idea to carry out the equalization is
formulated. The feasibility of the proposed approach is again
verified by computer simulations. Finally, conclusions are
drawn in Section 6.

2. DIRECT-CONVERSION RECEIVER
2.1. Background

The fundamental tasks to be carried out in the front-end of
any communications receiver include (i) amplification of the
attenuated desired signal, (ii) downconversion of the desired
signal spectrum from around the RF carrier frequency closer
to baseband, (iii) attenuating the unwanted spectral com-
ponents appearing in the antenna signal, and (iv) synchro-
nizing the receiver local oscillators for downconversion and
sampling with the received signal. Key tasks of the baseband
digital signal processing include channel estimation, equal-
ization, and detection. In traditional receiver designs, these
tasks are implemented more or less independently of each
other, aiming at close-to-ideal operation in each signal pro-
cessing stage. This has lead to the use of the superheterodyne
receiver architecture [1, 4] in order to meet the tight RF spec-
ifications in terms of image band attenuation and nonlin-
ear effects of the receiver front-end stages. In such receivers,
the RF signal is first downconverted to a fixed intermediate
frequency (IF) where the receiver selectivity is implemented
using a fixed IF filter. The downconversion is usually done
with a simple real mixer, and the spectral components on the
image signal band need to be attenuated sufficiently by the
RF stages before the mixer. Due to the high number of dis-
crete components and high power consumption, the super-
heterodyne architecture is, however, not the most appropri-
ate choice for highly integrated implementations [1, 2, 3, 4].
Furthermore, the use of fixed discrete components in the
analog front-end limits the receiver flexibility. Thus, archi-
tectures with more simplified analog front-ends with less RF
processing are generally needed. In addition, it has recently
been demonstrated (see, e.g., [7] and the references therein;
see also [8, 9]) that various nonidealities and distortion ef-
fects due to the simplification of the analog front-end can in
general be compensated by advanced DSP techniques. This is
also the central theme in this paper.

2.2. Direct-conversion architecture

A simple way to reduce the number of components in the
receiver and alleviate the problem of receiver complexity is
to avoid the use of intermediate frequency and quadrature
downconvert the desired channel signal directly from RF to
baseband. Complete elimination of the IF stage results in
highly simplified structure, the so-called direct-conversion re-
ceiver, where most of the channel selectivity and amplifica-
tion are implemented at baseband [1, 2]. On one hand, since
most of the signal processing tasks take place at low frequen-
cies, the power consumption is minimized. On the other
hand, very low-noise operation is called for in all the remain-
ing analog components since the amplification provided by
the RF stage is only moderate. The direct-conversion receiver
concept is depicted in Figure 1.

In the direct-conversion principle, since the IF is effec-
tively zero, the image signal is actually the desired signal it-
self (at negative center frequency). Ideally, with perfect ana-
log processing, the image band is completely attenuated in
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FIGURE 1: The direct-conversion receiver architecture. The leading principle in this paper is to show that various receiver signal processing
tasks can be carried out blindly by forcing the observed I and Q signals as independent as possible using blind signal separation.

general. However, practical analog implementations of the
needed 1/Q signal processing have mismatches in the ampli-
tude and phase responses of the I and Q branches, leading
to finite attenuation of the image band signal. In the direct-
conversion case, the effect of imperfect (self-)image rejection
is seen as a linear transformation of the original signal con-
stellation [11, 12, 13]. As a result, the image attenuation re-
quirements are not extremely tight, especially if low-order
modulations are used. In effect, the 25-40 dB image atten-
uation of a practical analog front-end can be sufficient with
low-order modulations. With higher-order spectrally efficient
modulation methods, however, the distortion due to self-
image can establish an error floor and needs to be compen-
sated.

In practice, the use of zero IF introduces also some other
problems. The major drawback in direct-conversion princi-
ple is the DC offset problem [1, 2]. Due to zero IF, the local
oscillator frequency is on the same frequency as the desired
channel. Then, if the LO signal leaks into the mixer input
port, it self-mixes down to baseband causing interfering sig-
nal components at zero frequency. These are called DC off-
sets and can be orders of magnitude larger than the desired
channel signal. Besides the LO leakage, another contributor
to the offset problems is 1/f noise of the active front-end
components. For a satisfactory receiver performance, some
compensation of the DC offsets is needed. Another ana-
log RF-related problem is that higher linearity is required
because in a direct-conversion receiver, second-order inter-
modulation products may fall in the signal band (in super-
heterodynes, the weaker third-order intermodulation prod-
ucts usually set the linearity requirements). These problems
have limited the use of direct-conversion principle in prac-
tical systems earlier, but nowadays this approach is widely
utilized in mobile terminals. However, the introduction of
higher-order modulations in future wireless communication
systems sets higher demands for the receiver performance,
and the I/Q imbalance effects, for example, to be discussed
in Section 4 are likely to pose big challenges.

3. BLIND SIGNAL SEPARATION

Currently, more and more applications call for proper rep-
resentation of multivariate data. An extension of principal
component analysis (PCA) called independent component

analysis (ICA) is one good example of such techniques [16].
The ICA and its signal processing application, blind signal
separation [14, 16], is applied in this paper to communica-
tions receiver signal processing. The purpose of this chapter
is to introduce the basic concepts and notations after which
the actual applications to I/Q mismatch and carrier offset
compensation as well as to channel equalization are discussed
and analyzed in Sections 4 and 5.

Generally speaking, blind signal separation deals with the
recovery of some interesting signals, called sources, based on
observing their linear! mixtures, and falls under the umbrella
of multiple-input multiple-output (MIMO) signal process-
ing [14, 15, 16]. The term blind is used here to emphasize
the fact that no prior knowledge of the mixing process or
the temporal structure of the underlying source signals is
needed, but only the statistical properties are utilized. The
leading principle in this context is the assumption of statisti-
cal independence of the original sources [14, 15, 16]. Thus in
practice the recovery consists of forcing the separator output
signals to be “as independent as possible,” according to the
selected independence measure. Commonly used approaches
in this context are, for example, nonlinear decorrelation and
minimization of mutual information. As is obvious, the rel-
ative order of the recovered sources or the individual ampli-
tude/power levels cannot be blindly identified.

In addition to statistical independence, another key as-
sumption is that only one of the sources (if any) can be
Gaussian [14, 15, 16, 17]. This is easy to understand since
for Gaussian signals uncorrelatedness implies independence,
making it impossible to distinguish any (remaining) orthog-
onal/orthonormal transformation. Luckily most communi-
cations signals are, indeed, non-Gaussian. In the following,
M and N denote the number of observed and original source
signals, respectively.

3.1. Instantaneous or frequency-nonselective

MIMO models
Assuming the mixing process is instantaneous, the mth ob-
servation, say x,(k), is of the form x, (k) = am1s1(k) +
amas2(k) + - - - + aynsn(k), where s,(k) denotes the nth

!'Also nonlinear BSS techniques have been proposed; see, for example,
[16] and the references therein. The techniques applied in this paper are,
however, based on linear signal models.
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source signal and a,,, represents the relative weight of the
source s,(k) in the observation x,(k). Stacking the ob-
served and source signal samples at time-instant k into col-
umn vectors s(k) = [s1(k),s2(k),...,sn(k)]T and x(k) =
[x1(k), x2(k), ..., xar(k)]T, respectively, the system model can
be simply written as

x(k) = As(k), (1)

where the M X N matrix A describes the mixing process with
[Aln = am,n. In general, the matrix A is assumed unknown
but nonsingular (full rank). This is a natural assumption and
is fundamental for the identifiability of the model; see [14,
16, 17, 18] for more details.

Generally speaking, the separator processes a sequence of
the observation vectors and tries to “invert” the model in
(1). In adaptive separation, the parameters of the separator
are updated iteratively which also enables tracking the possi-
ble time-variant features of the mixture model. The separator
output at time k is commonly written as

y(k) = W(k)x(k) = W(k)As(k) = T(k)s(k), ~ (2)

where W(k) denotes the N X M separator matrix, T(k) =
W(k)A is the total equivalent system matrix (N X N), and
y(k) = [y1(k), y2(k),..., yn(k)]T. For successful separation,
T(k) should converge to a “quasi-identity” (permutation and
scaling) matrix with only one nonzero element on each of its
row and column.

Various algorithms, with varying computational com-
plexity and performance, to determine the separator coeffi-
cients exist in the literature; see [14, 16] for excellent reviews.
One exciting feature of the separation stage is the possibil-
ity for uniform performance. This being the case, the sep-
aration performance is independent of the underlying mix-
ture coefficients (i.e., the matrix A, as long as it is full rank)
and depends only on the source statistics. One such algo-
rithm with this desirable property is the so-called equivariant
adaptive separation via independence (EASI), proposed orig-
inally in [19], whose performance depends only on the cer-
tain nonlinear moments of the source signals. The EASI algo-
rithm consists formally of two subtasks; a whitening (second-
order decorrelation) part and a nonlinear decorrelation part
where the selection of the used nonlinear function depends
on the source statistics. The exact algorithm description can
be found in [19]. This algorithm is used also in this paper
in Section 4. Notice, however, that this is done only to illus-
trate the principal operation of the proposed receiver con-
cepts; thus any other adaptive separation approach could be
tested and used as well in practice.

3.2. Convolutive or frequency-selective MIMO models

A more general class of signal models is obtained if the
assumption of instantaneous mixing is dropped. In other

words, the mixing process can also contain memory and thus
be frequency selective [14, 16, 20]. A direct extension of the
model in (1) results in

x(k) = > As(k — 1) (3)
1

which represents a MIMO convolution of the sequences
{....s(k — 1),s(k),s(k + 1),...} and {...,A_1,Ap,A1,...},
with each A; being size M X N. In other words, each observa-
tion x, (k) is a convolutive mixture of the original source sig-
nals. In this case, the identifiability condition related to the
mixing process is generally formulated in terms of the corre-
sponding system (MIMO) transfer function A(z) = >, Ajz™/;
the recovery of the original source contributions is feasible if
this system transfer function has full rank [14, 16, 20].

Practical recovery of the source signals consists of multi-
channel filtering of the observed vectors and can generally be
written as

y(k) = > Wik)x(k = D), (4)
I

where the N X M separator matrices W;(k) are adapted to
minimize the predetermined dependence measure between
the components of y(k). In terms of system transfer func-
tions, the relation between the source signals and the separa-
tor output signals is of the form

T(z, k) = W(z,k)A(z), (5)

where W(z,k) is the transfer function of the separator at
time k. For successful source recovery, the total system T(z, k)
should converge to a matrix with only one non-zero element
in each row and column.

As in case of instantaneous mixtures, also here a wide va-
riety of different algorithms for separator adaptation exists
in the literature, and some of them can be claimed to have
the uniform separation performance [14, 16, 20]. One exam-
ple is the natural gradient-based approach described in [20].
This algorithm is applied also in this paper in Section 5 to the
channel equalization problem in terms of the I and Q signals.

4. BLIND 1/Q MISMATCH AND CARRIER
OFFSET COMPENSATION

In this section, the I/Q mismatch problem due to analog
front-end nonidealities as well as the carrier synchronization
task are addressed in detail for direct-conversion receivers.
The basic idea is to show that both of these practical prob-
lems can be viewed to create dependence between the ob-
served I and Q signals. Then, a signal separation algorithm
is applied to remove this dependence and thus to recover the
original I and Q data.
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4.1. Signal models and I/Q separation-based
compensation

4.1.1. 1/Q mismatch

For analysis purposes, the received RF signal, say r(t), is writ-
ten as

r(t) = Re[z(t) exp (jwct) ] ©
= z1(t) cos (wct) — zq(t) sin (wct),

where z(t) = z;(t) + jzo(t) denotes the corresponding ideal
baseband equivalent of the desired channel to be recovered
by the receiver front-end. Now, to model the amplitude and
phase mismatches of the analog front-end, the (complex) LO
signal of the I/Q downconverter is written as

x10(t) = cos (wct) — jgsin (wct + ¢)
(7)
=Kjexp (— joct) + Ky exp (joct),

_Llrgexp(=jd) o _1-gew(d) o

K 2 2

where g and ¢ represent the relative amplitude and phase
mismatches, respectively. The latter form of (7) indicates that
two frequency translations take place due to mismatches. In-
deed, the downconversion of r(t) combined with lowpass fil-
tering results in

x(t) = Kiz(t) + Kyz* (1) 9)

and the corresponding self-image ratio is
1010g10(|K1 |2/|K2 ‘2)

To examine the mismatch effect from the I and Q sig-
nal point of view, the model in (9) can be written as x(¢) =

x1(t) + jxq(t), where

rejection

x1(t) = z1(t),

10

xq(t) = gcos(P)zq(t) — gsin(P)z(t). 1o
In other words, I/Q mismatch tends to create dependence be-
tween the I and Q signals. Assuming that the original I and
Q signals are statistically independent, which holds, for ex-
ample, for square QAM type of constellations, these original
I and Q components can be recovered blindly using a signal
separation algorithm. More explicit formulation is given in
Section 4.1.3.

4.1.2. Carrier offsets

To see the explicit effect of carrier offsets more formally, the
I/Q downconverter LO signal is now written as

x10(f) = cos ((we + Aw)t+ 0) — jsin ((wc + Aw)t + 6)
=exp(— j((wc+Aw)t+0)),
(11)

where Aw and 0 model the frequency and phase offsets, re-
spectively, relative to the received signal in (6). Now, it is
common to write the downconverted signal after lowpass fil-
tering as

x(t) = z(t) exp ( — j(Awt +0)). (12)

Interestingly, when written in terms of the I and Q signals,
the model in (12) can be expressed as

x1(t) = cos(Awt + 0)z;(t) + sin(Awt + 0)zq(1),

xq(t) = cos(Awt + 0)zq(t) — sin(Awt + 0)z;(1).

Thus, from the I/Q point of view, the carrier offsets corre-
spond to time-varying mixing of the I and Q signals, and an
adaptive signal separation algorithm can be used to track and
remove this effect.

A combined signal model incorporating both the 1/Q
mismatch and the carrier offset effects is given next. Using
analysis similar to those given above, it is relatively easy to
show that observable signal after downconversion and low-
pass filtering appears as

x(t) = Kiz(t) exp ( — j(Awt + 0))
14
+ Kyz* (1) exp (j(Awt + 0)). (1)

Here it is naturally assumed that the frequency offset is
smaller than the guard band between the adjacent frequency
channels. Now, the complex signal in (14) corresponds to an
1/Q signal pair of the form

x1(t) = cos(Awt + 0)z(t) + sin(Awt + 0)zo(1),

xq(t) = gcos(Awt + 0 + ¢)zq(t) — gsin(Awt + 0 + ¢)z;(¢).
(15)

4.1.3. Joint compensation using blind
1/Q signal separation

As given in (15), the observable I and Q signals in the pres-
ence of I/Q mismatch and carrier offsets appear as instanta-
neous and time-varying mixtures of the true I and Q signals.
Switching to discrete-time notations x;(k) = x;(kTs), and
so forth, we introduce 2 X 1 source and observation vectors
s(k) = [z1(k), zq(k)]" and x(k) = [x;(k), xq(k)]T and write
the model in (15) as x(k) = A(k)s(k), where

cos(Awk + 9) sin(Awk + 0)
Alk) = [—gsin(Awk +0+¢) gcos(Awk + 6+ gb)} - (16)

Notice that the frequency offset Aw refers here to the “nor-
malized” frequency variable Aw = 27A f/fs. Now an adap-
tive signal separation algorithm, such as the EASI algorithm
discussed in Section 3, can be used to blindly estimate the
source signals z;(k) and zq (k).
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It is interesting to note that the identifiability of the model
in (16) is independent of the carrier offset levels and also
practically independent of the mismatch values. This can be
seen more formally by examining the determinant of A(k):

det (A(k)) = g cos(Awk + 6) cos(Awk + 0 + ¢)
+ gsin(Awk + 0) sin(Awk + 0+ ¢)  (17)
= gcos(¢).

Thus, the system matrix A(k) is invertible given that g # 0
and ¢ # +7/2(+90°). The first requirement (g # 0) sim-
ply states that the downconversion stage needs to produce
two non-zero signals while the second one prevents the case
where the two signals after downconversion would be just
scaled versions of each other. These are more than natural
requirements for any I/Q front-end and are always fulfilled
by any practical analog design. Thus this indicates that the
proposed idea is robust in the face of different imbalance and
offset levels in terms of identifiability.

There are some further practical issues related to the
proposed compensation scheme. First of all, as discussed in
Section 2, the direct-conversion architecture suffers from the
well-known DC offset problem [1, 2, 4] due to self-mixing
of the LO signal leaking into the mixer RF port. Most signal
separation algorithms, in turn, assume zero-mean data, so
the DC offset needs to be compensated prior to the separa-
tion stage. Another practical aspect is related to the amount
of frequency offsets tolerated. On one hand, the frequency
offset should be smaller than the guard band between ad-
jacent frequency channels. If not, the receiver is not any-
more really zero IF but closer to low IF and the nearby chan-
nel signal (or at least part of it located on the true image
band) appears as interference on top of the desired signal af-
ter downconversion. On the other hand, the frequency off-
set determines the dynamics of the system matrix A(k) in
(16), which is indeed the dynamics that the adaptive sepa-
ration algorithm needs to follow. In other words, this dy-
namics should be within the tracking capability of the ap-
plied adaptive algorithm. Commonly, this poses some limi-
tations to the used step-sizes such that a relatively large step-
size is needed. The used step-size, in turn, is usually directly
related to the separator steady-state performance and cannot,
of course, exceed its own algorithm-specific stability limit
(see, e.g., [14, 16, 19] for more details). Thus we can con-
clude that even though the frequency offset level is irrelevant
from the identifiability point of view, the tracking capabil-
ity of the practical algorithms as well as the role of the im-
age signal limit the applicability of the proposed concept to
mild frequency offset. In other words, coarse frequency syn-
chronization should be implemented by other means prior
to the separation stage. Notice also that due to the amplitude
(sign) and ordering ambiguities mentioned in Section 3, it
is possible that the recovered constellation still formally suf-
fers from (i) a constant phase rotation of (integer multiple
of) 90° and/or (ii) complex conjugation. In practice, these
issues can be easily resolved using a little side information in
the actual data detection stage. It should be noted that any

12 | | | | | | |
0 0.6 0.8 1 1.2 14 16 18 2

Time index x104

02 04

(a) Mixture coefficients.
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FIGURE 2: (a) An illustration of the dynamics of the system matrix.
(b) One realization of the separator coefficients using the EAST al-
gorithm (step-size 0.01). The I/Q mismatch values: g = 1.03 and
¢ = 3°. The carrier offset levels: 0 = 20° and Aw = 27 X 0.0001.
Additive noise SNR = 20 dB.

blind algorithm is subject to similar ambiguities in general.
As mentioned above, these ambiguities can be reduced in a
later stage of the receiver, for example, by using a minimal
number of known symbols (pilot or training symbols speci-
fied in the signaling frame structure) or by using differential
coding/mapping between bits and symbols. In general, for
modulations other than square QAM, the effects of possible
dependence between the true I and Q should be explored in-
dividually.

4.2. Simulation example

Here some example results are given to illustrate the effi-
ciency of the proposed compensation idea. In the simula-
tions, imbalance levels of 3% and 3° are used corresponding
to an approximate of 30 dB image attenuation which should
represent a typical practical case. Phase offset in the system
is assumed to be 20° and the (remaining) frequency offset
0.0001 x 27m. Given, for example, a 10 MHz sampling fre-
quency, this corresponds to 1kHz absolute frequency off-
set. The actual data modulation is 16 QAM. The model also
includes additive white Gaussian noise (AWGN) with the
signal-to-noise ratio (SNR) ranging from 0 dB to 20 dB. The
EASI algorithm discussed in Section 3 is then used as an ex-
ample algorithm in the separation stage with a step-size of
0.01 and a third-order (cubic) nonlinearity [19].

The time-varying mixture coefficients are illustrated
in Figure 2a, followed below by an example realization
of the separator coefficients in Figure2b with SNR of
20 dB. Clearly, the separation algorithm is able to track the
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RE

(b) With compensation.

FIGURE 3: Symbol rate output samples (16-QAM) (a) without and
(b) with compensation. The I/Q mismatch values: g = 1.03 and
¢ = 3°. The carrier offset levels: § = 20° and Aw = 27 x 0.0001.
Additive noise SNR = 20 dB.

time-varying mixture coefficients successfully. The corre-
sponding symbol rate output samples without and with com-
pensation are depicted in Figure 3. As is evident, the signal
without compensation is useless due to I/Q mismatch and
carrier offsets. The compensator output signal, however, is a
good estimate of the transmitted symbol constellation.

The most fundamental performance measure of any dig-
ital communication system is the bit or symbol error rate
(BER/SER). This is assessed next for the proposed compen-
sator as a function of additive noise SNR. The decisions are
made symbol by symbol using the minimum distance detec-
tion principle. The obtained results are depicted in Figure 4
which also shows the SER with additive noise only for ref-
erence. The corresponding SER without any compensation
is close to one, independently of the SNR, and is not shown
for simplicity. As is evident, the proposed compensator can
efficiently estimate the transmitted signal, bringing the error
rate close to the AWGN bound. Especially in the raw SER

Symbol error rate

SNR (dB)

—— BSS output
—— AWGN bound

FIGURE 4: Symbol error rate of the EASI algorithm-based compen-
sator for 16-QAM data. The I/Q mismatch values: g = 1.03 and
¢ = 3°. The carrier offset levels: 8 = 20° and Aw = 27 X 0.0001.
Also shown for reference is the symbol error rate with additive noise
only (AWGN bound).

levels of 107! to 1072, which is the crucial operating range of
any practical system before error-control decoding, the pro-
posed receiver is really close (within 1 dB) to the noise limit.

5. BLIND CHANNEL EQUALIZATION

In this section, the traditional channel equalization problem
is addressed from the I/Q signal processing point of view.
The leading idea is to show that a typical bandpass channel
encountered in radio communications results in frequency-
selective mixing of the input I and Q signals. Then, a con-
volutive mixture separation algorithm is applied to blindly
recover the transmitted data.

5.1. Signal models and 1/Q separation-based
blind equalization

The starting point in the following is the traditional
baseband-equivalent system model [6] commonly written as

x(k) = h(k) * z(k) + v(k), (18)

where z(k) denotes the transmitted data sequence, h(k) is
the baseband-equivalent impulse response of the true band-
pass channel, v(k) represents additive noise, and * denotes
convolution. In general, all the variables are complex valued.
The task of an equalizer is then to recover the transmitted
sequence z(k) using only the observed signal x(k) and any
available side information such as the input signal statistics.
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The model in (18) can also be written in terms of the I
and Q signals as x(k) = x;(k) + jxq(k) = (hi(k) + jhq(k)) *
(z1(k) + jzq(k)) + vi(k) + jvq(k) or

x1(k) = hy(k) x zi(k) — hq(k) * zq(k) + vi(k),

19

xq(k) = hq(k) * zi(k) + hi(k) * zq(k) + vq(k). :
In other words, x;(k) and xq(k) both appear as convolutive
mixtures of the transmitted data z;(k) and zq(k). As a result,
blind equalization can also be viewed as a blind 1/Q signal
separation task with 2 X 1 source and observation vectors
s(k) = [z1(k),zq(k)]T and x(k) = [x;(k),xq(k)]T, assum-
ing that the I and Q components of the transmitted data are
again independent. The corresponding 2 X 2 system transfer
function matrix is given by

(20)

Alz) = |:HI(Z) _HQ(Z)]’

Hq(z) Hi(2)

where Hj(z) and Hg(z) denote the z-transforms of hy(k)
and hq(k), respectively. Considering the identifiability of the
above model, the determinant of A(z) can be expressed as

det (A(z)) = H?(2) + Hé(z). (21)

Thus the model is strictly identifiable if H? (e/¢) + Hé(ef wy £
0 for all w within the bandwidth of z(k). Notice that this con-
dition is not exactly identical to |H(e/“)|? being non-zero.
Obviously, as in any other BSS task, the relative order and
amplitudes (signs) of the sources (I and Q) cannot be blindly
identified.

Based on the model in (20), also the 2 X2 separator trans-
fer matrix W(z) has only two unknown elements (polynomi-
als of z). This information can be used to simplify the separa-
tion algorithm. Assuming that the elements of W(z) are FIR
(finite impulse response) filters of order L, this reduces the
amount of unknowns from the general case of 4 X (L + 1) to
only 2 X (L + 1), and the actual adaptation algorithm, such as
the natural gradient-based algorithm discussed in Section 3,
can be simplified accordingly.

It should be noted that any equalizer filter, say w®i(k) =
wil(k) + jwaq(k), can be interpreted as a 2 X 2 separating
system

Wed(z) = Wi'e) ~Wo'(z) (22)
Wil Wi |

However, up to our knowledge, none of the blind equal-
ization techniques presented in the literature acknowledges
this fact or takes advantage of it in the design. The con-
nection in general between the blind signal separation and
blind channel equalization or deconvolution is discussed in
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Figure 5: Amplitude response of the baseband-equivalent channel
H(z) = H(2z) + jHq(z) used in the simulation.

the literature, for example, [14, 15, 16, 21], but the formu-
lation given in this paper using the I/Q separation approach
has not been considered so far. In general, the solutions re-
lating blind deconvolution and blind signal separation call
for input data with independent samples in time. Notice that
this assumption is not needed here, but the I and Q compo-
nents of the input data were assumed independent. Notice
also that the complexity of the signal model is here signifi-
cantly lower (only 2 X 2) compared to other approaches dis-
cussed in [14, 15, 16, 21].

5.2. Simulation example

Some example results of computer simulations are given next
to illustrate the efficiency of the proposed equalizer concept.
A 16-QAM data modulation with independent I and Q com-
ponents (z7(k) and zq(k)) is used, and the transmitted sig-
nal travels through an example baseband-equivalent chan-
nel whose amplitude response is depicted in Figure 5. The
“notch” in the used channel is around 13 dB below the max-
imum amplitude response level. As can easily be verified,
this channel fulfills the identifiability condition mentioned in
Section 5.1. The system also includes additive white Gaussian
noise (AWGN), with the signal-to-noise ratio (SNR) being
set to 20 dB in this experiment. The I and Q samples of the
channel distorted noisy signal (see Figure 6a) are then pro-
cessed using the natural gradient-based separation algorithm
[20] with nine-tap FIR separation filters. A third-order non-
linearity is used in the algorithm and the step-size is 0.001.
With these selections, it takes around 5000 iterations to reach
the steady state in a stationary environment.

The first two components Ty,(z) and Ti,(z) (with
Tmn(z) = [T(2)]mn) of the total equivalent system T(z) =
W(z)A(z) are depicted in the steady state in terms of their
amplitude responses in Figure 7. The other two are not
shown due to symmetry (i.e., T21(z) = —Ti.(z) and
T5,(z) = T1,(z)). Obviously, the first output y;(k) forms
a good estimate of z;(k) and the other output y, (k) of zq(k),
since the crosstalk between I and Q is around 30 dB below
the target signal level. In other words, y;(k) + jy2(k) is a
good estimate of the transmitted complex data and the chan-
nel equalization is successful. This is further illustrated in
Figure 8 in terms of the effective error norm between the
total equivalent impulse response of the equalized system
(channel + separator) and a pure impulse as a function of
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(®)

FIGURE 6: Symbol rate received samples (16-QAM) (a) without and
(b) with 1/Q signal separation-based equalization. Additive noise
SNR is 20 dB.

iteration number. As can be seen, the total impulse response
really converges to an impulse (or a delayed impulse in gen-
eral), verifying successful equalization. The symbol rate out-
put samples without and with I/Q signal separator are de-
picted in Figure 6.

Next we assess the symbol error rate (SER) performance
of the proposed equalizer, considering the given channel and
varying the SNR from 10 dB to 20 dB. For reference purposes,
the observed signal is also processed by a traditional training-
based equalizer [6, 22] whose coefficients (also a nine-tap
complex FIR filter) are adapted using the well-known least-
mean-square (LMS) algorithm [22]. The resulting symbol er-
ror rates for both equalizers are depicted in Figure 9, evidenc-
ing surprisingly similar performance from the SER point of
view. The BSS-based solution, however, does not need any
training data and thus results in increased effective user data
rates.

Generally speaking, it should be noted that the pro-
posed I/Q separation-based equalizer, as any linear equalizer,
suffers from the noise enhancement in channels with deep
notches within the signal band. This is, however, common
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FiGuURre 7: The first two components (a) T,;(z) and (b) T;,(z) of the
total equivalent system matrix T(z) = W(z)A(z) in the steady state,
the other two are not shown due to symmetry (T,;(z) = —Ti,(2)
and T,,(z) = Ty,1(2)). The separator w(z) is adapted using the nat-
ural gradient-based algorithm with step-size 0.001. Additive noise
SNR is 20 dB.

to all linear filtering-based techniques [6] and the signal
separator-based approach is no different in this sense. Notice
also that the computational complexity of any blind equal-
ization technique is naturally higher than that of the tradi-
tional training-based solutions. However, the computational
complexity of the proposed approach remains very reason-
able due to the small dimension (only 2x2) of the used signal
models, contrary to many other blind techniques reported in
the literature [14, 15, 16, 21]. To obtain faster convergence,
separation approaches exploiting the distinct properties of
individual modulation schemes, such as finite alphabet or
constant modulus, can be used and constitute an interesting
topic for future research.

5.3. General discussion

In the previous sections, the I/Q signal models describing
the effects of I/Q imbalance and carrier offsets as well as
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FIGURE 8: The error norm of the effective total equivalent impulse
response of the equalized system with respect to a pure impulse as a
function of the iteration or adaptation index. Additive noise SNR is
20dB.
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F1GURE 9: Symbol error rate of the blind I/Q signal separator-based
channel equalizer (BSS) for 16-QAM data. Also shown for reference
is the symbol error rate for a traditional training-based equalizer
utilizing the well-known least-mean-square (LMS) algorithm.

bandpass channel dispersion were derived, resulting in in-
stantaneous and convolutive I/Q mixtures, respectively. To
simplify the notations and stay focused on the fundamentals,
these two general scenarios were treated separately. Now, the
generalized signal model covering all these effects simultane-
ously can be written as

x(k) | cos(Awk + 0) sin(Awk + 0)
xo(k) | = | —gsin(Awk + 0+ ¢) gcos(Awk + 6+ ¢)

y hi(k) —hq(k) " zr(k)
hq(k)  hi(k) zo(k) | )

The observed signals x; and xq can thus be interpreted as
instantaneous mixtures of the channel filtered I and Q data.

(23)

In other words, an adaptive instantaneous signal separator
can be used to form estimates of h; * z; — hg * zq and
hq * z+hy * zq with the effect of (possible) instantaneous de-
pendence due to the “zero-delay” tap h;(0)+ jhq(0) removed.
After that, a convolutive signal separator (or any other chan-
nel equalization technique) can be used to remove the dis-
persive mixture effects. Thus, in general, the whole structure
is comprised of two parts—one accounts for instantaneous
mixing and the other for convolutive effects. Given that the
instantaneous “part” of the total mixing system in (23) is re-
ally time-varying (frequency offset), this cannot be avoided
in general, since the order of formal multiplication (x) and
convolution (%) in (23) cannot be interchanged. However,
should there be no frequency offset or it is removed by other
means beforehand, (23) can indeed be written as a single con-
volutive type mixture model. In this case, a single convolutive
1/Q separation stage can directly estimate the original I and Q
data. Notice, however, that the beautiful symmetry, discussed
in Section 5 (see, e.g., (20)), is in this case lost, increasing the
computational complexity to some extent.

6. CONCLUSIONS

In this paper, blind 1/Q signal separation-based approaches
for receiver signal processing were proposed. More specifi-
cally, the I/Q mismatches and carrier offsets as well as the lin-
ear distortion due to general bandpass channels were shown
to create crosstalk between the transmitted I and Q sig-
nals. Then compensation structures utilizing blind signal
separation were used to compensate for these effects. Also
some simulation results were given to illustrate the efficiency
of the proposed techniques. Combining the presented I/Q
mismatch and carrier offset compensation and the channel
equalizer principles into a single (or a cascade of two) I/Q
separator(s) results in a versatile receiver building block for
future radio communication systems. Future work should be
directed to further verification and prototyping of the pro-
posed approaches using measured real-world receiver front-
end signals.

Generally speaking, the idea behind this paper is to give
new views for applying complex or I/Q signal processing ef-
ficiently in radio receiver design and to take full advantage
of the rich signal structure inherent to complex-valued com-
munications signals.
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