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We propose a novel probabilistic framework that combines information acquired from different facial features for robust face
recognition. The features used are the entire face, the edginess image of the face, and the eyes. In the training stage, individual
feature spaces are constructed using principal component analysis (PCA) and Fisher’s linear discriminant (FLD). By using the
distance-in-feature-space (DIFS) values of the training images, the distributions of the DIFS values in each feature space are
computed. For a given image, the distributions of the DIFS values yield confidence weights for the three facial features extracted
from the image. The final score is computed using a probabilistic fusion criterion and the match with the highest score is used
to establish the identity of a person. A new preprocessing scheme for illumination compensation is also advocated. The proposed
fusion approach is more reliable than a recognition system which uses only one feature, trained individually. The method is
validated on different face datasets, including the FERET database.
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space.

1. INTRODUCTION

Automatic face recognition is a challenging problem in com-
puter vision. Computers that recognize faces can be ap-
plied to a wide variety of problems such as information
mining from face databases, security systems, and human-
computer interactions [1]. Existing face recognitionmethod-
ologies may be broadly classified into two categories, holis-
tic and analytic [2]. Here, we refer to some well-known
works in both categories. The survey is by no means ex-
haustive. Holistic approaches consider global properties of
the face. The eigenface-based face recognition system pro-
posed by Turk and Pentland [3] uses principal component
analysis (PCA) to compute linear projections of face images
to arrive at a compact representation. The method has good
recognition rate but is sensitive to variations in facial expres-
sions and ambient illumination. For higher discriminability,
Fisher’s linear discriminant (FLD) analysis in conjunction
with PCA has been proposed in the literature [4, 5]. Elas-
tic graph matching for face recognition is yet another pop-
ular approach [6]. It uses a novel dynamic-link architecture

based on multiscale morphological dilation and erosion for
authentication of frontal images. The idea is to weight the
graph nodes according to their discriminating power. Duc et
al. [7] propose automatic weighting of nodes by employing
local discriminants. In analytic approaches, a set of geomet-
rical features acquired from a face are used for recognition.
Brunelli and Poggio [8] have proposed template matching
for face recognition. Wu and Huang [1] have developed a
recognition analysis based on feature vectors extracted from
profiles. A face profile is first reduced to outline curves, and
then a number of fiducial marks are extracted and used for
recognition. Recognition systems that combine holistic and
analytic approaches are known to be more reliable. In re-
cent years, multimodal identification techniques have been
receiving a lot of attention. The idea is to integrate different
biometric cues such as face, fingerprint, speech, and more
recently gait [9, 10, 11, 12] for improving overall recognition
performance.

In this paper, we propose a novel probabilistic scheme
for fusing different facial features for robust face recogni-
tion. Facial features when considered along with the entire
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Table 1: Filter coefficients for a typical 1D Gaussian filter and dif-
ferential operator.

1D Gaussian filter Differential operator

0.0001 0.0005

0.044 0.0133

0.054 0.1080

0.242 0.2420

0.3989 0.0

0.242 −0.2420
0.054 −0.1080
0.044 −0.0133
0.0001 −0.0005

face image provide cues for better discrimination [8, 13]. Our
main contribution is in formulating a mathematical frame-
work to integrate the information coming from multiple fa-
cial features. The three facial features that we consider are the
entire face (i.e., the gray-level image of the face), the edgi-
ness image of the face [14, 15], and the eyes. The edginess
image is robust to variations in illumination while the eyes
are robust to facial expressions and occlusions. We use prin-
cipal component analysis (PCA) [3, 16] in conjunction with
Fisher’s Linear Discriminant (FLD) [4, 5] to encode the facial
features in a lower-dimensional feature space. Three individ-
ual spaces are constructed corresponding to the three facial
features. The distance-in-feature-space (DIFS) values are cal-
culated for all the images in the training set and in each of
the feature spaces. These values are used to compute the dis-
tributions of the DIFS values which play an important role
in characterizing the differences between imposters and true
persons. Given a new test image, the three facial features are
first extracted and their DIFS values are computed in each
feature space. Each feature provides an opinion on the claim
in terms of a confidence value which is measured by inte-
grating the DIFS distributions of each feature space with re-
spect to the DIFS value computed in that feature space. The
confidence values of all the three features are fused for final
recognition. The identity established by our fusion technique
is more reliable compared to the case when features are used
individually. As a preprocessing step, we propose a new block
histogram equalization (BHE) technique that is quite effec-
tive in compensating for local changes in illumination.

The performance of our method has been evaluated on
three different face datasets, namely, the AR face database
[17], the IPCV Lab database (collected in our laboratory),
and the FERET database [18]. The performance is evaluated
in terms of a cumulative match score (CMS) which describes
how well the system is able to recognize a person in the top
n ranks. When compared with the standard FERET evalua-
tion test results [18], our algorithm is found to perform quite
well on all the probe sets in the FERET evaluation. It com-
pares favorably with the best face recognition algorithms that
currently exist in the literature [18]. The ability to reject un-
known people (i.e., people not in the training dataset) is also
important in face recognition. We evaluate the performance

of our algorithm on trained as well as untrained individuals
in terms of the false acceptance (FA) and the false rejection
(FR) rates. We show that our system is very good at recogniz-
ing trained individuals and at rejecting untrained people.

In Section 2, we discuss facial features and a preprocess-
ing step for intensity normalization. Section 3 describes gen-
eralized Eigen and Fisher analysis for each feature. A proba-
bilistic fusion methodology is proposed in Section 4. Exper-
imental results are given in Section 5, while the conclusions
are summarized in Section 6.

2. FEATURE SELECTION AND PREPROCESSING

In this section, we first explain the motivation for the choice
of the specific facial features that we have considered in this
paper. This is followed by a novel illumination compensation
method which serves as a preprocessor.

2.1. Facial features

In recent years, there has been a lot of interest in multimodal
biometric person verification systems, since the identity es-
tablished by such systems is generally more reliable than a
single-mode system. In a multimodal system, even if any one
cue fails, other cues could provide the required information
for establishing identity. Face recognition approaches that
consider only the entire face as a feature do not take into ac-
count just what other aspects of the face stimuli are impor-
tant for recognition [19]. Utilizing complementary informa-
tion should improve performance. For our recognition al-
gorithm, we have considered, in addition to the entire face
image, two other features, namely, the edginess image of the
face, and the eyes.

The edginess image is a global facial feature that is rea-
sonably robust to illumination. It is a measure of the change
in intensity from one pixel to the next. To extract a good
edginess image map, we employ 1D processing [14] along or-
thogonal directions as follows. To detect the horizontal com-
ponent of edginess, the face image is convolved with a 1D
Gaussian filter to smooth the image horizontally. This helps
in reducing the effect of noise. The Gaussian smoothing filter
is given by

g(x) = 1√
2πσ

e−x
2/2σ2 , (1)

where σ is the standard deviation of the filter. A discrete ap-
proximation of this filter appears in Table 1, left column. The
smoothed image is then convolved in the orthogonal direc-
tion (i.e., vertically) with a differential operator which is a
first-order derivative of the 1D Gaussian function to find the
horizontal component of edginess. The differential operator
is given by

c(y) = −y√
2πσ3

e−y
2/2σ2 (2)

and its discrete approximation is given in Table 1, right col-
umn.
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(a) (b) (c)

Figure 1: (a) A gray-scale face image, (b) it’s edginess image, and (c) the cropped eyes.
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Figure 2: Block histogram equalization. In each image pair, the left one is the input image while the right one is the reference image.

The vertical component of edginess is computed in a sim-
ilar manner by carrying out the above steps in the orthogonal
direction. The final edginess image is obtained by taking the
absolute sum of the horizontal and the vertical components.
Figure 1 shows a gray-scale face image, the corresponding
edginess image, and the extracted eyes. Note that the edgi-
ness image is also a gray-valued image.

The motivation for incorporating local features into a
recognition system stems from the fact that it is possible for
humans to recognize a face from only parts of it. For exam-
ple, if a face is occluded in its lower part, a human being may
still be able to recognize it despite the occlusion. The eyes, in
particular, are very important local features that help in the
recognition process [8]. We conducted experiments in our
lab and found that, on most occasions, people could recog-
nize faces just from the eyes. Eyes are quite robust to facial
expressions and occlusions. Each of the three facial features
discussed in this section could be used either individually
or jointly for recognition. We assume that eye positions are
given so that these facial features can be extracted.

2.2. Intensity normalization

A face recognition system must recognize a face from its
novel image despite variations in illumination. Unfortu-
nately, till today, no revolutionary solution exists for the in-
tensity normalization problem. However, approaches have
been proposed to alleviate the effect of illumination varia-
tions. Adini et al. [20] have proposed different face represen-
tations such as the edge map, the image intensity derivative,

and convolution with a 2D Gabor filter for intensity normal-
ization. The idea is to represent a face by illumination invari-
ant features but this is difficult to actually achieve in practice.
The quotient image proposed by Shashua and Riklin-Raviv
[21] works under the assumption of a Lambertian model. A
main drawback of this technique is that it fails under shadow
effects [21]. The illumination cones technique proposed by
Georghiades et al. [22] considers the effect of shadow and
outperforms most existing methods. But it is computation-
ally intensive and requires at least seven input images per per-
son.

In this paper, we propose a simple block histogram equal-
ization (BHE) technique for illumination compensation. We
assume that a reference image taken under well-controlled
lighting conditions is available. Let X and Y be the input
and the reference images, respectively, of size N × N pixels.
The goal is to bring the illumination level of the input image
X to that of the reference image Y by applying BHE. Con-
sider a block image BI from the input image X with pixel
locations ranging from 1 to M and also a block image BR

from the reference image Y at the corresponding pixel loca-
tions (Figure 2). We would like to apply histogrammodifica-
tion to the input image block BI to make the pixel intensity
distribution of BI equivalent to the pixel intensity distribu-
tion of BR.

Consider the input block image (i.e., BI) with pixel value
x ≥ 0 to be a random variable with probability density
function px(x) and cumulative probability distribution Fx(x)
given by Fx(x) =

∫ x
0 px(u)du. Let the reference block image
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Figure 3: The windowing filter.

(i.e., BR) with pixel intensity y ≥ 0 be a random variable with
probability density function py(y) and cumulative probabil-
ity distribution Fy(y) given by Fy(y) =

∫ y
0 py(u)du. The fi-

nal output block image BO with pixel intensity value z ≥ 0
should have the density function py(y) and cumulative dis-
tribution Fy(y) and is given by

z = F−1y
[
Fx(x)

]
. (3)

The histogram-modified block image intensity values are
scaled with a windowing filter H which is as defined below
and is pictorially shown in Figure 3:

BO(n,m) = BO(n,m)H(n,m), 1 ≤ n, m ≤M, (4)

where

H(n,m)

=




4nm
M2

, 1≤n, m≤M

2
,

4m(M − n + 1)
M2

,
M

2
<n≤M, 1≤m≤M

2
,

4n(M −m + 1)
M2

, 1≤n≤M

2
,
M

2
<m≤M,

4(M − n + 1)(M −m + 1)
M2

,
M

2
<n, m≤M.

(5)

By simultaneously shifting the blocks in both the hori-
zontal and the vertical directions in steps of M/2 + 1 pixel
locations (as shown in Figure 2), and adding pixel intensity
values in overlapping regions, we arrive at the final image
Z. The intensity changes are smoothed out across adjacent
blocks. The blocks are overlapped to avoid edges and patches
from appearing in the illumination compensated image. The
window H is defined such that the sum of the weights in
the overlapping region is 1. In Figure 4, we give a few exam-
ples of images taken under different illumination directions
and the corresponding intensity normalized images using

our method. The reference image was kept the same for all
the images. We also checked the performance of our BHE
method for errors in detected eye locations. This was done
by artificially introducing errors in the positions of the eye
locations as shown in Figure 4c. The standard deviation of
the error was chosen to be 2 pixels. The intensity-normalized
images in Figure 4d reveal that the BHE method is able to
handle small errors in the eye positions. The proposed BHE
intensity normalization technique is both simple to imple-
ment and effective.

3. FEATURE REPRESENTATION

Each of the facial features discussed in Section 2 can be
viewed as a vector in a high-dimensional hyperspace in the
pixel domain. However, such a representation is too detailed
and not an optimal one. Since facial features are similar
in overall configuration across individuals and are not ran-
domly distributed in the pixel domain, they can be described
by a relatively low-dimensional representation. For this pur-
pose, we use PCA in conjunction with FLD. The idea of us-
ing eigenfeatures is motivated by a technique developed by
Sirovich and Kirby [23] for efficiently representing pictures
of faces. FLD provides improved discrimination over PCA.
We now briefly describe feature representation using PCA
and FLD. The analysis is common to all the facial features
considered in this paper.

Let a training feature image f (x, y) be a two-dimensional
N × N array of intensity values. An image may also be con-
sidered as a vector of dimension N2. Let fi,m denote the N2

element training vector representing the mth image of the
ith person. If in the training dataset, there are I number of
people, each having M number of images, we have a total of
K = I ·M images. The average image of the entire data set is
given by

ψ = 1
K

I∑
i=1

M∑
m=1

fi,m. (6)

The covariance matrix C of the feature dataset can be written
as

C = 1
K

I∑
i=1

M∑
m=1

φi,mφ
T
i,m, (7)

where φi,m is the mean subtracted image of fi,m and is given
by φi,m = fi,m − ψ. The weight vector corresponding to the
mth training image φi,m of the ith person is derived as wi,m =
ET
pcaφi,m where Epca consists of only the significant eigenvec-

tors K ′ of C and is given by Epca = [e1, e2, . . . , eK ′], where
K ′ � N2. This is achieved by ignoring eigenvectors with
small eigenvalues. We choose K ′ based on the cumulative
sum of the eigenvalues such that

K ′∑
k=1

λk
TK

> R, (8)
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(a) (b) (c) (d)

Figure 4: Images before and after intensity normalization with BHE. (a) Input images with exact eye locations, (b) corresponding output
images after applying BHE, (c) input images with deviations from the exact eye locations, and (d) the corresponding output images.

0 10 20 30 40 50 60 70 80 90 100

Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
or
de
r(
i)

p = 1
p = 0.5

p = 0.1
p = 0.05

Figure 5: Confidence weights based on the Gamma distribution for
different values of p.

where TK =
∑K

l=1 λl and λl denotes the lth eigenvalue. A typ-
ical value for R is 0.99. The eigenvalues are arranged in the
order of decreasingmagnitude. For each facial feature, we de-
rive the transform matrix Epca corresponding to that feature
from the training data.

The eigenfaces method derives only the most expressive
features (MEF). The PCA inspired features do not necessar-
ily provide for good discrimination. Fisher’s linear discrimi-
nant (FLD) is an example of a class-specific method to shape
the scatter for reliable classification. Mathematically, FLD se-
lects the projection matrix Efld in such a way that the ra-
tio of the determinant of the between-class scatter matrix
to the within-class scatter matrix of the projected samples is

maximized. The FLD is capable of distinguishing within and
between-class scatters and yields better discriminating fea-
tures for classification [24]. Since the original image space is
high dimensional, most methods [4, 5] first perform dimen-
sionality reduction using PCA and then apply FLD. Other-
wise, one is confronted with the difficulty of dealing with a
singular within-class scatter matrix.

For an I-class problem, the between-class scatter matrix
is defined as

Sb =
I∑

i=1

(
wi − w̄

)(
wi − w̄

)T
, (9)

where wi is the average weight vector of the ith class and w̄ is
the average weight vector of all the classes in the PCA space.
The within-class scatter matrix is defined as

Sw =
I∑

i=1

(
1
M

M∑
m=1

(
wi,m −wi

)(
wi,m −wi

)T)
. (10)

The projection matrix Efld is chosen as

Efld =
argmax

E′
∣∣E′T

SbE′
∣∣∣∣E′T SwE′
∣∣ (11)

and can be determined by solving the generalized eigenvalue
problem [4] Sbe′i = λiSwe

′
i . The projection matrix Eopt which

is a combination of the eigen- and Fisher projections is given
by ET

opt = ET
fldE

T
pca. The final feature vector corresponding to

the ith person is

w′i =
1
M

M∑
m=1

ET
optφi,m. (12)

This is how the feature space is constructed for any one fea-
ture.
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(a)
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Figure 6: The AR face database: (a) training set and (b) probe set.
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Figure 7: CMS curves for the AR database.

In the recognition stage, a new test image feature γ is
transformed into its respective feature space and its feature
vector is derived as w = ET

opt(γ − ψ). The simplest (but not
the best) way for determining the class to which the test im-
age belongs is to find the distance in feature space (DIFS)
value defined as

εi =
∥∥(w −w′i

)∥∥, 1 ≤ i ≤ I. (13)

The test image can be classified as belonging to class j if the
minimum value corresponds to εj and is below some chosen
threshold θ.

It must be mentioned here that during the enrollment
phase, the face must first be detected for facial feature ex-
traction. Automatic and accurate face detection in cluttered
backgrounds remains a challenging problem [25]. Following
other works [18], we assume that the face has been located

and eye locations are provided. The three facial features are
cropped with reference to these eye locations.

4. RECOGNITION BY FUSION

In this section, we propose a probabilistic fusion strategy
to integrate information coming from multiple facial fea-
tures. Broadly speaking, the term fusion encompasses any
area which deals with utilizing a combination of different
sources of information, either to generate one representa-
tional format, or to reach a decision. A classifier system gen-
erally integrates multiple cues at one of the following three
levels.

(i) Sensor-level fusion. Raw data from the sensors is com-
bined without any confidence associated with the la-
bels. In this case, a simple majority rule may be em-
ployed to reach a reliable decision.

(ii) Feature-level fusion. A set of possible labels ranked in
each feature space with decreasing confidence value.
But the confidence values themselves are not used for
final fusion.

(iii) Decision fusion. At the output of each feature space,
labels are assigned with associated confidence values.
These values are fused for decision making.

In our recognition algorithm, we use the decision fusion ap-
proach. To assign confidence weights, we propose to compute
the distributions of the DIFS values in each feature space.
The distributions are calculated empirically from the train-
ing data as explained below.

4.1. DIFS distributions

As will be shown, the DIFS distributions are very useful in
characterizing how an imposter will differ from the true per-
son. We use the relative difference in the DIFS values instead
of the absolute values, since the relative DIFS values are in-
variant to the mean shift of the absolute DIFS values.

In order to simplify the analysis, we consider a single fea-
ture, say face. After constructing the face space using PCA
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Figure 8: FAR and FRR plots for the AR database using (a) face only, (b) edginess only, (c) eyes only, and (d) fusion.

and FLD (as discussed in Section 3), the training data itself
is used to compute the DIFS distributions as follows. Let εα
(a random variable with density function f α(εα)) represent
the DIFS value of all individuals’ training images with their
own classes. That is, f α(εα) describes the distribution of the
DIFS values for the genuine case. When we project a train-
ing image onto the PCA-FLD face space, we can derive DIFS
values for that image with respect to all the individuals in the
database. We arrange the DIFS values in an increasing order
and repeat this exercise for all the images in the training set.
Let εi (a random variable with density function fi(εi)) de-
note the DIFS value at rank i. Without loss of generality, it

can be assumed that εi is statistically independent of ε j for
i �= j. Note that εα and εi are based on all the images in the
training set and are not individual specific. The relative dif-
ference in the DIFS value at rank i is defined as

∆i = εi − εα, 1 ≤ i ≤ I , (14)

where I is the total number of individuals/identities in the
database. The DIFS distribution fi(∆i) at rank i is then given
by

fi(∆i) =
∫∞
−∞

zi
(
εi,∆i

)
dεi, (15)
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Figure 9: ROC plots for the AR database.

where

zi
(
εi,∆i

) = I!
(I−i)!(i− 1)!

F
(
εi
)i−1[

1−F(εα)]I−i f (εi) f (εα).
(16)

Here, zi(εi,∆i) describes the joint distribution of the ith-rank
DIFS value (i.e., εi) and its distance from the true person’s
DIFS value (i.e., εα). The term f (εi) is the probability den-
sity function of the absolute DIFS value at rank i and F(εi)
is the corresponding distribution function. For more details
on the distribution of distances, see [26]. Since closed-form
expressions are not available for the problem on hand, we
derive fi(∆i) and f α(εα) empirically by using the DIFS val-
ues for εi and εα from the images in the training set. Since
there are I individuals each having M training images, we
have I ·M DIFS values or sample realizations for the ran-
dom variable εα and I ·M DIFS values for εi corresponding
to each rank i, i = 1, 2, . . . , I . The DIFS distribution at rank 1
(i.e., f1(∆1)) will be almost equal to a Delta function because
most of the time the top rank identity will be the actual iden-
tity (i.e., ε1 ≈ εα). The mean value of the DIFS distributions
fi(∆i) will increase with rank i.

4.2. Recognition

The confidence weights of the identities are computed ac-
cording to the DIFS values and the positional ranking in the
feature space in which they appear. The weight to be assigned
to rank i depends on the positional ranking as well as the
proximity of the DIFS value at rank i with the top rank DIFS
value. When a new test image γ arrives, its DIFS values ε′1,
ε′2, . . . , ε′I are arranged in an increasing order. Let εα′ denote
the DIFS value for the top rank in the face space. The relative
DIFS values ∆′i are computed using (14) as ∆′i = ε′i −εα′ . The
confidence weight assigned to the hypothesis that the image

γ belongs to that of the identity at rank i is computed as

Pface(i) =
[
Pi
(
∆′i
) · Porder(i)]face, 1 ≤ i ≤ I , (17)

where Pi(∆′i ) describes how close the ith-rank DIFS value is
to the top-rank and

Pi
(
∆′i
) =

∫∞
∆′i

fi
(
∆i
)
d∆i. (18)

The term Porder(i) assigns an appropriate weight to an
identity depending on the positional ranking as well as the
top rank DIFS value. If the top rank DIFS value for the given
image γ is very small, then it will most likely correspond to
the actual identity. Hence, Porder(i) should fall very sharply
as rank i increases. On the other hand, if the top rank DIFS
value is large, then the top person may not be the actual
identity, and hence the confidence weight should fall grad-
ually to accommodate even individuals at lower ranks (i.e.,
higher values of i). Depending on the top rank DIFS value
εα′ , we give relative weightage to the person at rank i using
the Gamma distribution. The Gamma distribution is given
by

Porder(i) = β

γ(λ)

(
i− 1
θ

)(λβ−1)
e−(i−1)/θ , θ = 1

p
, 1 ≤ i ≤ I.

(19)
For our problem,

p =
∫∞
εα′

f α
(
εα
)
dεα, (20)

where εα
′
denotes the DIFS value for the top rank. We define

Porder(i) with λ = 1 and β = 1. In Figure 5, we show con-
fidence plots for different values of p. For p = 1, the curve
falls very sharply compared to other values of p. When the
top rank identity is not a genuine one, the combined effect
of Pi(∆′i ) and Porder(i) is to accommodate identities at even
lower ranks.

In an exactly similar manner, we compute Pedge(i) and
Peye(i) in their respective PCA-FLD feature spaces. For math-
ematical convenience, the three features (face, edginess, and
eyes) are assumed to be independent. If I1, I2, . . . , II are the
identity indicators of the individuals in the database, then the
final confidence weight of an identity Ii is obtained by multi-
plying the confidence weights contributed from each feature
space of that identity, that is,

P
(
Ii
) = Pface

(
Ii
) · Pedge(Ii) · Peye(Ii). (21)

Here, Pface(Ii), Pedge(Ii), and Peye(Ii) are confidence values
acquired from each feature for the identity Ii. The identity
ID(T) for a given image T is determined by the following
criterion:

ID(T) =

Ik if P

(
Ik
)
> τ,

Imposter otherwise,
(22)
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Figure 10: IPCV database: (a) training set and (b) probe set.
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Figure 11: CMS curves for the IPCV database.

where

P
(
Ik
) = max

{
P
(
I1
)
,P
(
I2
)
, . . . ,P

(
II
)}
. (23)

The threshold τ is chosen such that an untrained person
should not be recognized at all. An individual not trained
with our system should be declared as an imposter and this
works as follows. For an imposter, it is unlikely that in all the
features the person will come in the top rank with respect to
the same identity. For example, if in the unlikely event that
for any one feature, identity Ik comes in the top rank, he/she
is very likely to go down in ranking in the other two features.
The final confidence value P(Ik) (which is a product of the
weights acquired in the three features) will be less than the
threshold value τ.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed method on different types of face datasets. A com-
monly used performance measure for face recognition is the
cumulative match scores (CMS), that is, the recognition ac-
curacy in the top n ranks. We also demonstrate system rejec-
tion performance in terms of the false acceptance rate (FAR)
and the false rejection rate (FRR) by testing against trained
as well as untrained individuals. We validate our method
on three different datasets. The first is the AR face database
which is available in the public domain [17]. The second is
a set of face images collected in our lab. The third is the
standard FERET database [18] which has been widely used
for evaluating face recognition algorithms. For all the three
datasets, the required facial features were cropped with ref-
erence to the eye locations. The eye locations were used to
account for rotation and scaling, when necessary. All im-
ages were intensity normalized using the BHE technique de-
scribed in Section 2.2.

5.1. The AR face database

This face database is due to Martinez and Benavente [17]
at the Computer Vision Center (CVC) of the University of
Alabama at Birmingham. It contains rich variations in ex-
pressions and many facially occluded images. Images are also
photographed in different photo sessions so as to contain dif-
ferent lighting conditions and scale changes.

5.1.1. Training

During training, we selected 630 images comprising 126 in-
dividuals with five images per subject. Figure 6a shows some
typical training images (all images are frontal). For face and
edginess, the images were cropped to a size of 100× 90 pixels
with reference to the eye locations. For eyes, the image size
was 30 × 90 pixels. The top 150 eigenvectors were used for
each feature.
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Figure 12: FAR and FRR plots for the IPCV database using (a) face only, (b) edginess only, (c) eyes only, and (d) fusion.

After constructing the individual feature spaces, the re-
quired DIFS distributions ( f α(εα) and fi(∆i) where 1 ≤ i ≤
I) are computed off-line using the training dataset as follows.
An image fi,m labeled with identity Ii is processed to extract
the three facial features. The features are transformed to their
respective spaces and the DIFS values (εi, 1 ≤ i ≤ I) are
arranged in an increasing order in each feature space. The
DIFS value of the identity Ii contributes sample values to
the random variable εα. The difference between εα and the
DIFS value at rank i (i.e., εi) contributes sample values to the
random variable ∆i. By using all the labeled training images,
we compute 630 sample values for all the random variables.

These values are then used to compute the DIFS distributions
at each rank.

5.1.2. Testing

The recognition performance was tested using a probe set
containing 1759 images of all the trained individuals. This
subset contains different expressions and facial occlusions as
shown in Figure 6b. The images in the test set are different
from the training set.

In general, for a face recognition algorithm, one can ask
how good the algorithm is at identifying a probe image. The
question is not always “is the top match correct?” but “is



2782 EURASIP Journal on Applied Signal Processing

0 10 20 30 40 50 60 70 80 90 100

FAR

0

10

20

30

40

50

60

70

80

90

100

FR
R

Fusion
Face

Edginess
Eye

(a)

10 20 30 40 50 60 70 80 90 100

FAR

10

20

30

40

50

60

70

80

90

100

FR
R

Fusion
Face

Edginess
Eye

(b)

0 10 20 30 40 50 60 70 80 90 100

FAR

0

10

20

30

40

50

60

70

80

90

100

FR
R

Fusion
Face

Edginess
Eye

(c)

0 10 20 30 40 50 60 70 80 90 100

FAR

0

10

20

30

40

50

60

70

80

90

100

FR
R

Fusion
Face

Edginess
Eye

(d)

Figure 13: These ROC curves correspond to (a) no error, and (b), (c), (d) error with standard deviation 1, 2, and 3 pixels, respectively, in
the position of the eye coordinates.

the correct answer in the top n matches?” The system per-
formance can be reported by using cumulative match scores
(CMS) plots in which the rank is plotted along the hori-
zontal axis, and the vertical axis is the percentage of correct
matches. The cumulative recognition rate was found by first
ranking each probe image in relation to the gallery set. The
rank indicates how well a probe face matches an intended
gallery face. For a probe face with rank 1, this indicates that
the probe face has the smallest Euclidean distance to an in-
tended gallery face. Therefore, one can generally conclude
that a probe face with the nth smallest Euclidean distance to
the intended gallery face has a rank n. Once the rank is found

for each probe face, a cumulative rank score is calculated for
each rank. This is found by summing the instances of a probe
face which are within or less than a rank n and then dividing
by the total number of probe faces.

The CMS plots for the top n ranks are shown in Figure 7
for the AR face database. The graphs show the performance
for different features, namely, face, edginess, and eyes in-
dividually, as well as for the fusion case. For n = 1, the
graphs indicate that the recognition accuracy of face, edgi-
ness, and eyes, when used individually, is 83.0%, 79.5%,
and 86.0%, respectively. The recognition rate after fusion in-
creases to 92.0% for the top rank. Thus, we observe that there
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(a)

(b)

Figure 14: The FERET database: (a) training images, and (b) probe images.

is an improvement of almost 6% with fusion as compared to
the best accuracy achieved with a single feature. For n = 10,
the accuracy using fusion is almost 99%.

The performance of our system was next tested on un-
trained people to check how well it rejects unknown persons.
This is done using the false acceptance rate (FAR) and the
false rejection rate (FRR) curves. FAR is the probability that
an untrained person is falsely accepted as a known identity
while FRR is the probability that a known person is falsely re-
jected as an unknown person. The relation between the two
rates is controlled by the acceptance threshold of the system.
If the threshold is set to a very high value, there will be no
false acceptances (i.e., FAR = 0), but it will be impossible to
accept even a true (known) person who is in the training data
(i.e., FRR= 100%). Setting too low a threshold will cause the
situation to reverse. The value of FRR and FAR at the point
where the plots cross is called the equal error rate (ERR). For
a good recognition system, the ERR value should be as small
as possible.

For the AR face database, when our method was tested
against trained and untrained individuals, the FAR and FRR
plots for face, edginess, eyes, and fusion are shown in Figures
8a, 8b, 8c, and 8d, respectively. While computing FAR plots,
the system was trained with 90 persons out of 126 members
in the AR face database. A total of 380 probe images of the
remaining untrained people were used as probe images. Ini-
tially, we fix the acceptance threshold for each feature space
and also for the fusion method. For face, edginess, and eyes,
the threshold value is in terms of the top rank DIFS value,
whereas for the fusion method it is in terms of the final con-
fidence value of the top rank. We compute the error rate by
testing on all the probe images. The value of the error rate in-
dicates the ratio between the number of face images that are
accepted as known identities over the total number of im-
ages. Error rates were computed for all the threshold values
by varying the threshold value from the lowest possible to the
highest possible value. While computing the FRR values, the
system is again trained with the complete dataset (i.e., with
126 persons). The probe set of 1209 images comprising all
126 persons are used as known identities and we computed
the error rates for all the threshold values. From Figure 8, we
observe that the ERR values for face, edginess, and eyes are

quite high (25%, 29.5%, and 25%, respectively). In contrast,
the ERR value for the fusion method is much lower and is
only 10%. Thus, the fusion method is very useful in reject-
ing imposters. The ERR is just one operating point and not
necessarily the one that could be used in practice. For real
applications, one would choose τ in (22) such that the FAR
is very low even if this is at the expense of a slightly higher
FRR. The receiver operating characteristics (ROC) for our
system has been shown in Figures 9 and the value of τ can be
decided from it. Based on the ROC curves, we observe that
fusion clearly outperforms the other three features.

5.2. The IPCV database

We tested the proposed method on yet another dataset col-
lected in our own lab. We call it the IPCV dataset. This
database has variations in position, scale, facial expression,
occlusion, and illumination. All images were intensity nor-
malized using the BHE technique to compensate for illumi-
nation variations. The database has 2000 facial images of 105
individuals. Of these, 1365 images were selected for train-
ing with 13 images per person, while the remaining 635 fa-
cial images were used as probe. Some example training and
probe set images are shown in Figures 10a and 10b, respec-
tively. Face images were cropped to a size of 50×40 pixels for
face as well as edginess images. The eye images were of size
25×40 pixels. The top 300 eigenvectors are used for face and
edginess features, while the top 200 eigenvectors are used for
the eye feature. The DIFS distributions are computed from
the training data. The CMS curves for the top n ranks are
shown in Figure 11. For the top rank, the graph indicates
that the recognition accuracy for face, edginess, and eyes,
taken individually, is 92.8%, 91.8%, and 92%, respectively.
The recognition rate after fusion increases to 97.5% for the
top rank.

For computing the FAR plots, the system was trained
with 90 persons out of the 105 members in the dataset. A
total of 500 probe images of the remaining untrained people
were used. Figures 12a, 12b, 12c, and 12d show the FAR and
FRR plots for face, edginess, eyes, and fusion, respectively.
From the figure, we observe that the ERR values for face,
edginess, and eye are quite high (26%, 30%, and 33%, re-
spectively). In contrast, the ERR value for the fusion method
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Figure 15: CMS plots for (a) the FB probe set, (b) duplicate I, (c) the FC probe set, and (d) duplicate II.

is only 12%. In Figure 13a, the ROC curves for the IPCV
database have been shown for fusion, and the three facial fea-
tures when used individually.

For face recognition methods to work, the position of the
eyes should be known very accurately [18]. To study the ef-
fect of errors in the eye position on recognition accuracy, we
assumed exact eye positions for the training images but in-
troduced Gaussian distributed errors in the position of the
eye coordinates for the probe images. The standard devia-
tion of the error was chosen to be 1, 2, and 3 pixels and the
ROC curves for each of these cases are shown in Figures 13b,
13c, and 13d.

5.3. The FERET database
The proposed algorithm was finally tested on the standard
FERET database [18]. The FERET database contains 14 126
images comprising of 1 199 individuals. Since the images are
acquired during different photo sessions, this dataset con-
tains significant variations in pose, illumination, and fa-
cial expressions. We have compared our system performance
with the FERET evaluation results [18]. The FERET evalu-
ation in [18] provides a comprehensive picture of the state
of the art in face recognition. Figure 14 depicts some exam-
ple training and probe images from the FERET database. In
Table 2, details of all the four probe categories are given. The
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Figure 16: FAR and FRR plots for the FERET database using (a) face only, (b) edginess only, (c) eyes only, and (d) fusion.

FA images (regular frontal faces of persons) were used as the
gallery set, whereas four categories of probe sets were used to
compare against the gallery set. The first probe category was
the FB probe set. This indicates an alternative frontal image,
taken seconds after the corresponding FA images. The second
probe category contained all duplicate frontal images in the
FERET database and is referred to as the duplicate I probe set.
The third category of probe set is the FC set which contains
images taken on the same day but with different camera and
illumination. The fourth category of probe set is called the
duplicate II set. These images are duplicates of FA images but
taken at least one year between the acquisition of the gallery
images (FA) and probe.

Table 2: Gallery and probe information for FERET.

Probe category Gallery size Probe set size

FB 1196 1195

Duplicate I 1196 722

FC 1196 194

Duplicate II 1196 234

When tested on all the probe categories, the CMS plots
for the top n ranks are shown in Figure 15. In Table 3, we have
compared the performance of the proposed method with the
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Table 3: Recognition accuracy for different algorithms with the FERET database.

Serial number Probe set
Recognition accuracy at rank 1

Fusion UMD 97 USC MIT 96 Baseline corr. Baseline EF

1 FB 98.3 96.5 95 94.8 82.5 79.5

2 Duplicate I 68 46 58 57 35 42

3 FC 59 59 82 32 7 18

4 Duplicate II 54 21 46 34 16 22
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Figure 17: ROC curves for the FERET database.

partially automatic face recognition algorithms that appear
in [18]. (The recognition accuracy for these algorithms has
been deciphered from the plots in [18]. Hence, there may be
small variations in the actual values.) From Table 3, we ob-
serve that the performance of the proposed method is com-
parable to the best reported results. For the FB, duplicate
I and duplicate II probe sets, our method has better accu-
racy compared to others. On the FC probe set, we come sec-
ond.

The FAR and FRR plots were also computed for the
FERET database. Figures 16a, 16b, 16c, and 16d show the
FAR and FRR plots for face, edginess, eyes, and fusion, re-
spectively. The system was trained with 482 people out of the
1 199 people in the database. A total of 1 446 images were
used for training, 3 images per subject. To compute the FAR
plots, 1 440 face images were used from the remaining 717
untrained individuals. While computing FRR, 304 facial im-
ages were used from 482 trained individuals. From Figure 16,
we observe that the ERR values for face, edginess, and eye are
quite high (31%, 30%, and 34%, resp.). The ERR value after
fusion reduces to 12%. Figure 17 shows the ROC plots corre-
sponding to fusion and the individual facial features for the
FERET database.

6. CONCLUSIONS

We have described a system that uses different facial fea-
tures for robust recognition. A probabilistic fusion scheme
has been proposed that combines information coming from
the face, the edginess image of the face, and the eyes. A new
algorithm for illumination compensation is also given. The
method has been validated by testing it on three different face
datasets, including the FERET database. It has been shown
that fusion of different facial features improves overall recog-
nition accuracy. The improvement is particularly significant
under facial occlusions, variations in facial expressions, and
illumination changes. Fusion is also very useful in rejecting
imposters.

ACKNOWLEDGMENTS

The authors are thankful to the reviewers for their useful
comments which helped in improving the presentation of the
paper considerably. Funding fromMHRD, India, is gratefully
acknowledged.

REFERENCES

[1] C. J. Wu and J. S. Huang, “Human face profile recognition by
computer,” Pattern Recognition, vol. 23, no. 3-4, pp. 255–259,
1990.

[2] K.-M. Lam and H. Yan, “An analytic-to-holistic approach for
face recognition based on a single frontal view,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 20, no. 7, pp. 673–686, 1998.

[3] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal
of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[4] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigen-
faces vs. Fisherfaces: recognition using class specific linear
projection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19,
no. 7, pp. 711–720, 1997.

[5] R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of Eugenics, vol. 7, no. 1, pp. 179–188, 1936.

[6] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal face authen-
tication using morphological elastic graph matching,” IEEE
Trans. Image Processing, vol. 9, no. 4, pp. 555–560, 2000.

[7] B. Duc, S. Fischer, and J. Bigun, “Face authentication with Ga-
bor information on deformable graphs,” IEEE Trans. Image
Processing, vol. 8, no. 4, pp. 504–516, 1999.

[8] R. Brunelli and T. Poggio, “Face recognition: features versus
templates,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15,
no. 10, pp. 1042–1052, 1993.

[9] L. Hong and A. Jain, “Integrating faces and fingerprints for
personal identification,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 20, no. 12, pp. 1295–1307, 1998.



A Probabilistic Fusion Methodology for Face Recognition 2787

[10] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion
of face and speech data for person identity verification,”
IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1065–1074,
1999.

[11] G. Shakhnarovich and T. Darrell, “On probabilistic combina-
tion of face and gait cues for identification,” in Proc. 5th IEEE
International Conference on Automatic Face and Gesture Recog-
nition (FGR ’02), pp. 169–174, Washington, DC, USA, May
2002.

[12] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On com-
bining classifiers,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 20, no. 3, pp. 226–239, 1998.

[13] R. Brunelli and D. Falavigna, “Person identification using
multiple cues,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 17, no. 10, pp. 955–966, 1995.

[14] B. S. Venkatesh, S. Palanivel, and B. Yegnanarayana, “Face de-
tection and recognition in an image sequence using eigenedgi-
ness,” in Proc. Indian Conference on Computer Vision, Graphics
and Image Processing (ICVGIP ’02), pp. 97–101, Ahmedabad,
India, December 2002.

[15] K. S. Rao and A. N. Rajagopalan, “A probabilistic fusion tech-
nique for face recognition,” in Proc. 12th European Signal Pro-
cessing Conference (EUSIPCO ’04), Vienna, Austria, Septem-
ber 2004.

[16] P. Watanapongse and H. H. Szu, “Application of the princi-
pal wavelet component in pattern classification,” in Wavelet
Applications V, vol. 3391 of Proceedings of SPIE, pp. 194–205,
Orlando, Fla, USA, April 1998.

[17] A. M. Martinez and R. Benavente, “The AR face database,”
Tech. Rep. #24, Computer Vision Center (CVC), Bellaterra,
Barcelona, Spain, 1998.

[18] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The
FERET evaluation methodology for face-recognition algo-
rithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22,
no. 10, pp. 1090–1104, 2000.

[19] P. S. Penev and J. J. Atick, “Local feature analysis: a general
statistical theory for object representation,” Network: Compu-
tation in Neural Systems, vol. 7, no. 3, pp. 477–500, 1996.

[20] Y. Adini, Y. Moses, and S. Ullman, “Face recognition: the
problem of compensating for changes in illumination direc-
tion,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 7,
pp. 721–732, 1997.

[21] A. Shashua and T. Riklin-Raviv, “The quotient image: class-
based re-rendering and recognition with varying illumina-
tions,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 2,
pp. 129–139, 2001.

[22] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman,
“From few to many: illumination cone models for face recog-
nition under variable lighting and pose,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 23, no. 6, pp. 643–660, 2001.

[23] L. Sirovich and M. Kirby, “Low-dimensional procedure for
the characterization of human faces,” Journal of the Optical
Society of America A, vol. 4, no. 3, pp. 519–524, 1987.

[24] C. Liu and H. Wechsler, “A shape- and texture-based en-
hanced Fisher classifier for face recognition,” IEEE Trans. Im-
age Processing, vol. 10, no. 4, pp. 598–608, 2001.

[25] A. N. Rajagopalan, K. S. Kumar, J. Karlekar, et al., “Locating
human faces in a cluttered scene,”Graphical Models and Image
Processing, vol. 62, no. 5, pp. 323–342, 2000.

[26] E. J. Gumbel, Statistics of Extremes, Columbia University
Press, New York, NY, USA, 1958.

K. Srinivasa Rao received the B. Tech. de-
gree in electronics and communication en-
gineering from Nagarjuna University, India,
in 2002 and the M.S. degree from the In-
dian Institute of Technology (IIT), Madras,
in 2005. In his M.S. research work, he de-
veloped a probabilistic fusion technique for
face recognition under the supervision of
Dr. A. N. Rajagopalan. Presently he is work-
ing in Benchmark Vision Systems Pvt. Ltd.,
Chennai, India. His research interests include automatic face recog-
nition, object recognition, and image restoration.

A. N. Rajagopalan received his B. Tech. and
M. Tech. degree from Nagpur University.
He obtained the Ph.D. degree in electri-
cal engineering from the Indian Institute of
Technology, Bombay, in 1998. During the
summer of 1998, he was a Visiting Scien-
tist at the Image Communication Labora-
tory, University of Erlangen, Erlangen, Ger-
many. Between October 1998 and Septem-
ber 2000, he worked as an Assistant Re-
search Scientist at the Center for Automation Research, University
of Maryland, College Park. Since October 2000, he has been serving
as an Assistant Professor in the Department of Electrical Engineer-
ing at IIT Madras. He was a Visiting Scientist in summer 2002 and
a Visiting Assistant Professor in summer 2005 at the Center for Au-
tomation Research, University of Maryland. His research interests
include depth recovery from defocused images, image restoration,
particle filters, image super resolution, face detection and recogni-
tion, and higher-order statistical learning. He is a coauthor of the
book Depth From Defocus: A Real Aperture Imaging Approach pub-
lished by Springer, New York, in 1999.


	1. INTRODUCTION
	2. FEATURE SELECTION AND PREPROCESSING
	2.1. Facial features
	2.2. Intensity normalization

	3. FEATURE REPRESENTATION
	4. RECOGNITION BY FUSION
	4.1. DIFS distributions
	4.2. Recognition

	5. EXPERIMENTAL RESULTS
	5.1. The AR face database
	5.1.1. Training
	5.1.2. Testing

	5.2. The IPCV database
	5.3. The FERET database

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

