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In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function
envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the
fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy
operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope
approximation using spline model performs better than Gaussian-based approach.
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1. INTRODUCTION

Different signal processing methods have been proposed in
coherence probe microscopy (CPM), also known as white-
light scanning interference microscopy (WLSI), for rough-
ness surface measurement [1, 2]. A basic problem in CPM
consists in developing an efficient and precise peak detec-
tion process of the fringe envelope that corresponds to the
axial position of the surface. Moreover, fast and robust meth-
ods against noise are required. Most of the methods are
based on an AM-modulated signal model, which represents
the variation in light intensity measured along the optical
axis of an interference microscope. Envelope detection can
be performed using a centroid calculation [3], a demodu-
lation procedure [1, 2], or measurement of the fringe visi-
bility [4] at a given pixel along the optical axis, z. The De-
modulation method [2] requires carrier frequency informa-
tion, while the five sample adaptive (FSA) method, proposed
by Larkin [4], detects the peak by using only five adjacent

samples along the optical axis. Methods based on Fourier
transform [1, 5] or wavelets [6] have also been proposed but
require more involved calculation means. The FSA method
corresponds to the Teager-Kaiser energy [7], applied to the
differentiated signal (in order to eliminate the added low-
frequency components) [8]. The TKEO (Teager-Kaiser en-
ergy operator) has found applications in speech processing
[9], image processing [10], and pattern recognition [11].
This operator is an energy-tracking operator which does
not measure the signal energy but the energy of the source
or the system that produces this signal. For demodulating
an AM-FM signal into its varying amplitude and instanta-
neous frequency, Maragos et al. [12] have used the TKEO
to develop the energy separation algorithm (ESA) to iso-
late the AM and FM components. Maragos and Potami-
anos have proposed an extension and generalization of the
TKEO called higher-order energy operators [13]. Some high-
order methods were applied in the signal processing field.
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Figure 1: Typical intensity along the optical axis.

For example, higher-order instantaneous moments have
been introduced in [14] and further used by Barbarossa et
al. [15]. Also the quadratic Wigner distribution has been ex-
tended to higher-order and found applications in signal pro-
cessing [16]. However, to our knowledge, there is few work
in the literature based on the generalized higher-order oper-
ators introduced in [13]. In this paper the discrete higher-
order energy operators are applied in CPM for surface pro-
filing. Attention is focused on the envelope detection tech-
nique instead of the phase extraction method for measuring
surface height. It should be noted that a general technique
has also been proposed where we first fit the sampled sig-
nal with a spline in order to apply the continuous TKEO en-
ergy operator and improve the noise rejection [17]. Here, we
propose the use of spline smoothing and interpolation meth-
ods after the envelope detection, instead of using a Gaussian
shape as many authors do. In Section 2, we present the gen-
eral model of an interferometric signal. We briefly expose
the higher-order energy operators technique in Section 3.We
also propose an improvement in the choice of the sampling
step, exhibiting a relationship between the sample period, the
lag parameter, and the order of the operator (Section 3.3).
In Section 4 we present results of tests of the operators on
experimental data according to various criteria such as the
quality of detection and robustness to the spline or Gaus-
sian techniques (Section 4.3), noise (Section 4.4), and sub-
sampling (Section 4.5).

2. THE INTERFERENCE SIGNAL

2.1. General model of a signal along the optical z-axis

In using white-light illumination of a sample in an interfer-
ence microscope, the visibility of the fringes drops off rapidly
from a maximum value at the minimum OPD (optical path
difference) [2]. Figure 1 shows a typical intensity signal ob-
tained from a CCD (couple-charged device) sensor as the
OPD is varied through focus, at a given point (x, y) on the
material surface. The signal can be approximated by a mod-
ulated sinusoid [4]:

s(x, y, z) = a(x, y, z)

+ b(x, y)c
(
z − 2 · h(x, y)) cos (ω0z + φ(x, y)

)
.
(1)

The factor b(x, y) is proportional to the reflected beam inten-
sity and c(z − 2 · h(x, y)) corresponds to the envelope along
the z-axis. The position along the optical axis at the peak of
the fringe envelope corresponds to the position of the sur-
face measured at that point. In certain conditions, the off-
set a(x, y, z) varies slowly. The common technique consists
in differentiating the signal in order to eliminate this low-
frequency component.

2.2. Spline smoothing and interpolation
of the envelope

In general once the envelope is detected, the peak is located
using the least squares fitting (LSF) technique along z-axis.
In the peak region, the calculated envelope can be approxi-
mated by a Gaussian shape exp(−βz2). The envelope is often
not symmetrical along the optical axis. To avoid this prob-
lem, we propose a spline-based approach which decomposes
the envelope into piecewise polynomials with pieces that are
smoothly connected together. This approach combines two
parameters: the quadratic distance ε and the smoothness η
[18]. The spline function minimizes λε+ (1− λ)η. The more
the parameter λ tends to 1, the greater is the tendency to-
wards the least squares solution. Practically, a value of λ = 0.1
is chosen (see Section 4.3). The last step consists in perform-
ing an envelope interpolation using the cubic spline method.
It should be noted that enough samples should be chosen in
order to give a high enough sensitivity at the peak position.

3. DEMODULATION OF INTERFERENCE SIGNALS
BY TEAGER-KAISER ANDHIGHER-ORDER
ENERGY OPERATORS

3.1. Continuous and discrete higher-order operators

For a continuous real-valued signal s(t) the TKEO, Ψ, is de-
fined via

Ψ
[
s(t)
] = (∂s

∂t

)2
− s(t) · ∂

2s

∂t2
. (2)

The TKEO is useful to provide the instantaneous frequency
and envelope information from a monochromatic AM-FM
signal [12]. An approximation of the derivatives by one-
sample differences provides the discrete-time counterpart of
the TKEO [7]:

Ψ
[
s(n)

] = s2(n)− s(n + 1)s(n− 1). (3)

For an AMmonochromatic signal s(n) = a(n) cos(Ωn), with
the assumption that the envelope varies more slowly than the
carrier signal, the discrete TKEO of s(n) yields Ψ[s(n)] �
a2(n) sin2(Ω) [12]. An efficient demodulation is thus pro-
vided with only three samples. A generalization of the con-
tinuous TKEO has been proposed in [13]. This operator can
be seen as a particular case of the continuous kth-order dif-
ferential energy operator (CEO) Ψk defined by

Ψk
[
s(t)
] = ∂s

∂t

∂k−1s
∂t

− s(t)
∂ks

∂t
. (4)
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Hence, the TKEO corresponds to k = 2. There is a recurrence
step algorithm between one kth-order operator and the pre-
vious orders [13]:

Ψk
[
s(t)
] = ∂Ψk−1

[
s(t)
]

∂t
−Ψk−2

[
∂s

∂t

]
. (5)

It is also possible to demodulate monochromatic signals
combining different kth-order operators. Finally, one can
unify the discrete versions of Teager-Kaiser and higher-order
operators under the same class of discrete energy operators
(DEO) [13]

Ψkm
[
s(n)

] = s(n)s(n + k)− s(n−m)s(n + k +m). (6)

It can be noticed that the particular case ofΨ01 defines a gen-
eralized TKEO when m > 1 and the classical TKEO when
m = 1. More generally, k represents the order of the opera-
tor, whilem adjusts the distance between the chosen samples.
We have also recently proposed the 2D discrete extensions of
the higher-order operators [19]. Moreover, a cross-discrete
higher-order energy operator (CDEO) Φkm can be defined
between two signals s and w [13]:

Φkm
[
s(n);w(n)

] = s(n)w(n+k)− s(n−m)w(n+k+m). (7)

In Section 4.4, we study the DEO and CDEO in the presence
of noise. It can be noticed that the CDEOprovides interesting
properties in the presence of two uncorrelated signals s and
w, while the higher-order DEO better filters the uncorrelated
noise. Some properties of the continuous cross-Teager energy
operators and their complex extensions have been studied in
[20]. We now explore an application of the DEO to the de-
modulation of interference signals.

3.2. Demodulation of real interference signals

A set of discrete ESA (DESA) has been proposed by
Maragos et al. [12] for tracking the instantaneous frequency
and envelope of monocomponent AM-FM signal. We con-
sider a local AM signal s(n) = a(n) cos(nΩ + θ), with Ω =
ωTe, Te being the sampling step. A local constant amplitude
a(n) � A in the time interval [nTe − (k +m)Te,nTe + (k +
m)Te] leads to

Ψkm
[
s(n)

] � A2 · sin(mΩ) · sin ((m + k)Ω
)
. (8)

The backward derivative y(n) = (s(n)−s(n−1)) of the signal
is

y(n) � A
[
cos(Ω · n + θ)− cos

(
Ω(n− 1) + θ

)]
= −2A sin

(
Ω

2

)
sin
(
Ω(n− 0.5) + θ

)
.

(9)

Hence,

Ψkm
[
y(n)

] = 4 · A2 · sin2
(Ω
2

)
· sin(mΩ) sin

(
(m + k)Ω

)
.

(10)

Applying (8) and (10), we derive the formula

Ω̂ = arccos

{
1− Ψkm

[
s(n)− s(n− 1)

]
2 ·Ψkm

[
s(n)

] }
. (11)

Moreover,

Ψkm
[
A · cos(Ωn + θ)

] = A2 · sin(mΩ) · sin ((m + k)Ω
)

= A2

2

[
cos(kΩ)− cos

(
(2m + k)Ω

)]
= A2

2

[
P2m+k(cosΩ)

]
,

(12)

where P2m+k(x) is a 2m + k degree polynomial in cosΩ. Fi-
nally, from the estimated Ω̂ value, we deduce the amplitude
for the higher-order DESA:

|A| =
√√√√ 2 ·Ψkm

[
s(n)

]∣∣P2m+k(cosΩ)
∣∣ . (13)

Various higher-order DESA can also be derived from other
continuous derivative approximations (backwards, forwards,
or symmetric differences). This leads to the following obser-
vations.

(1) The higher-order DESA is effective for local AM-
signals, unless the denominators in (11) and (13) are
null. For example, an estimation of an infinite ampli-
tude is possible for the zeros of P2m+k(x), even though
the real signal has a finite energy. It is shown that the
TKEO is not effective for certain signals and can vio-
late the conditions of physical continuity required for
the amplitude and detected phase [21]. Although the
work mentioned deals with the continuous TKEO and
argues that the results are acceptable for narrowband
signals, such a situation can occur for the DEO.

(2) The higher-order DESA is complex and not competi-
tive in terms of computing time.

To overcome the previous problems, a more efficient and
faster algorithm based on a signal interference model and
adapted sampling step is proposed. In white-light interfer-
ometry, the signal can be modeled by an AM signal where the
envelope is Gaussian. We compute the DEO of the discrete
AM signal s(n) = a(n) cos(ωnTe) and a(n) = e−α(nTe−β)2 . The
maximum value of this function occurs at β/Te and corre-
sponds to the surface position. We have

a(n−m)a(n +m + k) = a2
(
n +

k

2

)
e−2α(m+k/2)2T2

e . (14)

In surface detection by CPM, the step Te is a multiple of
10 nm, and α, m, k are small enough to write the following
approximations:

e−2α(m+k/2)2T2
e � 1 =⇒ a(n−m)a(n +m + k) � a2

(
n +

k

2

)
.

(15)
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Using relation (15), Ψkm[a(n) cos(ωnTe)] can be approxi-
mated as follows:

Ψkm
[
a(n) cos

(
ωnTe + θ

)]
� a2

(
n +

k

2

)
sin
(
mωTe

)
sin
(
(m + k)ωTe

)
.

(16)

Finally,
√|Ψkm[a(n) cos(ωnTe + θ)]| is proportional to the

envelope a(n) translated by k/2 to the left-hand side. This
fact does not affect the results provided that relative heights
of the surface are measured and not absolute positions. An
interesting point concerns the generalized Teager-Kaiser ap-
proach (6) with k = 0, for which the resulting envelope is
not translated. Hence, under certain conditions relying on
the parameters Te, k, and m (see Section 3.3), such an oper-
ator is able to perform a fast demodulation procedure with
only a few samples.

3.3. Orders and optimal sampling time

Unless the condition (17) is satisfied, the detected envelope
is attenuated:∣∣ sin (mωTe

)
sin
(
(m + k)ωTe

)∣∣ = 1. (17)

In particular, (18) and (19) give an optimal detection:

ωmTe = (2q + 1)
π

2
, (18)

ω(m + k)Te = (2p + 1)
π

2
, (19)

where p, q ∈ N. Dividing (19) by (18) yields

k +m

m
= 2p + 1

2q + 1
. (20)

This factor should contain primary odd numerator and de-
nominator terms. A particular solution consists in choosing
an even integer k and odd integer for m. We notice k = 0 is
always a solution. For example, the Teager-Kaiser algorithm
with k = 0 and m = 1 is a solution that corresponds to the
FSA algorithm [4, 8]. Moreover, (18) shows the link between
the lag parameter m and the sampling time Te for a given
carrier frequency ω = 2πν:

Te = 2q + 1
4mν

. (21)

Thus, an optimal sampling time for a given lag parameter
can be computed, and inversely the lag parameter can be ad-
justed to take into account the sampling period. For instance,
an average wavelength of 640 nm in WLSI corresponds to a
value of ν = 1/320nm−1. Then, q = 0 gives one solution:
Te = 80nm, k = 0, m = 1. Inserting ν = 1/320nm−1, (21)
becomes

Te = 80
2q + 1
m

. (22)

(1) If a sampling period Te is given,
(a) computem according to (22), choosing a

value for q,
(b) compute k according to (20),
(c) whilem is too big, go to (a) and computem

according to the nearest value T̂e of Te (see
below).

(2) If a lag parameterm is given,
(a) choose q and compute Te according to the

formula (22),
(b) compute the order k according to (20),
(c) while k is too big, go to (a) and change the

q value.

Algorithm 1: General procedure of the proposed algorithm.

For example, a lag parameter of m = 3 leads to the choice
of an optimal step of (22) where the number 5(2q + 1) is a
multiple of m = 3 which results from the decomposition of
80 into primary integers (5 · 16). In this case possible values
of Te are

Te =


80nm if q = 1,

240nm if q = 4,

400nm if q = 7.

(23)

The aim of our work is to choose optimal values of Te, m,
and k in order to preserve the information. This also demon-
strates the possibility of undersampling the signal and pre-
serving the envelope. The general procedure is shown in
Algorithm 1.

In general, for steps 1(c) and 2(c), any values of k and m
which are too big are avoided. Actually, the detected envelope
is sensitive to the artifacts outside the frequency peak, due
to a low SNR in that area. To obtain adequate parameters,
the choice of m is based on the nearest integer T̂e of Te. For
example, a chosen sampling period of Te = 85nm gives a
value of m = 16, while periods T̂e = 90nm and T̂e = 80nm
give, respectively, m = 8 and m = 1. Finally, when Te =
85nm, the choice of the parameterm is based on the nearest
value T̂e = 80nm. Step 1(c) implies that a bounded error ε
(e.g., ε = 10%) to the distance must be fixed:

∣∣Te − T̂e

∣∣
T̂e

< ε. (24)

4. RESULTS

4.1. Experimental context

The proposed algorithms have been first applied to the pro-
filing of a step etched in silicon (Figure 2a) using the interfer-
ence microscopy system described in [22]. A series of xy im-
ages were scanned along z and a single xz image retrieved for
use in the present work. The image corresponds to a modu-
lated signal (1D or 2D) typical of such an optical system. The
peak of the fringe envelope gives the position of the surface.
Converting the OPD to time along the z-axis gives a sampling
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Figure 2: (a) An xz image of the sloping step and (b) reference profile.

time of 80 nanoseconds, while the width along the lateral x-
axis is 208µm. The size of the image depicted in Figure 2a is
128 × 130 pixels. Secondly, in order to compare these pro-
cedures, an objective measure of detection quality is intro-
duced. The assumption is based on the regular shape of the
studied material: this leads us to compare the final surface
with two regular lines corresponding, respectively, to the top
level and the bottom level of the step. Thus, the profile in
Figure 2b represents one possible reference profile. The ref-
erence is computed using a linear regression algorithm. Once
the reference shape is obtained, the quality detection fac-
tor (error rate) consists of the absolute mean error between
the processed and the reference surface. The measured sur-
face appears to be sloping because of the introduction of tilt
fringes by slightly tilting the reference mirror. The reasons
for using a sloping sample instead of one that is parallel to
the reference mirror is to observe how the envelope detec-
tion algorithm behaves towards variations in the positions of
the sampling points on the envelope, which is particularly
important in the subsampling case (see Section 4.5).

4.2. Surface profiling and optimal orders

A sampling step of Te = 80 nm leads to the following rule:

m = 2q + 1, k = 2(p − q). (25)

Hence, all possible odd values of m and even values of k are
theoretical solutions. To illustrate this result, the DEO Ψ01,
Ψ02,Ψ03,Ψ11,Ψ12,Ψ13,Ψ21,Ψ22,Ψ23 are applied to test data.
Figures 3a, 3b, and 3c show the envelopes associated with the
original signal along the optical z-axis. The efficiency of the
spline smoothing can be observed in Figures 4a, 4b, and 4c.
In particular, it can be noticed that the smoothed profiles are
almost symmetrical, which justifies, in this case, the Gaus-
sian approximation. Secondly, the most regular profiles are
given for the couples (k,m) = (0, 1); (0, 3); (2, 1); (2, 3) for

the smoothing or nonsmoothing case (see Figures 3a, 3c, 4a,
and 4c). These values give higher amplitude and an adapted
envelope. Figures 3b and 4b show the profiles for the couple
(k,m) = (2, 2): the amplitude is weaker and the envelope is
deformed both in the nonsmoothed and smoothed cases. To
obtain the final surface, the previous operators are applied
to all points the xz section. Table 1 lists the position error
versus different parameters (k,m) with and without spline
interpolation. The results confirm the previous assumptions
about the parameters k and m: the proposed operators Ψ01,
Ψ03,Ψ21,Ψ23 perform better thanΨ02,Ψ11,Ψ12,Ψ13,Ψ22; the
latter operators give the worst results with errors in position
greater than 70 nm. Figures 5a, 5c, and 5e show some profiles
obtained without interpolation by Ψ01, Ψ22, Ψ23 and the as-
sociated error rates. In the same manner, Figures 5b, 5d, 5f
show the spline interpolation effect on the same operators.

4.3. Surface detection using spline
and Gaussian techniques

The best previous operators, Ψ01, Ψ03, Ψ21, and Ψ23, are
selected to study their behavior regarding the spline and
Gaussian approaches. The robustness of Gaussian and spline
methods are measured relatively to window size and smooth-
ing parameter, respectively. For Gaussian approximation, in
practice a window W of several points around the top of
the envelope is used. The envelope is obtained using LSF
method. Figure 6a (resp., Figure 6b) compares the error rate
(nm) for Ψ01 and Ψ21 (resp., Ψ03 and Ψ23) according to the
size of W . According to Figure 6a, the Gaussian approach
performs better for Ψ01 (minimum error rate of 12.2 nm),
but gives the worst results for Ψ23 (minimum error rate of
16.8 nm). Figure 7a (resp., Figure 7b) compares the error rate
(nm) using splines for the operators Ψ01 and Ψ21 (resp., Ψ03

and Ψ23) according to the smoothing parameter λ. In any
case, the best smoothing parameter λ equals 0.1. One may
notice that the spline-based approach is more adapted to the
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Figure 3: Rough profile: (a) (k,m) = (0, 1); (b) (k,m) = (2, 2); and (c) (k,m) = (2, 3).
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Figure 4: Profile with splines: (a) (k,m) = (0, 1); (b) (k,m) = (2, 2); and (c) (k,m) = (2, 3).

Table 1: Position error (nm) with parameters (k, m).

(k, m) No interpolation Spline interpolation (λ = 0.1)

(0, 1) 25.6 14.5

(0, 2) 83.1 52

(0, 3) 30 13.6

(1, 1) 162.5 266.1

(1, 2) 155.6 127.9

(1, 3) 189.1 137

(2, 1) 56.4 14.1

(2, 2) 69.4 43.9

(2, 3) 60.6 13.4

generalized operators Ψ21 and Ψ23. Moreover these energy
operators are robust in regards to variations of λ: the posi-
tion error drops faster when using Ψ01 or Ψ03. Remark that
the operator Ψ23 is the most competitive when using splines.
Finally, the previous results can be explained as follows: the
more the profile tends to be asymmetric—which is the case
in the presence of higher-order functions—the less adapted is
the Gaussian model. In the next section, we show the mutual
influence between the symmetric assumption and the noise
level.

4.4. Robustness to noise data

The robustness to noise is an important aspect of any enve-
lope detection algorithm used in practical CPM systems for
surface roughness measurement. Indeed, the quality of sig-
nals can vary greatly depending on the nature of the sample.
For a given signal s(n) with an added noise w(n), the output
of Ψkm of the noisy signal s(n) +w(n) is given by

Ψkm
[
s(n) +w(n)

] = Ψkm
[
s(n)

]
+Ψkm

[
w(n)

]
+Φkm

[
s(n);w(n)

]
+Φkm

[
w(n); s(n)

]
.

(26)

The algorithms are studied in the presence of noise accord-
ing to different envelope estimations. A white noise w(n)
with a relative standard deviation of 2% (i.e., a value of
5.0 for 255 grey levels) is added to the original measure-
ment data. Figure 8 shows a square of a typical interpo-
lated envelope |Ψkm[s(n)]| superimposed with the cross-
terms |Φkm[s(n);w(n)]+Φkm[w(n); s(n)]|. The cross-energy
terms of (26) are lower than the function Ψkm[s(n)]. So, the
CDEO seems to follow the lack of correction between the
samples s(n) and w(n). As shown in Figure 8, the CDEO
are comparable for k = 0 and k = 2. On the other
hand, the noise being uncorrelated, we expect Ψ0m[w(n)] �
w(n)2 and Ψpq[w(n)] � Ψ0m[w(n)] for any p �= 0.
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Figure 5: Surface detection. Without splines: (a) (k,m) = (0, 1), err = 25.6nm; (c) (k,m) = (2, 2), err = 69.4nm; and (e) (k,m) = (2, 3),
err = 60.6nm. With splines: (b) (k,m) = (0, 1), err = 14.5nm; (d) (k,m) = (2, 2), err = 43.9nm; and (f) (k,m) = (2, 3), err = 13.4nm.

(k,m) = (0, 1)
(k,m) = (2, 1)

6 8 10 12 14 16 18 20 22

Window size

10

15

20

25

Po
si
ti
on

er
ro
r
(n
m
)

(a)

(k,m) = (0, 3)
(k,m) = (2, 3)

6 8 10 12 14 16 18 20 22

Window size

10

15

20

25

Po
si
ti
on

er
ro
r
(n
m
)

(b)

Figure 6: Position error for a Gaussian envelope: (a) (k,m) = (0, 1), (k,m) = (2, 1) and (b) (k,m) = (0, 3), (k,m) = (2, 3).

Figure 9a (resp., Figure 9b) shows a comparison between the
DEO Ψ01 and Ψ21 (resp., Ψ03 and Ψ23) in the presence of a
single white noise signal w(n) along the optical axis. The en-
ergy operatorsΨ21 andΨ23 clearly provide a lower noise level

with a zero mean, whereas Ψ01 and Ψ03 are proportional to
w2(n). Thus, the higher-order functions seem to better fil-
ter the noise components than the lower-order operators.
Finally, we compared both Gaussian and spline methods in
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Figure 7: Position error for spline envelope: (a) (k,m) = (0, 1), (k,m) = (2, 1) and (b) (k,m) = (0, 3), (k,m) = (2, 3).
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Figure 8: Typical envelope and CDEO applied to a noisy signal.

the presence of noise. In order to process the randomized ef-
fect due to the noise, each result is based on an average of
50 different simulations. Figure 10a (resp., Figure 10b) com-
pares the error rate (nm) obtained by Gaussian approach,
for Ψ01 and Ψ21 (resp., Ψ03 and Ψ23) according to the size of
W . In the same manner, Figure 11a (resp., Figure 11b) com-
pares the error rate (nm) obtained by spline approach forΨ01

and Ψ21 (resp., Ψ03 and Ψ23) according to λ. For Gaussian
method, the performances are sensitive to the window size.
This is particularly true for the DEO Ψ03 and Ψ23. Again,
the worst position errors are obtained by the third-order
DEO Ψ23 (5 nm higher), while the DEO Ψ21 is more stable.

The operator Ψ01 gives the best results for the Gaussian ap-
proximation (minimum error rate of 17 nm versus 18.5 nm
for splines). For spline approach, the performances related
to the smoothness parameter confirm the previous results:
the optimal value of λ equals 0.1, whileΨ21 andΨ23 are more
robust to λ. The operator Ψ23 is the most competitive when
splines are used and gives here the best results (minimum er-
ror rate of 15.3 nm versus 21 nm for Gaussians). Finally, the
spline technique seems to be well adapted or more competi-
tive for the higher-order operators Ψ21 and particularly Ψ23,
while the Gaussian approach suits better both other opera-
tors. However, the more the detected profile along the opti-
cal z-axis is regular, the better the surface detection will be.
Basically the splines based only on the distance criteria are
not adapted to this problem because they tend to follow the
noise. The global advantage of the Gaussian approach con-
sists in finding a given regular symmetric shape and this is
helpful to overcome the presence of noise, particularly when
such operators like Ψ01 or Ψ03 are more sensitive to the noise
(Figure 9). This is also its limit because a strong hypothesis
concerning the shape of the profile might miss the correct
surface position in the presence of an asymmetric operator
such as Ψ23.

4.5. Sample step

Using the method described in Section 3.3, possible val-
ues of k and m in regards to different sampling steps Te,
which are multiples of 20 nm (i.e., 20·p nm where p is an
integer), are computed. The performances of the associ-
ated functions Ψkm were then tested. Some results are sum-
marized in Figures 12, 13, and 14. For sampling steps of
Te greater than 80 nm, the DEO Ψ0m gives the best re-
sults for different lag parameters m when Te = 100 nm
(m = 4, Figure 12a), Te = 120 nm (m = 2, Figure 12b),
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Figure 9: DEO applied to a white noise signal with 5.0 standard deviation: (a) Ψ01 and Ψ21 and (b) Ψ03 and Ψ23.
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Figure 10: Position error for a Gaussian envelope with noisy data: (a) (k,m) = (0, 1), (k,m) = (2, 1) and (b) (k,m) = (0, 3), (k,m) = (2, 3).

Te = 240 nm (m = 1, Figure 13b), and Te = 240 nm
(m = 3 or m = 5, Figure 14a). Moreover, the energy op-
erators Ψ0m are computationally more interesting, because
only three samples are required. Other higher orders (k �= 0)
give errors in position between 15 and 25 nm for sampling
step Te = 120 nm (e.g., (k,m) = (4, 2), Figure 13a) or
Te = 240 nm (Ψ21 and Ψ25 give respective position errors
of 22.8 and 24.6 nm). However, improvements in the preci-
sion of the acquisition system, and the use of adapted pre-
filtering could improve these results for the undersampling
case.

5. CONCLUSION

In this work, higher-order energy operators based on the
Teager-Kaiser function for surface relief analysis using in-
terference microscopy are used. These functions are well
adapted to this problem since the data consists of signals
modulated along the optical z-axis. The discrete versions of
these functions are described by a set of two parameters, one
parameter corresponding to the order and the other one to
a lag, from which the choice of the adjacent samples around
the peak of the envelope can be adjusted. In particular these
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Figure 11: Position error for spline envelope with noisy data: (a) (k,m) = (0, 1), (k,m) = (2, 1) and (b) (k,m) = (0, 3), (k,m) = (2, 3).
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Figure 12: Surface profiles using undersampled data. (a) (k,m) = (0, 4), Te = 100 nm and (b) (k,m) = (0, 2), Te = 120 nm.
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Figure 13: Surface profiles using undersampled data. (a) (k,m) = (4, 2) and Te = 120 nm and (b) (k,m) = (0, 1), Te = 240 nm.

operators generalize the FSA technique. Secondly, instead of
using only an approach based on a Gaussian assumption
to extract the envelope, the cubic splines based on distance

and smoothness criteria are proposed. Both the Gaussian
and spline methods have been tested on a step etched in
silicon and sloping with respect to the reference mirror.



2814 EURASIP Journal on Applied Signal Processing

0 200

x (µm)

2

4.5

z
(µ
m
)

(a)

0 200

x (µm)

2

4.5

z
(µ
m
)

(b)

Figure 14: Surface profiles using undersampled data. (a) (k,m) = (0, 3), Te = 240 nm and (b) (k,m) = (0, 1), Te = 400 nm.

For the higher-order functions, the spline technique is com-
petitive in the presence of noise and should offer more flex-
ibility for a nonsymmetrical envelope. A general rule re-
lating the order, the lag parameter, and the sampling step
is introduced. For a given sampling period, there exists an
optimal choice of these energetic operators which leads to
flexible operators in terms of sampling step, precision, and
noise level. This flexibility is important for choosing the op-
timal algorithm for a given sample and measurement condi-
tions.
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trical engineering at Université Louis Pasteur, Strasbourg, France.
His current research interests include fuzzy image processing in
the astronomical field by the means of Markovian models, time-
frequency analysis, and nonlinear methods for surface shape mea-
surement in white-light interferometry and data fusion.

Paul C. Montgomery has been working at the Laboratoire
de Physique et Applications de Semiconducteurs (PHASE),
Strasbourg, France, since 1997, and employed as a researcher
with the CNRS since 1991. After graduating in physics at
Loughborough University of Technology, UK, in 1981, he gained
a Ph.D. degree in laser speckle and interferometry techniques for
NDT applications in materials at the same university in 1987. He
was a NATOResearch Fellow at the Centre d’Electronique deMont-
pellier, Montpellier University II, France, from 1987 to 1989 and
worked there until 1997 on III–V semiconductor defect analysis us-
ing IR transmission microscopy and interference microscopy, gain-
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