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Spatial transmit diversity schemes are now well integrated into third-generation cellular mobile communication system specifi-
cations. When DS-CDMA-based technology is deployed in typical macro- and microcell environments, multipath diversity and
spatial diversity may be exploited simultaneously by a 2D RAKE receiver. The work presented in this paper focuses on taking ad-
vantage of spatial transmit diversity in synchronising the 2D RAKE structure. We investigate the use of coherent and noncoherent
techniques for tracking the timing parameters of each multipath component. It is shown that both noncoherent and coherent
techniques benefit from transmit diversity. Additionally the performance gap between these two techniques increases with the

number of antennas.
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1. INTRODUCTION

For direct-sequence code-division multiple-access (DS-
CDMA) communications, antenna diversity techniques have
been proposed and implemented to mitigate the effects of
multipath fading [1, 2]. One economical way of deploying
such diversity is to use multiple antennas at the base station,
and a single antenna at the mobile station [3]. With such an
architecture, uplink reception can be carried out using adap-
tive beamforming solutions. Downlink reception relies on
the transmission of distinct waveforms at the transmit anten-
nas which can then be separated at the single receive antenna.

It is well known that CDMA-based systems are able
to exploit and recombine signal components of different
delays using RAKE-style receiver structures. Recently 2-
dimensional (2D) RAKE receivers have been proposed which
are designed to exploit both delayed signal components
(time diversity) and spatial diversity simultaneously. Al-
though time diversity is exploited by the overall operation
of a 2D RAKE receiver, it is of no benefit to the delay tracking
functions which underpin its operation.

In this paper, we consider techniques for tracking the de-
lay of a received signal component when spatial transmit di-
versity is employed. Closed loop synchronization techniques
are generally used for this purpose. The most popular is
the noncoherent delay-locked loop (DLL) [4]. However, the
WCDMA (wideband CDMA) specifications provide known
pilot symbols in both link directions making the coherent
DLL a viable alternative.

The structures described in this paper are well suited to
digital implementation. All of the operations that they re-
quire are either described in terms of discrete-time signals
or have a digital equivalent which is realisable with todays
processing capabilities.

2. SYSTEM MODEL

The system under consideration uses antenna diversity at the
base station (BS) and a single antenna at the mobile station.
There are good reasons for this choice. Firstly it is more eco-
nomical [5]. Secondly it allows significant separation of the
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antennas thereby achieving good decorrelation of the chan-
nels. Finally provision has been made in the third-generation
partnership project (3GPP) specifications for this configura-
tion. 3GPP is the body responsible for the standardisation of
WCDMA, the emerging high data rate mobile telephony ser-
vice.

2.1. Transmitter

3GPP currently specifies antenna diversity with two antennas
and utilises the Alamouti space-time block code [5, 6]. The
potential capacity increase obtained by applying this tech-
nique to WCDMA in a 2D RAKE is demonstrated in [3].
Furthermore, there are draft proposals for expansion to four
antenna transmitters [7].

In WCDMA different users! are separated by different
spreading codes. Let us define dx[n] as the nth data sym-
bol of the kth user. The data symbols of each user are
applied to a block coding scheme to yield M distinct se-
quences {dx,1[n]}, {dra[n]} - - - {dim[n]} that are transmit-
ted on different antennas ({dg,,[n]} is transmitted on an-
tenna m). For analysis purposes, it is convenient to provide a
representation of the baseband signal which corresponds to
user k and is transmitted on the mth antenna. This is denoted
as

() = Zak e | & J]g(t—T) (1)

where E.x is the energy per chip of the kth user, ax[i] is
the user-specific spreading code, T. is the chip period, G
is the user’s spreading factor, and g(t) is the chip shaping
waveform. Note that in WCDMA ai[i] represents the prod-
uct of the real-valued user-specific channelisation code and
a base-station-specific complex-valued scrambling code [8].
The channelisation codes in WCDMA are orthogonal codes.
It is assumed that

ak[i],dk,m[n] c {ej”/4,ej3”/4,ej5”/4,ej7”/4} (2)
and also that the energy in g(¢) is unity.

In order to exploit transmit diversity, a receiver must be
capable of estimating the channel from each BS antenna. This
is facilitated by the common pilot channel (CPICH). To in-
troduce the CPICH into our model, we designate user in-
dex 1 as the pilot channel. Therefore, {d;1[n]} - - - {d1m([n]}
represent the pilot symbol sequences which are transmitted
on antennas 1 - - - M, respectively. In order to facilitate in-
dependent channel estimation from each antenna, the pilot
symbols are orthogonal across antennas.

The overall transmitter is shown in Figure 1. The blocks
marked g(t) are chip shaping filters. “Other users” refer to
other data and control signals which have been chipped by

IStrictly it is different UMTS (Universal Mobile Telecommunications
System) physical channels that are separated by different spreading codes;
however, we will denote them as users and reserve the word channel to refer
to the wireless propagation environment.

Other users G
di1[n] @ J/
hel ® O_> G (t)
M
dym(n] )
Scrambling
code

FiGURE 1: Baseband model of transmitter with M CPICHs trans-
mitted on M antennas.

their respective channelisation codes. The pilot channel does
not require channelisation and is spread directly by the base-
station-specific scrambling code.

The baseband signal which is transmitted on the mth an-
tenna consists of all user signals summed together as follows:

K
Gn(6) 2 D sim(t). (3)

k=1

The figure of merit commonly used in a downlink scenario
is E./Io;, where I, is the one-sided power spectral density of
the entire base station transmission:

j|cm<t>|df Zﬂck @

2.2. Channel model

The radio propagation conditions in this work are modelled
based on the following assumptions. Firstly there is no line-
of-sight component between transmitter and receiver. Sec-
ondly the mobile device is in motion through a complex scat-
tering environment which causes fading of the received sig-
nal level. Thirdly strong reflections from more distant ob-
jects are also received by the mobile station. This results in a
frequency-selective (Rayleigh) fading channel model.

The received signal can be described in terms of P resolv-
able multipath components. Each resolvable path has a fad-
ing waveform due to local scatterers. The baseband equiva-
lent received signal, 7(¢), may be expressed as

P M
r(t) = Z Z o (D (£ = Tp(1)) + n(t), (5)

where &y, (t) is the complex fading envelope of the channel
between transmit antenna m and the receive antenna via path
p. For the purpose of chip timing recovery, it is possible to
assume that the signals from all antennas through multipath
component p have the same time-varying propagation delay
of 7,(t) seconds.
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FIGURE 2: Generic delay-locked loop structure.

2.3. Receiver

The well-known RAKE receiver demodulates a number of
resolvable multipath components simultaneously and com-
bines the results coherently to improve the SNR [1, 2]. The
2D RAKE structure described in [9] employs multiple receive
antennas and a beamformer on each branch of the RAKE
structure to improve performance. In the downlink scenario
currently under consideration, only one antenna is available
at the receiver, therefore this technique cannot be applied.
However, a 2D RAKE can still be implemented by exploiting
transmit diversity on each branch of the RAKE [3, 10].

Synchronising a RAKE receiver to a multipath channel
consists of two stages. Firstly the receiver must identify and
select a set of multipath components to recombine in the
RAKE structure. This typically involves searching for paths,
or using cross-correlation techniques such as those described
in [11]. The second stage, which we address in the remainder
of this paper, is to track the delays of the multipath com-
ponents through time. These delays can vary due to move-
ment of the mobile device and changes in the environment;
therefore they must be tracked independently. This is typi-
cally achieved using delay-locked loop structures.

3. CHIP TIMING RECOVERY LOOPS

3.1. Single-antenna delay-locked loops

Figure 2 shows a generic chip timing recovery loop consist-
ing of a timing error detector (TED), a loop filter to smooth
the TED output, and a numerically controlled clock (NCC)
to control the timing of the sampling devices [12]. The or-
der of the loop is determined by the transfer function of the
loop filter [13]. Here we use a first-order loop by setting the
discrete-time transfer function of the loop filter to F(z) = 1.
The loop bandwidth is then controlled by setting the gain
term x. The performance of a timing recovery loop is ulti-
mately limited by the properties of its TED. Figure 3 shows
an example of a coherent TED for DS-CDMA [14]. A non-
coherent version is shown in Figure 4. Both TEDs operate by
despreading early and late versions of the received signal to
obtain Y*[n] and Y~ [n], respectively.

FIGURE 3: Single-antenna coherent timing error detector.

Let us assume that the DLL is tracking a path with a delay
of 7; seconds, and the current estimate of this delay is 7;. The
normalised timing error is then defined as

A (11 — fl).

- ©)

€

3.1.1. Coherent DLL

As shown in Figure 3, the coherent TED derives a measure-
ment of the timing error (denoted as e[n]) by computing the
difference between Y*[n] and Y~ [n], and then explicitly re-
moving the carrier phase offset and data modulation using
knowledge of their values obtained from other parts of the
receiver. The error signal developed by this TED may be ex-
pressed as

eln] = Re{e #d*[n](Y*[n] - Y [n])},  (7)

where ¢ is an estimate of the carrier phase. Taking the expec-
tation conditioned on the timing error €, we obtain

Efe[n] | &} = B{ Re (e /d* [n] (Y*[n] - Y"[n]))}. (8)

The carrier phase estimate ¢ is required in any case for co-
herent detection of the data. The term d[n] represents either
a data decision (i.e., in a decision-directed loop [15]) or a
known pilot symbol, depending on which physical channel
is being used to derive the timing error.

Let us now examine the statistics of the signals at the out-
put of the early and late arms of the detector. Appendix A de-
rives the statistics of a despreader output with a timing error
of ¢ chips. The early and late despreader outputs Y *[n] are
generated by intentionally introducing a timing offset of =A
chips. Therefore, based on the analysis in Appendix A, it can
be shown that the statistics of Y*[n] are

B{Y*[n] | &} = a11GiyEcRo(e = A)dy 1 [n],
_G Ve 9)

Var {Y*[n] | &} T
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FIGURE 4: Single-antenna noncoherent timing error detector.

where Vi is the effective one-sided spectral density of the all
combined interference terms. Ry(d) is the time-normalised
chip shape autocorrelation function:

Ry(8) 2 R(ST.),  R(z)2 Ji g(g(t+nde.  (10)

These equations are valid under the assumption that other
multipath components are significantly spaced from the path
being tracked by the loop.

3.1.2. Noncoherent DLL

The noncoherent loop [13] on the other hand assumes no
knowledge of the data or carrier phase and they are removed
by squaring the early and late despreader outputs, as shown
in Figure 4. This causes a reduction in the overall signal-to-
noise ratio (SNR) of the timing error measurement, an effect
known as squaring loss. The discrete-time error signal for a
noncoherent loop is
2 o2
eln] = |Y*[n]|" = | Y [n]]". (11)

3.1.3. TED comparison

Tables 1 and 2 show the final equations for the coherent and
noncoherent TED output statistics, respectively. Analysis of
the square law devices is performed in Appendix B. The non-
coherent equations are then obtained by combining (11) and
(9). For the coherent analysis, perfect carrier estimation is
assumed as well as knowledge of the data symbols. This is ac-
ceptable given that tracking utilizes the CPICH. Both anal-
yses also assume that A = 0.5 chips and that square-root
Nyquist pulse shaping is used as this guarantees statistical in-
dependence of the noise terms on the post despreader early
and late branches.

Figure 5 shows the SNRs of coherent and noncoherent
TED output signals for different timing errors. Simulation
results are plotted along with the theoretical curves obtained

TaBLE 2: Noncoherent TED statistics.

Efe | e} = |ay1I?GIE 1 [R§(e + A) — Rj(e — A)]
Var{e | e} = 2Gi[ Vi Is*12 + Vg Is712] +2Gi[(V5)? + (Vg )?]
s* = a1 GiE1Ry(e + A)

from the equations in Tables 1 and 2. As can be seen, the co-
herent detector outperforms the noncoherent detector, par-
ticularly at low SNRs. The slight discrepancies between the-
oretical and empirical results are accounted to self-noise (in-
terchip interference due to intentionally sampling too early
and too late) and imperfect channel estimation in the simu-
lations.

3.2. Exploiting spatial transmit diversity

A suggestion for noncoherent timing error detection which
combines the signals from multiple receive antennas is given
in [10]. In the present scenario, we apply this by taking
early and late measurements of multiple transmit antenna
CPICHs as they arrive at a single receive antenna. The de-
spreader output of the mth CPICH and transmitted by the
mth antenna is Y [n]. Let us define a pair of vectors which
contain the early and late correlation measurements from all
antennas:

YE 2 [YE[MYE[n] - - - Yan]]T, (12)

where M is the number of transmit antennas. In [10] a sam-
ple autocorrelation matrix ®yy [#n] of Y*[n] is computed by
temporal filtering of Y*[n]Y*[n]". The principle eigenval-
ues of @}y [n] and @y [n] are then used to compute a mea-
surement of the timing error.

In the present downlink scenario, the mobile station
must make regular timing error measurements based on the
pilot symbols for each path being tracked. This results in sig-
nificant computation to maintain an estimate of the autocor-
relation matrix and evaluate the principle eigenvalues. To re-
duce complexity and still benefit from the transmit diversity,
the following scheme is suggested.

For the noncoherent TED, we simply calculate the timing
error as

M
[n] = Y*nl|® - | Y [n]]’
e[n mZ:l{I n]|" =Y [n]]"} (13)

= [Y*[n]| = [[Y~ [n]]%

A coherent version of this structure is realised as before by ex-
plicitly removing the carrier phase and data modulation. In
the present scenario, data modulation is taken into account
during despreading in order to exploit the orthogonality of
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FiGure 5: TED output SNRs for different timing errors.

different CPICHs. In addition, as we are summing the out-
puts of multiple coherent TEDs, it is appropriate to apply
maximal ratio combining at this stage. Therefore, we arrive at
the following timing error computation for a multiantenna
coherent TED:

Mz

eln] = 2, &, {Y,[n] - Y, [n]}. (14)

m=1

Let us now find an expression for the statistics of the mul-
tiantenna coherent TED. Taking into account the reduction
in power of each antenna by a factor of M and employing
Table 1, the mth antenna TED statistics are

E,
Efen | ¢} = |aim| Gy MI [Ro(e+A) — Ro(e — A)],
E,
Var {e, | €} = Ml laim | G V.

(15)

We may assume that the noise terms are independent since
the pilot sequences are orthogonal. Summing across all
TEDs, the statistics of e[n] are

3 M
Efen | €} = G, 1\?11 [Ro(e+A) —Ro(e — A)] Z |0¢1,m|2»
m=1
E A 4
Var {e,, | €} = =2LG,V, >l
M m=1

(16)
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FIGURE 6: End-to-end simulation configuration.

The SNR at the output of the detector conditioned on the
timing error is then

[2%:1 | 1, |2]2
M 4
m=1 | X1,m |
) G1 [Ro(é‘ + A) — R0(£ — A)]
Vo

SNR(e | ¢) =

, an

Therefore, we can see that the SNR of the multiantenna tim-
ing error measurement increases with the number of anten-
nas.

4. SIMULATIONS
4.1. Setup

This section describes a set of computer simulations which
were used to evaluate the tracking jitter performance of the
delay-locked loops described in Section 3.2. These simula-
tions were configured to mimic a realistic set of downlink
scenarios compliant with the UMTS specifications.

Figure 6 shows the end-to-end simulation configuration
which is in agreement with the 3GPP open loop diversity
testing procedures set out in [16]. The base station simula-
tion was configured to yield a total output power spectral
density of I,, = 1W/Hz. The primary CPICH (P-CPICH)
power level was set to be —10dB down from the total base
station output. The remainder of the BS output was made up
of data, control, and synchronisation channels according to
[16].

Three distinct configurations were employed: 1 transmit
antenna, 2 transmit antennas, and 4 transmit antennas all
with a single receive antenna. The total BS output power
was constant across all three configurations. The signals were
passed through the multiantenna multipath channel model
with the power-delay profile shown in Figure 7.

As can be seen, the channel consisted of two multipath
components, path 1 and path 2 with propagation delays of 7,
and 1, respectively. We define the average relative power of a
path as the average power of its complex signal envelope. For
example, the average relative power of path p is

To—co 1g

Ty
Py p £ lim ,;,{L |0‘P=m(t)|2dt} Vim, (18)
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FIGURE 7: Delay-power profile of channel.

where it is assumed that the average power received through
path p from all transmit antennas is the same.

Path 1 was tracked by the coherent and noncoherent chip
timing recovery loops described in Section 3.2. The average
relative power of this path, denoted as A4, was varied over
different simulation runs in order to control the SNR. The
purpose of path 2 was only to introduce multipath interfer-
ence and it was not exploited by the receivers. Note that in
a full receiver path 2 would be tracked independently by a
separate DLL. Its average power relative to the BS output was
fixed to 0 dB.

The motivation for this setup is that a receiver must be
able to track individual paths in the presence of other paths.
Multipaths are the dominant source of interference in the
downlink as they destroy orthogonality between users. The
effect of other multipaths on a (despread) path of interest is
described by (A.9) in Appendix A.

4.2. Results

Figures 8, 9, and 10 show the measured normalised mean
square tracking jitter results of the simulations for 3 kph,
50 kph, and 120 kph fading channels, respectively. Uncorre-
lated fading waveforms were generated using the technique
described in [17].

A chip rate of 3.84 Mcps (mega chips per second) and
carrier frequency of 2.1 GHz were employed. The most ob-
vious feature of these results is the substantial performance
increase obtained in all cases by exploiting transmit antenna
diversity. This result is as expected from [18]. The perfor-
mance advantage due to an increased number of antennas
is exacerbated by slow fading. This can be explained by the
drift effect which occurs when a channel enters a deep fade
and the tracking loop is temporarily guided by the noise. In a
slow channel, the deep fades are long in duration potentially
permitting the tracking device to drift further from the max-
imum effect point. Increasing the number of transmit anten-
nas reduces the probability of deep fades thereby mitigating
the drift effect.

Another point worth noting is that the performance dif-
ference between coherent and noncoherent tracking loops
tends to increase with the number of antennas. This is be-
cause of the decreased SNR at the input to each square
law device in the noncoherent detector. From Figure 5,

1 Tx ant.

2 Tx ant.

Measured mean square tracking jitter o7
—_
=)
&

1074
0 4 Tx ant.

—12 -10 -8 -6 —4 -2 0
Agp - path attenuation (dB)

—— Coherent
-.©-- Noncoherent

FiGURE 8: DLL performance-pedestrian (3 kph fading).

it is clear that squaring loss is exacerbated with lower input
SNRs thereby reducing the performance of the overall detec-
tor.

Finally we note that the 4-antenna configuration is par-
ticularly poor for low SNRs. This can also be explained by
squaring loss in the case of the noncoherent tracking loop
and by the reduced ability to estimate the magnitude and
phase of the channel accurately in the case of the coherent
loop.

5. CONCLUSION

In this paper, we have presented coherent and noncoherent
chip timing recovery loops which use simple schemes to ex-
ploit spatial transmit diversity. The motivation is to track the
timing parameters of delayed signal components in a (single-
antenna) 2D RAKE receiver.

It has been shown that the tracking jitter of delay-locked
loops can be reduced with an increase in the number of
transmit antennas. The performance gap between the coher-
ent and noncoherent loops is also shown to increase with the
number of antennas due to increased squaring loss.

APPENDICES
A. DESPREADER OUTPUT ANALYSIS

The purpose of this appendix is to derive (9) which describe
the statistics the despreader output in the presence of syn-
chronisation errors. The received baseband signal is given by
(5) and for the case of a single transmit antenna becomes

P
r(t) = Z ap1 G (t—1p) + n(2).

p=1

(A1)
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FIGURE 9: DLL performance-vehicular (50 kph fading).

Let us assume that the RAKE arm of interest is demodulat-
ing path p = 1 and 7, is an estimate of the this path’s delay.
Passing r(t) through a matched filter then sampling produces
the chip rate sequence z[i]:

2[i] = J gt —iT, — 7)r(Hdt. (A2)
As part of the despreading process z[i] is multiplied by the
complex conjugate of the spreading code to obtain

ylil £ z[ila*[i]. (A.3)

It is useful to decompose y[i] into its constituent compo-
nents. These are

(1) the desired signal;

(2) interference due to synchronisation errors;
(3) interference from other multipaths;

(4) background noise.

It can be shown that, under the assumption that the mul-
tipaths are not closely spaced, only the desired signal con-
tributes to the mean of y[i]; the other components con-
tribute only to its variance.

A.1. Desired signal component

In order to determine the desired component, we separate
the path of interest from the summation in (A.1) and substi-
tute (3):

K

r(t) = ang Y sii(t— 1)

k=1

(path or interest)
» (A.4)
+ Z ap 1 (t = 1p) +n(t).

p=2

Measured mean square tracking jitter o7

Agp - path attenuation (dB)

—8— Coherent
--0-- Noncoherent

FiGure 10: DLL performance-vehicular (120 kph fading).

The component of z[i] corresponding to the path of interest
is

(A.5)

K
DS \/E,kzxk,l[i]Ro(j —i+e),
k=1 j

where xj., [1] S [{]dk,m[Li/Gk1]. This is derived by substi-
tuting (1) and (3) into (A.4) and then applying the combined
filtering and sampling operation defined in (A.2) to only the
path of interest. Ry(8) is defined in (10).

The desired signal component, which we will denote as
yalil, is found by considering only the user of interest (k = 1)
in (A.5) multiplied by a; [i]:

yali] = a1,1\/Ecu dHGLkHRO(S)' (A.6)

A.2. Interference due to synchronisation errors

Although orthogonal codes are used to separate users, in the
presence of synchronisation errors the user of interest effec-
tively experiences interchip interference (ICI) from all users.
This component is

K
yicilil = aiy > Eex X af [ilxa [j1Ro(j — i +€). (A7)

k=1 i

Using the properties of the spreading codes described in [13],
we find that the variance of the real and imaginary parts of
yicli] is

loy 121 .
Oicy = Y = z R3(j +e).
j#0

(A.8)
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A.3. Multipath interference

The variance of y[i] due to other multipath components is
bounded by

I

% lap |, (A.9)

M~

2
Ompr =
2

p

A.4. Background noise

Under the assumption that the background noise is addi-
tive white Gaussian with a two-sided noise spectral density
of Ny/2, it is easily shown that the variance contribution of
background noise to the variance of y[i] is

No

> (A.10)

2 _
OB =

A.5. Despreader output

Finally the despreader output is found by summing y[i] over
the Gy chips corresponding to each symbol:

Gin+Gg—1
Y2 > ylil (A.11)
i=Ggn
The mean is found from (A.6) to be
E{Y[n]} = o1, GiEcRo(e)d[n).  (A12)
Combining (A.8), (A.9), and (A.10), we obtain
oy < Gr(oicy + onpr + 07y)
Gy Vo (A.13)
==

The effective one-sided spectral density of the combined in-
terference terms is

V() é Z(UIZCI + O‘I%/[PI + O’é[). (A.14)

B. COMPLEX SQUARING LOSS

Consider the scenario of Figure 11 where s is a complex
random variable with constant amplitude and a random
phase. The observation of s (denoted as z) is perturbed by
a complex-valued Gaussian noise term 7, which has the fol-
lowing statistical properties:

E{n} =0, (B.1)
E{|n|?} = N,. '
Note that n is complex-valued, therefore
2 2 No
E{Re’*(n)} = E{Im*(n)} = 5 (B.2)

n - QObservation of s
1
| |
1
O\ z v 2
s + . y
U B

F1GURE 11: Squaring a noisy complex signal.

The power of the observation is then measured by taking
the square of its magnitude to obtain y = |z|?, and filtering
the result. We will now evaluate the first- and second-order
statistics of y.

The observation and its magnitude squared are defined,
respectively, as

z25+mn,
. (B.3)
y £ Iz|? = |s|* + 2Re(sn) + |n|*.

Since Re(sn) is clearly zero mean, the expected value of y is

E{y} = E{lIsI?} + E{2Re(sn)} + E{|n|?}
(B.4)
= |S‘2+N().

The expected value of y? is calculated as follows:

E{y’} = E{(Isl2 + 2Re(sn) + |n|2)2}
= 4E{Re*(sn)} + 2E{|s|?|n|?} + E{|n|* | }

+E{[s|*} +4E{|s|?Re(sn)} + 4E{|n|* Re(sn)}.
(B.5)
The fourth-order noise term in (B.5) is

E{|n|*} = E{Re*(n)} + E{Im*(n)} + 2E{ Re*(n) Im*(n)},
(B.6)

which may be expressed in terms of second-order statistics
[18] as follows:

2
E{Re*(n)} = E{Im"(n)} = 3(%) :
2E{Re () In ()} = 28 R Ef 1)} = 20, 57

E{In|*} = 2NZ.

The expectations of the first and third power noise terms are
zero. In addition,

E{Re?(sn)} = E{Re’(s) Re*(n)}
— 2E{ Re(s) Re(n) Im(s) Im(n)}
+E{Im?(s) Im?(n)}

No

5

(B.8)

= |s|?
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Therefore, (B.5) reduces to

E{y?} = [s|* +4|s|’No + 2Ng. (B.9)

From (B.4),

E2{y} = |s|* + 2[s|*No + N&. (B.10)

Finally the variance of y can be evaluated from (B.4) and
(B.9). The statistics of the square law output device are

E{y} = Is|* + No,

B.11
Var{y} = 2|s|*Ny + Ng. ( )
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