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Amethod is proposed for filling in missing areas of degraded images through explicit structure reconstruction, followed by texture
synthesis. The structure being reconstructed represents meaningful edges from the image, which are traced inside the artefact. The
structure reconstruction step relies on different properties of the edges touching the artefact and of the areas between them, in
order to sketch the missing edges within the artefact area. The texture synthesis step is based on Markov random fields and is
constrained by the traced edges in order to preserve both the shape and the appearance of the various regions in the image. The
novelty of our contribution concerns constraining the texture synthesis, which proves to give results superior to the original texture
synthesis alone, or to the smoothness-preserving structure-based restoration.
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1. INTRODUCTION

This paper addresses the problem of image restoration in
situations where areas of the image are completely missing.
This type of information loss takes place in old photographs,
films, drawings, paintings, and so forth [1, 2, 3]. The problem
of information loss does not affect old media only. Even the
most recent types of media are affected by similar problems.
Packet losses during the transmission of streaming digital
video (especially live broadcasts, or other broadcasts where
no retransmission is possible) result in corrupted image ar-
eas, or even the complete loss of one or more consecutive
frames [4]. The visual appearance of these errors can be quite
disturbing.

The work presented here was carried out in the con-
text of archived film restoration. Film restoration is usually

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

performed by means of temporal or spatiotemporal algo-
rithms. However, when pathological motion occurs (i.e.,
when the objects in the image are difficult to track), the tem-
poral restoration algorithms fail due to inaccurate motion
vectors. Several solutions have been proposed [5, 6, 7], which
discard the temporal information when pathological motion
is detected, since this type of information is unreliable. This
paper continues the aforementioned restoration efforts and
represents a solution that also uses only spatial information
during the restoration.

In spatial restoration, the missing image information
has to be recovered using the remaining valid portions of
the image. The approaches taken so far for solving the
problem at hand can basically be classified into two cate-
gories: smoothness-preserving algorithms and texture syn-
thesis ones.

The algorithms belonging to the first category range from
simple isophote connection [8] to PDE-based or variational
inpainting models using isophotes, gradients, curvatures,
[9, 10, 11, 12, 13, 14, 15, 16, 17] normalized convolution [18],
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or inpainting guided by explicitly sketched edges [7, 19, 20,
21]. Although the term “inpainting” was mostly used in as-
sociation with the aforementioned PDE-based or variational
methods, in the following we will use the terms “inpainting,”
“restoration,” and “interpolation” interchangeably.

The second category comprises a number of different ap-
proaches for texture synthesis. The algorithms presented in
[5, 22, 23] are nonparametric and are based on Markov ran-
dom fields (MRF), while the algorithm presented in [24] is
parametric and is based on a Bayesian, 2D autoregressive
model. The approach presented in [25] uses partial differ-
ential equations and Gabor filters, and in [26], spatial and
frequency information is combined in a framework of pro-
jection onto convex sets.

Smoothness-preserving algorithms are good at recon-
structing piecewise flat (or relatively flat) areas, but they do
not reconstruct texture satisfactorily. On the other hand, the
texture synthesis methods tend to neglect the image struc-
ture. While the appearance of the restored texture may be
pleasant, the object edges suffer sometimes deformations
that may be visually disturbing. To overcome these draw-
backs, some first algorithms for hybrid structure and texture
interpolation are reported in [27, 28, 29, 30], in which var-
ious approaches for combined structure and texture inter-
polation are used. The approach presented in [27] by Rane
et al. classifies complete 8 × 8 artefact blocks either as flat
or texture areas, based on their surrounding uncorrupted
blocks. The blocks classified as flat areas are restored using
the smoothness-preserving inpainting method described in
[12], while the textured blocks are restored using the tex-
ture synthesis algorithm described in [22]. In [28], Bertalmio
et al. approach the problem differently by decomposing the
image into two completely overlapping images of the same
size, one with no texture, and one containing only texture,
whose sum represents the original image. These are then
restored in parallel, using the same aforementioned algo-
rithms for inpainting and texture synthesis, and then com-
bined back into one image by simply adding them up. In
[29, 30], Jia and Tang describe a novel technique based on
tensors. Here, edge structure is first reconstructed, followed
by texture synthesis. Both steps use adaptive tensor vot-
ing.

All the aforementioned combining approaches have ad-
vantages and disadvantages. While the first one benefits from
the distinction between different parts of the image, it is
hampered by the fact that the structure/texture separation
is done on a block basis. The second one benefits from the
power of handling smooth texture changes (especially shad-
ings), but it may fail when the structures (i.e., the prominent
edges) resulting from the two parallel interpolations are dif-
ferent. The third approach benefits from the power of tensor-
based texture reconstruction, but the edge pairing approach
is rather basic.

We have opted in our approach for a hybrid, structure
and texture restoration, in which different areas of the arte-
fact are restored independently by means of texture synthe-
sis. The structure reconstruction part of the algorithm is
based on the one we proposed in [7], while for the texture

restoration part we use a modified version of the algorithm
described in [5]. The advantage of the new approach over
these two methods lies in the fact that the algorithm de-
scribed in [7] cannot handle textural contents, while the al-
gorithm described in [5] does not preserve edge smoothness
generally and cannot handle overlapped structures. The pro-
posed method is able to reproduce texture, while preserving
the smoothness of object edges, and has the ability to deal
with crossing structures, if needed.

In the algorithm that we propose, we separate different
areas of the artefact and interpolate them independently, so
we do not run the risk of “double edges,” as in [28]. More-
over, our approach is superior to the one presented in [27]
because it explicitly constructs the image skeleton (i.e., the
object edges) and then uses it to constrain the texture restora-
tion in a precise manner during the reconstruction step. The
constrained texture synthesis approach is preferable to a sim-
ple one, since the latter does not use superior knowledge
for preserving the object boundaries, thus being prone to
“spilling texture” over the edges. Our method also has the
advantage that it is not confined to square artefacts, and it is
actually able to adaptively split them into smaller pieces, ac-
cording to the recovered structure. The algorithmwe propose
also benefits from an edge connection scheme which is more
elaborate than the one used in [29, 30], being thus capable of
recovering more complex structures.

1.1. Algorithm overview

The spatial restoration algorithm that we propose consists of
three main steps, depicted in Figure 1:

(1) segmentation and feature extraction;

(2) structure reconstruction;

(3) texture synthesis.

The input to our algorithm is an image and an artefact
mask.1 Without loss of generality, in the remainder of this
paper we consider that the mask consists of only one arte-
fact. The general assumption that we make is that there is
enough redundant information in the input image, outside
the artefact, which allows us to restore what is missing inside
it.

In the first step (Section 2), a simple segmentation takes
place which separates areas with distinct properties. Ideally,
this results in a separate mask for each object. The second
step of the algorithm (Section 3) builds the structure of the
image inside the artefact. Hereto, we try to reconstruct the
missing object boundaries inside the artefact (see the dashed
lines in Figure 1(d)) as continuations of the object bound-
aries from outside the artefact. The outer boundaries sep-
arate the areas segmented in the first step. Finally, in the
third step (Section 4), the reconstructed structure is used to
guide a texture synthesis procedure which fills in the arte-
fact area. Here, a key aspect of our method contributes to its
strength. Namely, the sampling neighborhood for a certain

1We assume that the artefact mask is detected by another algorithm.
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Figure 1: General algorithm outline (left) and an illustration of the inputs/outputs for each stage (right). (a) Algorithm steps; (b) artefact
mask; (c) detected object mask and extracted boundaries (thick arrows); (d) reconstructed structure inside the artefact (dashed lines); (e)
restored artefact using constrained texture synthesis.
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Figure 2: Objects lying close to the artefact may influence the fea-
ture values.

(reconstructed) area inside the artefact is taken only from ar-
eas around the artefact that are belonging to the same object
mask.

2. SEGMENTATION AND EXTRACTION
OF OBJECT EDGE FEATURES

The segmentation procedure is an essential step which al-
lows us to identify distinct areas around the artefact. We have
used the segmentation algorithm described in [31]. Ideally,
we should be able to distinguish between all objects within
an image. This is, however, not a trivial task, and no current
algorithm is able to output a segmentation mask which is
very similar to the ground truth (i.e., a manually segmented
image), except in some restricted contexts. This is a limita-
tion we have assumed for our current experiments. In the

following, we consider that the segmentation mask we get is
accurate enough.

Once the segmentation is performed, the edges which
separate different objects are extracted. In addition, for ev-
ery area between consecutive edges, a number of character-
istic features are computed. These features will help us later
to identify pairs of edges with similar properties (e.g., pairs
E1−E4 and E2−E3 in Figure 2). These pairs of edges originate
from the same object border, after a part of it was occluded
by the artefact. The segments are considered up to a certain
distance from the artefact (20 pixels in our case), forming a
belt around the artefact.

The features that describe the segments are the intensity
histogram, measured on the original image intensity, as well
as the gradient angle histogram (in radians) within these seg-
ments, measured on the image gradient. The gradient angle
histogram shows the dominant gradients and is calculated
from the angle of each gradient vector, as shown in Figure 3.
The angle interval [0, . . . , 2π] is divided into N “pie slices,”
corresponding to the N bins of the histogram. Each gradient
vector contributes with one unit to the bin that corresponds
to its angle. Since each gradient vector contributes with only
one unit to the histogram, the gradient magnitude informa-
tion is discarded, making the histogram insensitive to con-
trast changes. One needs to pay attention to the value ofN . If
N is too small, the bins are too coarse, covering a wide angle
range and giving rise later to false histogram matches. If N
is too big, the histograms may become sparse, giving rise to
false histogram mismatches. In our experiments, N was cho-
sen to be 100. However, one should adapt this number to the
situation at hand, since histogram sparsity may also arise if
N is too big with respect to the numbers of pixels belonging
to the segments.
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Figure 3: The gradient angle histogram is calculated from the gradient vectors. The angle interval [0, . . . , 2π] is divided into N “pie slices,”
and each gradient vector contributes with one unit to the bin corresponding to its angle.

The feature that describes the likelihood that two object
edges belong to the same object boundary is calculated by
measuring how well they fit the same circle. We rely here on
the observation that most object edges have a rather constant
curvature, locally.

The extracted histograms may get disturbed by various
factors. For example, if an object was missed during the seg-
mentation process and lies close to the artefact (such as ob-
ject 4 in Figure 2), then the histogram of the corresponding
segment (e.g., the upper part of object 2) may display sig-
nificant perturbations, resulting later on in histogram mis-
matches. Other examples of feature perturbations include
the presence of shading along an object, the bending of tex-
tured objects (which affects the gradient angle histograms),
and so forth. In all these cases, those parts of the segments
(from the same objects) which lie close to the artefact will
have histograms more similar to each other than those parts
which lie further away from the artefact. For this reason, we
calculated weighted histograms, instead of normal ones. As
such, a pixel contributes to a histogram bin with a quantity
given by a Gaussian weight proportional with the distance to
the closest artefact point (the standard deviation used is the
belt width). In the end, the weighted histograms are normal-
ized by the sum of the histogram bins. All these operations
are applied in order to reduce histogram discrepancies be-
tween similar segments with different numbers of pixels and
to avoid the influence of noninformative areas.

At this point it is important to mention that we do not
work with segments in our structure reconstruction step—
rather, with the edges which separate them. Accordingly, each
edge will be described by five features: four individual fea-
tures and a shared one. The individual features are the his-
tograms of the intensity and gradient angles, on both the
right and left sides of the edge. The fifth, shared feature, is
the shape fitting cost.

Additionally, there is a sixth feature, sequentiality, which
is not calculated only for edges (or edge pairs). Rather, it is
calculated for the entire configuration of edge connections.
For every potential configuration that we tentatively con-
struct, this feature will measure the degree to which the edge

connections in the configuration at hand lie in consecutive
order.Alternatively, it may be seen as the degree to which the
edge connections do not cross each other. Since this feature
is only computed after pairs of edges have been connected to
each other, it will be described later in this paper.

3. IMAGE STRUCTURE RECONSTRUCTION

The structure reconstruction step is crucial to our proposed
restoration scheme, since the explicit image structure that is
recovered represents the “skeleton” of the restoration pro-
cess. The input to this step represents a list of edges coming
into the artefact, in clockwise order. The output of this step
will be a list of edge couples arranged in groups of couples,
and a list of spare edges. An edge couple is composed of two
edges that are considered to represent the same object bor-
der. These two edges will be connected in order to recover
the object border inside the artefact. A group of couples is a
collection of edge couples which lie in strict consecutive or-
der, that is, they do not cross each other, and no edge from a
couple that does not belong to the current group lies between
two couples of this group. The groups will be formed after
the edge couples are constructed. The spare edges are edges
for which there was no other edge that could be matched.
Hence, it is assumed that a spare edge represents a T-junction
(e.g., the upper right edge in Figure 1(d)) or a fading edge (an
edge that gradually dissolves).

The procedure for reconstructing the image structure in-
side the artefact is based upon our approach presented in [7].
However, in the current approach, the feature description of
the edges (in particular the histogram features) is different.
We briefly describe here the procedure and the cost functions
involved, but more details can be found in [7].

The basic idea is that we build several particular config-
urations (edge couples, groups, and spare edges), test how
well they match the measured features, and then select the
one which scores the best. The overall cost ccfg of a particu-
lar configuration is computed from the five features shared
by the two edges within each edge couple (ccpl), and from
the additional feature characterizing a global property of
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Figure 4: Contribution of the sequentiality parameter. (a) Configuration given preference by the sequentiality parameter; (b) configuration
penalized by the sequentiality parameter.

the configuration (cseq):

ccfg(Z) = 5× ccpl(Z) + cseq(Z)
6

, (1)

where Z represents the configuration of (groups of) edge
couples. cseq is the cost associated with the sequentiality
feature, defined later in this section. The cost ccpl is defined
in (2) and expresses how well the two edges in every couple
match each other, that is, how smoothly they can be contin-
ued into each other, and how similar are the regions they sep-
arate. All aforementioned costs (ccfg, ccpl and cseq) have values
between 0 and 1, with 0 indicating a perfect match and 1 in-
dicating a complete mismatch. ccpl contributes with 5/6 of
the final configuration score ccfg because it is computed from
5 features. For the same reason, cseq contributes with 1/6 of
ccfg.

The couple-related cost is calculated as follows:

ccpl(Z) =
∑
i

√√√√√βCi
(
χλ,Ci + χ

γ,C
i

)
+ βAi

(
χλ,Ai + χ

γ,A
i

)
+ ω2

i

2∗ βCi + 2∗ βAi + 1
, (2)

where χi is the mean square error (MSE) operation applied
on the difference of the histograms belonging to the two
edges in edge couple qi. This histogram difference is a simple
one-to-one subtraction of the arrays holding the histograms.
Since all histograms are normalized to sum up to 1, the χi’s
always return values between 0 and 1. Each χi is calculated for
a certain feature (λ for the histogram of intensities, and γ for
the histogram of gradient angles) and on a certain side of the
edge (C for the clockwise side, and A for the anticlockwise
side, these sides being considered with respect to only one of
the two edges in the couple). If the next edge on a certain
side of a couple is a spare edge (see Figure 1), or if it belongs
to an edge couple which intersects the current couple (see
Figure 4), then the shared features on that side of the current

couple become irrelevant. For this reason, we have used the
binary flags βi ∈ {0, 1} to switch off cost contributions of the
respective features, when needed.

ωi is the cost of fitting a certain shape to both edges of
couple qi and returns values between 0 and 1.We have chosen
to fit circles because we assume that object boundaries have
constant curvature, locally. ωi is computed based on three
measurements: the spatial deviation of the edge pixels from
the fitted circle; the angular proximity of the points where
the two edges touch the artefact (computed with respect to
the center of the fitted circle); and a formula that checks the
spatial order of edge pixels, making sure that the two edges
stretch in opposite directions with respect to the artefact (see
[7] for more details).

In both formulas from (1) and (2) we combined the fea-
ture costs through addition rather than multiplication for
several reasons. First of all, in case of multiplication, a fea-
ture cost that is close to zero would cancel the contribu-
tion of all other feature costs. This is not a desirable be-
havior, since these feature costs cannot describe any possi-
ble edge configuration. Rather, they are chosen to describe
configurations that are encountered most often. In case of a
valid configuration that is not properly modeled by one of
our feature costs, the final cost should not be influenced too
much by the faulty feature cost. Even when the edge config-
uration is properly modeled by the chosen features, the cost
calculations may have imperfections (e.g., due to faulty seg-
mentation masks). As such, some costs may again get lower
than normal, which could strongly influence the final con-
figuration score if multiplication was used instead of addi-
tion.

The sequentiality cost cseq tries to measure a special prop-
erty of object edges around the artefacts. Namely, for each
edge that touches an artefact on one side, there is usually a
second edge on the other side, belonging to the same object.
Moreover, consecutive objects (i.e., object margins) which
are occluded by the same artefact give rise to consecutive,
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(1) Calculate ccpl for all possible edge pairs with (2) by setting all β flags to 1 (at this point we do not know which edges are spare
ones).
(2) Eliminate from further consideration those couples whose costs ccpl are too big.
(3) FOR each subset of couples from the remaining ones, and FOR each couple from the current subset, build potential

Z j in a greedy fashion:
(a) Start a new group with the current couple.
(b) Incrementally add neighboring couples to the group, on both sides of the initial couple, until one reaches

a couple that intersects any couple from the current group.
(c) Start another group with the intersecting couple and add again neighboring couples from the remaining ones.
(d) Repeat the above steps until no more couples are left.
(e) All remaining edges are considered spare edges.

(4) Choose the configuration with the minimal cost: Z = Zk , k = argmin j ccfg(Z j) (the β flags are now enabled according to
the existing spare edges).

Pseudocode 1: Pseudocode for the structure reconstruction procedure.

nonoverlapping edge couples (see Figure 4a). cseq returns a
cost of 0 when amaximumnumber of couples is formed with
a minimum number of groups (i.e., one group), and a grad-
ually increasing cost for less “sequential” configurations. The
sequentiality feature is a very useful property of the edges
around artefacts, since it is extremely robust against noisy
data.

It is worth pointing out that the sequentiality parameter
does not forbid a configuration containing crossing edges—
rather, it penalizes it. If the evidence coming from the other
features strongly indicates a crossing, the edge couples are
formed accordingly (resulting in a configuration such as the
one in Figure 4b).

Three problems arise when determining the sequential-
ity of a configuration. First, we must find a way to express
it as a number. Secondly, despite the fact that it is used
to calculate the configuration cost, we can measure it only
after the configuration of edge couples has been formed.
Thirdly, the sequentiality does not represent a measurement
of each edge couple alone—rather, it is a measurement of the
complete configuration, which is an ensemble of edge cou-
ples.

The sequentiality of a configuration Z was defined as fol-
lows:

cseq(Z) =




1−
∑NG

i=1
(∥∥Gi

∥∥− 1
)

⌊
NE/2

⌋− 1
,
⌊
NE

2

⌋
≥ 2,

NG∑
i=1

∥∥Gi

∥∥ ≥ 1,

0,
⌊
NE

2

⌋
= 1,

NG∑
i=1

∥∥Gi

∥∥ = 1,

1, otherwise,

(3)

where Gi, i = 1, . . . ,NG, are the groups of edge couples in
configuration Z, ‖Gi‖ is the number of edge couples in group
Gi, and �NE/2� represents the maximum number of edge
couples that can be achieved out of the NE edges detected
around the artefact.

The algorithm for building the final configuration of
groups of edge couples is described in Pseudocode 1. The

computational complexity of this structure reconstruction
step is (in a worst-case scenario) O(2n × n3), since, in step
3 from the pseudocode, trying every subset from the se-
lected edges is O(2n), then building a different configura-
tion starting from every edge is O(n), and building every
single configuration is O(n2) (adding couples to the cur-
rent group is O(n), and the step of checking couple cross-
ing for each newly added couple is also O(n), assuming that
the amount of couples in the current subset is O(n)). Al-
though the complexity of this step may seem high at first
glance, in reality, however, the computational demands can
be reduced drastically. We severely eliminate unlikely edge
couples right from the beginning. As a result, only a frac-
tion of the possible couples are left for each edge, in gen-
eral. This reduces the search space for making subsets of cou-
ples and for checking couple crossing. Additionally, it is not
necessary to check all crossings. We stop at the first crossing
that is found. Finally, one should limit the maximal num-
ber of initial edges (to about 15) because generally only the
main structure within the artefact area needs to be recon-
structed.

To reconstruct the missing structure, all edge couples are
traced inside the artefact according to the circle fitted to the
couple. Finally, the spare edges are continued as straight lines
within the artefact area (possibly stopping into an already re-
constructed object boundary inside the artefact). Spare edges
are traced as straight lines because circle fitting proved to be
much less reliable for single edges, as opposed to edge cou-
ples. All contiguous areas lying between consecutive sketched
edges, inside and outside the artefact, are distinctly labeled,
resulting in disjoint masks of objects.

In the case where we have more groups of edge couples
(i.e., crossing edge couples as in Figure 4b), each group is
reconstructed separately. We have to assume, however, that
one group lies in front of the others. Since the information
extracted so far provides no guidelines as to which one is
in the front and which one in the background, this choice
is made arbitrarily. Only groups consisting of a single edge
couple (e.g., a horizon line) are “pushed” to the background,
since their reconstruction in the foreground may obliterate
all other groups.
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Artefact

Pixel to be interpolated and its neighborhood

Search area

Sampling pixel and its neighborhood

Figure 5: Search for candidates during texture synthesis.

Figure 6: Key idea for the constrained texture synthesis: the artefact
pixels are interpolated based only on pixels from the same object
mask.

4. TEXTURAL INPAINTING

4.1. Texture synthesis

The structure reconstruction step builds only a virtual sketch
of the missing areas. The process of filling these areas must
take care that object appearance inside the artefact area is
the same as outside it. This will be achieved by means of
texture synthesis, constrained by the current edge configu-
ration.

We have chosen to apply the texture reconstruction al-
gorithm of Bornard et al. presented in [5], modified as
described in Section 4.2. This algorithm is able to recon-
struct both regular and irregular textures. It stems from Efros
and Leung’s algorithm for texture reconstruction [22]. In
contrast to Efros and Leung’s algorithm, the algorithm of
Bornard et al. is based on nonstationary Markov random
fields (MRF) and imposes coherence constraints on the tex-
ture interpolation.

Artefact

Forbidden
areas

Pixel to be interpolated and its neighborhood

Search area

Sampling pixel and its neighborhood

Figure 7: Texture interpolation near the object edges. Preference
will be implicitly given for the sampling pixels lying next to the same
edge (e.g., the top candidate).

The underlying statistical model of the algorithm as-
sumes that each pixel’s probability distribution function
(PDF) is independent of the rest of the image. The neigh-
borhood of the pixel is assumed—for the time being—to be a
square window centered around the pixel whichmust be syn-
thesized. The algorithm is nonparametric in the sense that
the PDF is not imposed, nor constructed explicitly. Rather,
it is approximated from a sample region of the image which
has the same size as the aforementioned pixel neighborhood.
It should be large enough to capture the texture characteris-
tics, but not too large, or else we run the danger of falling out
of the textured area.

The algorithm goes as follows. For each artefact pixel, a
search is started in an area around that pixel (we used a search
area size of 41 × 41 pixels in our experiments) in order to
find valid pixels (nonartefact pixels, or pixels which were al-
ready interpolated) whose neighborhoods are similar enough
to the neighborhood of the current artefact pixel (our choice
for neighborhood size was again 41×41 pixels). Out of the set
of candidates that were found, one is randomly drawn and its
value is pasted into the current artefact pixel (see Figure 5).
When computing the neighborhood similarity, the L2 norm
is used. Since pixels in the closer vicinity are more relevant
than pixels lying further away, Gaussian weights are imposed
upon calculating the norm. The artefact pixels that have not
been synthesized yet and happen to lie in the neighborhood
windows are not taken into account for the norm calcula-
tion.

The aforementioned nonstationarity of the MRF is mod-
eled by using an adaptive window size [5], rather than a fixed
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(a) (b) (c)

(d) (e) (f)

Figure 8: Comparison between different types of restoration (all images are zoom-ins on the artefact area, except the first one). (a) Original
image with artefact overlay; (b) original artefact contents; (c) structure reconstructed in the proposed method; (d) texture-only restoration;
(e) smooth restoration based on edges; (f) proposed method.

size (as used in Efros and Leung’s approach [22]). Whenever
there are less than a given number of valid pixels in the neigh-
borhood of the artefact pixel (1500 pixels in our case), the
neighborhood is enlarged until we have the requested num-
ber of pixels. As such, each pixel can have different condi-
tional PDFs.

A second improvement introduced by Bornard et al.
[5] speeds up the algorithm considerably without sacrific-
ing the quality of the restoration. For this purpose, it im-
poses coherence constraints on the candidate search. If an
artefact pixel to be synthesized has one or more neighbors
that have already been synthesized, then the candidates used
for restoring these neighbors are also used to generate can-
didates for the current pixel. Namely, the shifts between the
current pixel and the previously synthesized neighbors are
used to shift their respective candidates in order to gener-
ate the replacement candidates for the current pixel. From
the generated candidates whose scores stay above a cer-
tain threshold, the best scoring one is selected for restor-
ing the current pixel. If no shifted candidate has a score
above the chosen threshold, a complete search is initiated
as previously described. It should be noted that the coher-
ence constraint can only be imposed after pixels from the
outermost layer of the artefact have been already synthe-
sized.

4.2. Integration of structure and
texture reconstruction

The mask created in the structure reconstruction step con-
sists of distinctly labeled areas, corresponding to different ob-
jects (see Figure 1(e)). Each object’s mask consists of a part
lying inside the artefact, and one lying outside it, namely,
in the belt area (see Figure 2; for simplicity reasons we will
not represent the belt in the following figures). We disre-
gard those parts of the masks lying farther away than the belt.
Since the texture of an area inside the artefact should resem-
ble the texture of the same object outside the artefact, we can
use the computed masks to constrain the texture synthesis
scheme of Bornard et al. such that the sampling step takes
place only in the belt area covered by the same object mask
(see Figure 6).

Nevertheless, when computing the difference between
the neighborhood of a pixel inside the artefact and the neigh-
borhood of a pixel from the corresponding belt subset, the
neighborhood window is allowed to fall outside the current
object mask. In practice, for artefact pixels lying along object
edges (especially straight edges), this gives priority to candi-
date pixels lying along the same edge, effectively reconstruct-
ing the effect of transition between two objects in an image
(see Figure 7).
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(a) (b) (c) (d) (e) (f)

Figure 9: Comparison between different types of restoration (all images are zoom-ins on the artefact area, except the first one). (a) Original
image with artefact overlay; (b) original artefact contents; (c) texture-only restoration; (d) smooth restoration based on edges; (e) proposed
method; (f) structure reconstructed in the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 10: Comparison between different types of restoration (all images are zoom-ins on the artefact area, except the first one). (a) Original
image with artefact overlay; (b) original artefact contents; (c) structure reconstructed in the proposed method; (d) texture-only restoration;
(e) smooth restoration based on edges; (f) proposed method.

5. EXPERIMENTS AND RESULTS

This section describes the performance of our proposed
restoration algorithm. In Figures 8, 9, 10, 11, 12, 13, and
14 we demonstrate it by some visual examples of restoration
based on the current algorithm, compared to the algorithms
from [5, 7]. All images have a size of 512× 512 pixels, except
the image from Figure 14, which has a size of 200×200 pixels.

In general, the structure-based algorithm from [7] was
affected by the failure of the edge detection in the textured ar-
eas and by the smooth interpolation approach used therein.
At times, the edge detection failure manifested itself not only
as missed edges, but also as supplementary, fake edges, as
was the case in Figure 8e. On its turn, the texture-based al-
gorithm from [5] was not able to accurately render the ob-
ject edges. Only the combined approachmanaged to preserve



Constrained Texture Restoration 2767

(a) (b) (c)

(d) (e) (f)

Figure 11: Comparison between different types of restoration (all images are zoom-ins on the artefact area, except the first one). (a) Original
image with artefact overlay; (b) original artefact contents; (c) structure reconstructed in the proposed method; (d) texture-only restoration;
(e) smooth restoration based on edges; (f) proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 12: Comparison between different types of restoration (all images are zoom-ins on the artefact area, except the first one). (a) Original
image with artefact overlay; (b) original artefact contents; (c) structure reconstructed in the proposed method; (d) texture-only restoration;
(e) smooth restoration based on edges; (f) proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 13: Comparison between different types of restoration (all images are zoom-ins on the artefact area, except the first one). (a) Original
image with artefact overlay; (b) original artefact contents; (c) structure reconstructed in the proposed method; (d) texture-only restoration;
(e) smooth restoration based on edges; (f) proposed method.

both object borders and their texture (see Figures 8, 9, 10, 11,
12, and 13).

It is interesting to note that the two main reconstruction
steps, the structure reconstruction and the texture synthe-
sis, generally help each other, resulting in better restoration
results than each of the steps separately. As such, a wrong
texture interpolation (which tends to give irregular object
borders) is “straightened” by the structure within which it
must fit. Conversely, errors which take place sometimes in
the structure reconstruction step may get corrected by the
texture restoration algorithm, as shown in Figures 10 and 11.

As opposed to the texture synthesis approach, the pro-
posed method is able to handle situations where overlapping
structures are involved. This is the case in Figure 14, where
two grey bars cross each other. The texture synthesis algo-
rithm could only reconstruct one of the bars, while the other
one looks “interrupted,” since the reconstruction of the first
one brought along some neighborhood color (the black
background). The proposed method correctly reconstructed
the overlapped bars. One can clearly see in Figure 14e that
two groups of edge couples were formed that cross each
other.

6. DISCUSSION AND CONCLUSIONS

We have presented here a restoration algorithm which com-
bines structure reconstruction and texture synthesis. Both

algorithms make use of spatial information only. Based on
edge information coming from an object segmentation pro-
cess, the structure reconstruction step recovers the structure
of the image (the object borders) inside the artefact. The tex-
ture reconstruction step is then used to paint in the missing
areas of the objects with their respective textures.

One of the main advantages of our method (over the tex-
ture synthesis method alone) is that the nonstationarity of
the MRF is modeled not only by using an adaptive window
size. It is actually modeled by the various object masks the
texture restoration process is confined to. In this way, the
actual sampling windows are shaped by the object masks,
thus getting more accurate conditional PDFs for each pixel.
Of course, questions may be raised about the dependence
on the object segmentation results. Indeed, at times, this
may influence negatively the structure reconstruction step.
In our opinion, however, an object segmentation is certainly
preferable to a grid-like segmentation into square blocks that
would be independent of the image content, followed by a
“blind” texture synthesis that would sample indiscriminately
from the entire neighborhood, as is the case in [27].

Despite the fact that the segmentation used is among the
best available ones, the current state of the art in object seg-
mentation is still far from perfect. Many relevant edges are
still missed, and nonexistent ones get erroneously detected.
Although the texture synthesis process helps in recovering
from some of these cases, both types of errors may still affect
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(a) (b) (c)

(d) (e)

Figure 14: Example of crossing structures. (a) Original image with artefact overlay; (b) original image contents; (c) texture-only restoration;
(d) proposed method; (e) structure reconstructed in the proposed method.

the results negatively. Nevertheless, our proposed restoration
algorithm showed its superiority even in such far from ideal
conditions.

The same holds for the texture synthesis algorithm.While
the one we used is among the top ones, it may go (partially)
wrong at times. For example, it does not handle shadings
smoothly. When the opposite sides of an artefact belong to
the same object and differ in intensity, a sudden luminosity
change can be seen in the middle of the restored artefact area,
where the iteratively synthesized sides meet each other. Im-
posing continuity constraints on the low frequency contents
within each object mask will help overcome these problems.

The work presented here can be improved in several
ways. One of these is by assigning local certainties to the
object segmentation masks (and consequently to the lo-
cally extracted features). These certainties could then be
used to avoid building structure in areas with low-certainty
features or to trigger a process for improving the segmenta-
tion masks.

The structure reconstruction step can be enhanced by
a thorougher analysis of the shapes of the extracted edges
and their coupling. For example, having a measure of the
smoothness of transition between adjacent objects can con-
tribute more information to the process of making edge cou-
ples.

One of the implicit assumptions made in this paper is
that the artefact masks do not have holes. Indeed, the over-
whelming majority of artefacts from old films do not have

holes. When they do have them, a few solutions could be
applied. The simplest one is to consider that the artefact
does not have holes, restore it in the way presented in our
paper, and then paste the original content of the artefact
holes back into the image (thus overriding a part of the
restoration result). This, of course, neglects the structure
that may be present inside the artefact holes, which might
help in guiding the structure reconstruction process. In some
cases, the information present in the artefact holes may even
be used to decide which group gets painted in the fore-
ground. Another solution would be to split the artefact mask
conveniently such that no resulting submask contains any
holes, and then proceed with the normal restoration algo-
rithm.

Currently, in case several groups have been formed, the
order of inpainting is arbitrary, except for the groups consist-
ing of one edge couple, which are pushed to the background.
More clues may actually be used to decide the inpainting or-
der. If depth information is available (e.g., from range sen-
sors, or from the analysis of the object motion in neighboring
frames of an image sequence), this would help in establishing
the right inpainting order.

When tracing the object boundaries inside the artefacts,
we made simple assumptions about their shapes, consider-
ing them to have constant curvature locally (i.e., being ei-
ther circular or straight). These assumptions do not hold
in all cases. However, it would be very hard and even haz-
ardous to try to detect more complex shapes. The largest
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radical improvement of object boundary reconstruction can
take place in the context of temporal restoration of image se-
quences. Here, tracking an object along several frames can
give us precious information about the actual object shape.

The results of the algorithm we present here are very
promising. They indicate that the current algorithm inher-
its the strengths of the two algorithms it combines, while
avoiding (some of) their weaknesses. The algorithm’s main
strength comes from the fact that the structure reconstruc-
tion and the texture synthesis algorithms help each other to
achieve better results. As such, the constrained texture syn-
thesis that we propose shows robustness against errors of the
modules upon which it is built.

ACKNOWLEDGMENTS

This work was partly funded by the EU’s IST research and
technological development program. Portions of it were
carried out within the Brava project (Broadcast Archives
Restoration Through Video Analysis) [32]. We would like
to thank the project partners from INA (Institut National
de L’Audiovisuel), Paris, France, namely, Raphaël Bornard,
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