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Analysis of nonstationary signals is a challenging task. True nonstationary signal analysis involves monitoring the frequency
changes of the signal over time (i.e., monitoring the instantaneous frequency (IF) changes). The IF of a signal is traditionally
obtained by taking the first derivative of the phase of the signal with respect to time. This poses some difficulties because the
derivative of the phase of the signal may take negative values thus misleading the interpretation of instantaneous frequency. In this
paper, a novel approach to extract the IF from its adaptive time-frequency distribution is proposed. The adaptive time-frequency
distribution of a signal is obtained by decomposing the signal into components with good time-frequency localization and by
combining the Wigner distribution of the components. The adaptive time-frequency distribution thus obtained is free of cross-
terms and is a positive time-frequency distribution but it does not satisfy the marginal properties. The marginal properties are
achieved by applying the minimum cross-entropy optimization to the time-frequency distribution. Then, IF may be obtained as
the first central moment of this adaptive time-frequency distribution. The proposed method of IF estimation is very powerful for
applications with low SNR. A set of real-world and synthetic signals of known IF dynamics is tested with the proposed method as
well as with other common time-frequency distributions. The simulation shows that the method successfully extracted the IF of
the signals.

Keywords and phrases: instantaneous frequency, nonstationary signals, positive time-frequency distributions, matching pursuit,
minimum cross-entropy optimization, average frequency.

1. INTRODUCTION

The instantaneous frequency (IF) of a signal is a param-
eter of practical importance in situations such as seis-
mic, radar, sonar, communications, and biomedical appli-
cations [1, 2, 3, 4]. In all these applications the IF de-
scribes some physical phenomenon associated with them.
Like most other signal processing concepts, the IF of the
signal was originally used in describing FM modulation in
communications. In a typical radar application, the IF aids
in the detection, tracking, and imaging of targets whose
radial velocities change with time. When the radial veloc-
ity is not constant, the radar’s Doppler induced frequency
has a nonstationary spectrum, which can be tracked by
IF estimation techniques. Instantaneous frequency can also
be used as an analysis tool in watermarking of multime-
dia data such as audio and image [5, 6]. In the multi-
media security application, time-frequency distribution is
used as a tool to embed and to detect the watermark mes-
sage of the signals of interest. Also, in biomedical sig-
nal analysis, IF is used in studying the electroencephalo-
gram (EEG) signals to monitor key neural activities of the
brain.

The importance of the IF concept arises from the fact
that in most applications a signal processing engineer is con-
fronted with the task of processing signals whose spectral
characteristics (in particular the frequency of the spectral
peaks) are varying with time. These signals are often referred
to as nonstationary signals. A chirp signal is a simple exam-
ple of a nonstationary signal, in which the frequency of the
sinusoidal changes linearly with time.

It is theoretically difficult to describe the IF of a signal
since most signals are multicomponent, and it is difficult to
define a unique parameter for each time instant. Also, since
frequency is usually defined as a number of oscillations or
vibrations occurring in a unit time period, the association of
the words “instantaneous” and “frequency” is still controver-
sial.

Several authors have tried to define and estimate the IF
of a signal [2]. Current research interests in IF estimation in-
clude techniques based on spectrogram [7], maximum like-
lihood approach [8], time-varying AR models [9], short-
time Fourier transform [10], discrete evolutionary trans-
form [11], and time-frequency distribution [12]. In this
paper the IF is defined by using adaptive time-frequency
distribution (TFD). The paper is organized as follows.
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A review on the fundamental concepts of IF is discussed in
Section 2. The proposed technique of adaptive TFD is de-
scribed in Section 3. Results with synthetic signals and real-
world signals are discussed and compared with those ob-
tained from other TFDs in Section 4. A summary is given in
Section 5.

2. REVIEW

The classical definition of the IF of a signal is defined as

o) = 220, (1)

IF can be determined by taking the first central moment
(average frequency) of the bilinear time-frequency distribu-
tions (TFDs)

o W(t,w)dw

0l = W wde

(2)

Most of the popular time-frequency distributions be-
long to a general class called the Cohen’s class [3, 4]. Co-
hen’s class distributions are bilinear distributions, and are
generally computed as the Fourier transform of the time-
varying autocorrelation function [4]. In this class, Wigner-
Ville distribution is the most common and simplest in-
stantaneous frequency (IF) tool. It yields high joint time-
frequency resolution on many nonstationary monocompo-
nent signals. However, Wigner-Ville distribution (WVD)
performance is reduced significantly when applied on mul-
ticomponent signals [1, 13]. Due to its quadratic nature,
WVD suffers from cross-term effect and cannot satisfy some
of the requirements for TFR. Its distribution has negative
values leading to imprecise IF interpretation. The effects of
cross-terms can be suppressed significantly in the smoothed
versions of the Wigner-Ville such as Choi-Williams distri-
bution (CWD), pseudo Wigner-Ville distribution (PWVD),
smoothed pseudo Wigner-Ville distribution (SPWVD), and
reduced interference distribution (RID).

How well a TFD performs really depends on several fac-
tors such as the closeness and location between the signal
components, the level and types of noise, and how the IF
laws change with time (linear or nonlinear, rapid or nonrapid
change of frequency over time). Most Cohen’s class TFD de-
rived from WVD yield the IF by correct first-moment cal-
culation but this is often computationally expensive and is
adversely affected by noise. Therefore, there is an on-going
research to improve the performance of WVD in the pres-
ence of noise [14, 15].

Most TEDs such as WVD provide high signal energy con-
centration in time and frequency, therefore it is tempting to
try to use it to measure the spread of frequencies with time.
Unfortunately, the spread of the IF of the WVD is only posi-
tive for certain types of signals. Even when the spread is posi-
tive some negative distribution values may appear in the cal-
culation, and thus its usefulness is questionable. From the

literature it appears that still there are many unresolved is-
sues regarding the IF of the signal. (A detailed review on the
fundamentals of IF is available in [1].) It has been shown that
the usual way of interpreting the IF as the average frequency
at each time brings out unexpected results with Cohen’s class
of bilinear TFDs. If the IF is interpreted as the average fre-
quency, then the IF need not be a frequency that appears
in the spectrum of the signal. If the IF is interpreted as the
derivative of the phase, then the IF can extend beyond the
spectral range of the signal. It has been recently reported that
the estimation of IF of a signal using a positive TFD brings
out meaningful interpretation about the IF of the signal [16].
The motivation behind this paper is in adaptively construct-
ing a positive TFD suitable for estimating the IF of a sig-
nal.

3. ADAPTIVE TIME-FREQUENCY DISTRIBUTIONS

The purpose of this paper is to explore the best available
TED for estimating the IF of a signal. For simple applications
such as in the analysis of monocomponent signal, Cohen’s
class TFDs or model-based TFDs may be applied. It is widely
accepted that, in case of complex signals with multiple fre-
quency components, there is no definite TFD that will sat-
isfy all the criteria and still will give desired performance for
time-varying signal analysis and feature extraction.

Performance of Cohen’s class TFDs depends totally on
the kernel function. This signal-independent kernel acts as a
lowpass filter on the signal’s Wigner distribution to attenuate
the cross-terms and retain the autoterms. In the ambiguity
domain, the signal autoterms (AT) are centered at the origin
while the interference terms (IT) are located away from the
origin. The properties and ability to remove cross-terms of
a smoothed Wigner-Ville distribution depends totally on the
shape of the corresponding smoothing kernel in the ambigu-
ity domain [17, 18].

Ideally, value of the kernel lowpass filter should be one
in the autoterm region and zero in the interference term re-
gion; if the kernel is too narrow, suppression of IT also takes
away some of the AT energy leading to smearing of the TFD.
On the other hand, if the kernel shape is too broad, it can-
not suppress all the IF terms. This reason explains why a
fixed kernel design (not adaptive) cannot work well for all
signal types. High joint time-frequency resolution cannot be
achieved at the same time with good interference suppres-
sion. Figure 1 shows the shape of the kernel function (ambi-
guity domain) of different time-frequency estimators [17]. In
WVD, the kernel ¥r(7,v) = 1 V1,7, so it is an allpass filter,
no IT suppression is allowed, AT energy is reserved. There-
fore WVD has very high time-frequency resolution at the ex-
pense of cross-term presence.

It is worth noticing that there is a relation or constraint
between the kernel function and the number of requirements
the TFD satisfies. Strictly following the requirements of time-
frequency distribution would create some limitation on IT
suppression ability. For example, one of the important re-
quirements is the marginal property which states that (in am-
biguity domain) the kernel function ¥¢(0,7) = 1 Vv and
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FIGURE 1: The shape of different TFDs kernel: (a) WVD, (b) pseudo-WVD, (c¢) smoothed pseudo-WVD, (d) spectrogram (long window),
(e) spectrogram (short window), and (f) Choi-Williams distribution.

Yr(1,0) = 1 V7. Choi-Williams distribution (CWD) sat-
isfies this condition while pseudo-WVD (PWVD) does not.
This results in the presence of cross-terms in CWD if the sig-
nal components have the same time or frequency values.

In [19], a solution to the multicomponent problem was
given by proposing an algorithm to select an optimal TFD
from a set of TFDs for a given signal. The purpose of this
section is to address the same problem by constructing TFDs
according to the application in hand, that is, to tailor the
TFD according to the properties of the signal being analyzed.
It is appropriate to call such TFDs as adaptive TFDs. In the
present work, the concept of adaptive TFDs is based on sig-
nal decomposition.

In practice, no TFD may satisfy all the requirements
needed for instantaneous feature extraction and identifica-
tion for nonstationary signal analysis. In the method pro-
posed in this section, by using constraints, the TFDs are
modified to satisfy certain specified criteria. It is assumed
that the given signal is somehow decomposed into compo-
nents of a specified mathematical representation. By know-
ing the components of a signal, the interaction between them
can be established and used to remove or prevent cross-
terms. This avoids the main drawback associated with Co-
hen’s class TFDs; numerous efforts have been directed to de-
velop kernels to overcome the cross-term problem [12, 20,
21, 22,23, 24].

The key to successful design of adaptive TFDs lies in the
selection of the decomposition algorithm. The components
obtained from a decomposition algorithm depend largely on
the type of basis functions used. For example, the basis func-
tion of the Fourier transform decomposes the signal into
tonal (sinusoidal) components, and the basis function of the
wavelet transform decomposes the signal into components

with good time and scale properties. For TF representation, it
will be beneficial if the signal is decomposed using basis func-
tions with good TF properties. The components obtained by
decomposing a signal using basis functions with good TF
properties may be termed as TF atoms. An algorithm that
can decompose a signal into TF atoms is the MP algorithm
described in the next section.

3.1. Matching pursuit

The MP algorithm [25] decomposes the given signal using
basis functions that have excellent TF properties. The MP al-
gorithm selects the decomposition vectors depending upon
the signal properties. The vectors are selected from a family
of waveforms called a dictionary. The signal x(¢) is projected
onto a dictionary of TF atoms obtained by scaling, translat-
ing, and modulating a window function g(¢):

X(t) = Z angyn(t)a (3)
n=0
where
l - n .
0.0 = —=g( e liCapt el @

and a, are the expansion coefficients. The scale factor s, is
used to control the width of the window function, and the
parameter p, controls temporal placement. 1/,/s, is a nor-
malizing factor that restricts the norm of g, (¢) to 1. The pa-
rameters f, and ¢, are the frequency and phase of the expo-
nential function, respectively. y, represents the set of param-

eters (Su, P> fu> Pn)-
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In the present work, the window is a Gaussian-type func-
tion, that is, g(t) = 2V*exp(—nt?); the TF atoms are then
called Gabor atoms, and they provide the optimal TF resolu-
tion in the TF plane.

In practice, the algorithm works as follows. The signal is
iteratively projected onto a Gabor function dictionary. The
first projection decomposes the signal into two parts:

x(t) = (x,8y,) 8, () + R'x(2), (5)

where (x, g,,) denotes the inner product (projection) of x(t)
with the first TF atom gy, (t). The term R'x(t) is the residue
after approximating x(t) in the direction of g, (¢). This pro-
cess is continued by projecting the residue onto the subse-
quent functions in the dictionary, and after M iterations:

-1

M
x(t) = > (R"x,g,,)8, (1) + RMx(2), (6)

n=0

with R%x(t) = x(t). There are two ways of stopping the iter-
ative process: one is to use a prespecified limiting number M
of the TF atoms, and the other is to check the energy of the
residue RMx(t). A very high value of M and a very small value
for the residual energy will decompose the signal completely
at the expense of increased computational complexity.

3.2. Matching pursuit TFD

A signal-decomposition-based TFD may be obtained by tak-
ing the WVD of the TF atoms in (6), and is given as [25]

M-1

W(t,w) = Z | (R"x,gy,) |2Wgyn(f:w)

n=0
+ (R"x,8y,) (R"%,8),) Wi, o 1(0),

(7)

where Wg,, (t,w) is the WVD of the Gaussian window func-
tion. The double sum corresponds to the cross-terms of the
WVD indicated by W(,, . (¢, w), and should be rejected in
order to obtain a cross-term-free energy distribution of x(#)
in the TF plane. Thus only the first term is retained, and the
resulting TFD is given by

M-1
W (tw) = > | (R'%,g,) |  Wg,(t w). (8)
n=0

This cross-term-free TFD, also known as matching pursuit
TFD (MPTED), has good signal representation and is appro-
priate for analysis of nonstationary, multicomponent signals.
The extraction of coherent structures makes MP an attractive
tool for TF representation of signals with unknown SNR.

3.3. Minimum cross-entropy optimization
of the MPTFD

One of the drawbacks of the MPTEFD is that it does not sat-
isfy the marginal properties. If a TFD is positive and sat-
isfies the marginals, it may be considered to be a proper
TFD for extraction of time-varying frequency parameters
such as IF. This is because positivity coupled with correct
marginals ensures that the TFD is a true probability den-
sity function, and the parameters extracted are meaningful
[26]. The MPTFD may be modified to satisfy the marginal re-
quirements, and still preserve its other important character-
istics. One way to optimize the MPTFD is by using the cross-
entropy minimization method [27, 28]. Cross-entropy mini-
mization is a general method of inference about an unknown
probability density when there exists a prior estimate of the
density, and new information in the form of constraints on
expected values is available. The minimum cross-entropy op-
timization was first applied to TFDs, namely, spectrograms,
by Loughlin et al. [29]. A similar approach could be applied
to MPTFD, and the resulting TFD would qualify as a positive
TED. If the optimized MPTFD or OMP TFD (an unknown
probability density function) is denoted by M(¢, w), then it
should satisfy the marginals [29]

j M(t,0)dw = |x(t)|* = m(t), 9)

JM(t, W)t = |X(@)|* = m(w). (10)

Equations (9) and (10) may be treated as constraint equa-
tions (new information) for optimization. Now, M(t, w) may
be obtained from W’'(t,w) (a prior estimate of the density)
by minimizing the cross-entropy between them, given by
(29]

H(M, W) :J M(t,w)log(%)dtdw. (11)

As we are interested only in the marginals, OMP TFD may be
written as [28]

M(t,w) = W'(t,w) exp{ — (ao(t) + fo(w)) }, (12)

where the o’s and f8’s are Lagrange multipliers which may be
determined using the constraint equations. In the minimum
cross-entropy optimization, an iterative algorithm to obtain
the Lagrange multipliers and solve for M(t,w) is presented
next.

At the first iteration, we define

M (t,w) = W' (t,w) exp ( — ao(t)). (13)

As the marginals are to be satisfied, the time-marginal con-
straint has to be imposed in order to solve for ay(t). By im-
posing the time-marginal constraint given by (9) on (13), we
obtain [29]

m’(t))) (14)

ao(t) = In ( e
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where m(t) is the desired time marginal and m' () is the time
marginal estimated from W’'(t, w). Now, (13) can be rewrit-
ten as

m(t)
m'(t)

M'(t,w) = W (tw) (15)

At this point, M (t, w) is a modified MPTFD with the desired
time marginal; however, it need not necessarily have the de-
sired frequency marginal m(w). In order to obtain the desired
frequency marginal, the following equation has to be solved
[29]:

M*(t,w) = M'(t,w) exp ( — fo(w)). (16)

Note that the TFD obtained after the first iteration M (¢, w)
is used as the incoming estimate in (16). By imposing the fre-
quency marginal constraint given by (10) on (16), we obtain
(29]

m’(w))) (17)

m(w)

Bo(w) = In (

where m(w) is the desired frequency marginal, and m’ (w) is
the frequency marginal estimated from W’ (¢, w). Now, (16)
can be rewritten as [29]

m(w)

m (w)’

M?*(t,w) = M'(t,w) (18)

By incorporating the desired marginal constraint, the
M?2(t,w) TFD may be altered and need not necessarily give
the desired time marginal. Successive iteration could over-
come this problem and modify the desired TFD to get closer
to M(t, w). This follows from the fact that the cross-entropy
between the desired TFD and the estimated TFD decreases
with the number of iterations [28].

As the iterative procedure is started with a positive dis-
tribution W' (¢, w), the TFD at the nth iteration M"(t, w) is
guaranteed to be a positive distribution. Such a class of dis-
tributions belongs to the Cohen-Posch class of positive distri-
butions [26]. The OMP TFDs may also be taken to be adap-
tive TFDs because they are constructed on the basis of the
properties of the signal being analyzed.

As mentioned before, a method for constructing a posi-
tive distribution using the spectrogram as a priori knowledge
was developed by Loughlin et al. [29]. The major drawback
of using the spectrogram as a priori knowledge is the loss of
TF resolution; this effect may be minimized by taking multi-
ple spectrograms with different sizes of analysis windows as
initial estimates of the desired distribution. The method pro-
posed in this section starts with the MPTFD, overcomes the
problem of using multiple spectrograms as initial estimates,
and produces a high-resolution TFD tailored to the signal
properties. The OMP TFD may be used to derive higher mo-
ments by estimating the higher-order Lagrange multipliers.
Such measures are not necessary in the present work, and are
beyond the scope of this paper.

3 +
25
2+
, L5t
o
£
=
g
<

100 200 300 400 500 600 700 800 900 1000

Time samples

FIGURE 2: Monocomponent, nonstationary, synthetic signal “syn1”
consisting of a chirp, an impulse, and a sinusoidal FM component
(SNR =10 dB).

The IF of a signal can be computed as the first moment
of TFD(t, w) along each time slice, given by

S wTFD(t, w)

D =S 5D (1, 0)

(19)
IF characterizes the frequency dynamics of the signal.

4. RESULTS

The proposed method of extracting the IF of a signal was ap-
plied to a set of synthetic signals with known IF laws, and a
real-world example of knee joint sound signal.

4.1. Synthetic signal

The first simulation demonstrates the proposed technique’s
adaptivity by decomposing signals into atoms with known
TF properties. The synthetic signal “synl” is composed of
nonoverlapping chirp, transient, and sinusoidal FM compo-
nents, and is shown in Figure 2. “syn1” is an example of a
monocomponent signal with linear and nonlinear frequency
dynamics. To simulate noisy signal conditions, the signal
was corrupted by adding random noise to an SNR of 10dB
(“synl” in Figure 2) and 0dB (“syn2” in Figure 3). The fre-
quency behavior of the signals is shown in Figure 4.

The MP method has given a clear picture of the IF repre-
sentation: the three simulated components are perfectly lo-
calized in the TFDs shown in Figures 5 and 6. This is be-
cause the OMP TFD provides adaptive representation of sig-
nal components, and is due to the possibility that each high-
energy component is analyzed by the TF representation in-
dependent of its bandwidth and duration. The good localiza-
tion of transients produced by MP is because of the good TF
localization properties of the basis functions, whereas with



Estimation of Instantaneous Mean Frequency

2853

Amplitude

100 200 300 400 500 600 700 800 900 1000
Time samples
FIGURE 3: Monocomponent, nonstationary, synthetic signal “syn2”

consisting of a chirp, an impulse, and a sinusoidal FM component
(SNR = 0dB).
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FiGure 4: Ideal TFD depicting the frequency laws of the signals
“syn1” and “syn2” in Figures 2 and 3.

other techniques such as Fourier and wavelets, the transient
information gets diluted across the whole basis and the col-
lection of basis functions is not as large compared to that in
the MP dictionary.

The second simulation involves a group of two mono-
component signals and two multicomponent signals. The
monocomponent signals have IF of a line and a sine wave;
the multicomponent signals are made of two linear chirps ei-
ther in parallel or in crossing positions.

Commonly known TFD estimators such as Wigner-Ville
(WV) and pseudo Wigner-Ville (PWV) are used to calcu-
late the TFD of the testing signals and estimate their IF (first
moment in time). The results are then compared to those
obtained using matching pursuit decomposition technique.
Estimated IF values from TFD are compared to the known
IF laws of the signal using the cross-correlation coefficient.
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FIGURE 5: OMP TED of the signal “syn1” in Figure 2.
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FIGURE 6: OMP TFED of the signal “syn2” in Figure 3.

TaBLE 1: Correlation coefficients between the estimated and refer-
enced IF.

Correlation coefficients wv PWV OMP
Linear (monocomponent) 0.9609 0.9611 0.9569
Sine (monocomponent) 0.9997 0.9998 0.9956
Linear (multicomponent 1) 0.1004 0.0994 0.7936
Linear (multicomponent 2) 0.6924 0.6868 0.9120

In the case of multicomponent signals, it is assumed that
at any time instance, the energy of the individual compo-
nents is equal, therefore IF law is the average of the individual
IFs.

Table 1 gives the cross-correlation value between esti-
mated IFs and known IF laws with different IF estimators.
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F1Gure 7: Knee sound signal of a normal subject. Broken lines are
the adaptive segment boundaries denoting points of nonstationar-
ity (au denotes arbitrary acceleration units).

Performance of the TFD estimators varies depending on the
input signals’ characteristics such as linearity, rate of fre-
quency change, being mono- or multicomponent, and the
proximity of the frequency components in the signal. In the
case of monocomponent signals, all estimated IFs are highly
correlated with the corresponding IF reference. For multi-
component signals, WV and PWV became unreliable for es-
timating instantaneous mean frequency (IMF). Performance
of WV degrades when there are more than one frequency
component at a time instance and especially when the dis-
tance between the components is close. The matching pur-
suit decomposition technique (OMP TFD) has stable scores
throughout the test. In general, matching pursuit can adapt
well to different signal types because it can decompose the
signals into known atoms and become cross-term free.

4.2. Real-world example

The proposed technique was applied to real-world signals,
namely, the knee sound signals. Due to the differences in the
cartilage surface between normal and abnormal knees, sound
signals with different IFs are produced [30]. Figure 7 shows
the knee sound signal of a normal subject. The IF of the same
signal is shown in Figure 8. Automatic classification of the
sound signals using IF as a feature for pattern classification
has produced good results in screening abnormal knees from
normal knees [30].

5. CONCLUSION

A novel method of extracting the IF of a signal is proposed
in this paper. The extraction of IF is based on constructing
an adaptive positive TFD that satisfies marginal properties
and extracting the IF as a first central moment for each time
slice. The method was tested on synthetic signals with known
IF, and the results were found to be satisfactory even for low
SNR cases.

1000 2000 3000 4000 5000 6000 7000 8000

Time samples

FiGure 8: IF estimated from the OMP TFD of the normal knee
sound signal in Figure 7. Note that the unit of the frequency pa-
rameter is in Hz.
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