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The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in
noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross-
terms whenmulticomponents PPS are analyzed. In order to improve the performances of the HAF, the multi-lag HAF concept was
proposed. Based on this approach, several advanced methods (e.g., product high-order ambiguity function (PHAF)) have been
recently proposed. Nevertheless, performances of these new methods are affected by the error propagation effect which drastically
limits the order of the polynomial approximation. This phenomenon acts especially when a high-order polynomial modeling is
needed: representation of the digital modulation signals or the acoustic transient signals. This effect is caused by the technique used
for polynomial order reduction, common for existing approaches: signal multiplication with the complex conjugated exponentials
formed with the estimated coefficients. In this paper, we introduce an alternative method to reduce the polynomial order, based
on the successive unitary signal transformation, according to each polynomial order. We will prove that this method reduces
considerably the effect of error propagation. Namely, with this order reduction method, the estimation error at a given order will
depend only on the performances of the estimation method.
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1. INTRODUCTION

It is well known that there is no distribution of the Cohen’s
class which might produce the complete concentration along
the instantaneous frequency law (IFL) when this one is a
nonlinear function of time. Matching these types of signals
requires a new joint distribution with different instantaneous
frequency and group delay localization properties. One of the
most known techniques [5] is the unitary similarity transfor-
mation. Using this concept it is possible to construct, via the
warping operators, distributions to match almost any one-
to-one group delay or instantaneous frequency characteris-
tics. More precisely, by warping the analyzed signal accord-
ing to the nature of its IFL, it is possible to “linearize” the
time-frequency content of the considered signal. Neverthe-
less, this concept requires the knowledge of the nonlinearity
type, necessary to design the warping operators.

An alternative way to better match the nonlinear time-
frequency behavior of the analytical signals (i.e., whose
phase can be expressed as a finite series expansion) is to
use the high-order time-frequency distributions. Since the

polynomial phase signal constitutes a good model in a vari-
ety of applications (e.g., radar imagery, mobile communica-
tion systems [2], etc.), the high-order time-frequency meth-
ods have been developed.

Nowadays, these two research fields—generalization of
the classical time-frequency distribution and the data model-
ing via the polynomial phase signal concept—have received
considerable attention in the literature [1, 2, 3, 4] and the
references therein. It is primarily due to the number of pos-
sible applications, especially for signals having a nonlinear
time-frequency behavior: underwater signal processing, dig-
ital modulations, radar signals, and so forth. Mathematically,
a noiseless polynomial phase signal can be modeled as

s(t) = A exp
{
jφ(t)

} = A exp

[
j

N∑
k=0

akt
k

]
, (1)

where N is the polynomial order of the phase φ(t),
{ak}k=1,...,N are the polynomial coefficients, and A is the sig-
nal amplitude.
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One of the first approaches to estimate the parameters of
the PPSs is high-order ambiguity function (HAF) [1] which
provides good results for high signal-to-noise ratio. The un-
derlying idea is the transformation of the signal in a nonlin-
ear way in order to obtain a tone whose frequency is directly
related to the corresponding polynomial coefficient. The es-
timation accuracy of this method has been devised in [6].
Nevertheless, since the HAF is a nonlinear method, it suffers
from three basic problems: (1) noise-masking effects for low
signal-to-noise ratios (SNR), (2) cross-terms in the presence
of multicomponent PPSs (mc-PPSs), and (3) propagation of
the approximation error from an order to other.

Recently, different methods have been proposed in or-
der to eliminate the first two limitations. The key point is
to use the multilag concept in the HAF computing proce-
dure [2]: using a set of distinct lags, it is possible to elim-
inate the cross-terms and to improve the noise robustness.
Moreover, multiplying the HAFs obtained for some lag sets
(Product HAF—PHAF), the performances related to noise
robustness and cross-terms effect are considerably improved
with respect to multilag HAF (mlHAF) [2].

Since the Wigner-Ville distribution constitutes the clas-
sical tool for chirp signal processing, a natural way to esti-
mate the nonlinear IFL of a PPS is based on the polynomial
Wigner-Ville distribution (PWVD) introduced in [3]. The
concept of this method is based on the creation, in the time-
frequency domain, of a delta function around the IFL of the
signal. Later, the L-Wigner distribution is introduced in or-
der to provide a good concentration around the IFL, preserv-
ing the interesting properties of the Wigner-Ville distribu-
tion. These two concepts have been generalized in [7] start-
ing with the definition of the high-order polynomial deriva-
tives decompositions in terms of a linear combination of the
translated version of the polynomial. The generalized ambi-
guity function and the generalized Wigner distribution were
also proposed.

An alternative way for the estimation of the PPS param-
eters is the use of the Bayesian-like procedure. An interesting
approach, based on Markov chain Monte Carlo methods for
estimation of the a posteriori densities of the polynomial pa-
rameters, is proposed in [8]. The aim of this work deals with
a direct estimation of the polynomial coefficients, contrary
to the works previously mentioned.

In practical application, the use of the polynomial mod-
eling procedures requires to set up some parameters. Namely,
for the high-order ambiguity function computation, a lag set
has to be defined. This problem has been the subject of sev-
eral works. In [5], the authors proposed a criterion based
on the minimization of estimation variances. This work has
been generalized in [2] in the case of PHAF. Alternatively, by
using two coprime lag values, we can improve both the es-
timation accuracy and the evaluation of signal component
number [9].

In spite of the improved performances of these ap-
proaches, effect of propagation error remains a serious draw-
back when trying to estimate a high nonlinear IFL (underwa-
ter transitory signals, digital modulations, etc.). More specif-
ically, this effect reduces drastically the approximation order

for which an accurate estimation of the IFL is furnished. This
effect, firstly analyzed in [5], is caused by the polynomial or-
der compensation, currently performed by multiplying the
signal with the reference exp{− jâktk}, where âk is the esti-
mation of kth-order coefficient.

Thence, one way to reduce the error propagation effect
is to use a new method for polynomial order reduction. The
method proposed in this paper is based on the polynomial
order reduction by warping successively the analyzed signal.

Conventionally, a warping operator is designed to “lin-
earize” the time-frequency behavior of the analyzed signal.
For time-frequency analysis purposes, this “linearization” is
taken into account by applying a classical time-frequency
distribution (e.g., Wigner-Ville Distribution—WVD) on the
warped signal. In this paper, we propose an alternative use of
the warping operator concept.

We design a warping operator whose effect will be the
polynomial order reduction. In the context of the polyno-
mial phase modeling, this effect will be taken into account by
computing the mlHAF of the warped signal. Furthermore,
through several examples and performance analysis, we will
prove that this method reduces considerably the effect of er-
ror propagation.

This paper is organized as follows. In Section 2, the con-
cept of the mlHAF is presented. Section 3 describes the ma-
jor limitation of the mlHAF, related to the error propagation
effect. The main tools introduced in this paper—“unitary
operators”—will be shortly explained in Section 4. Further-
more, a new method for order compensation will be de-
picted in Section 5. Several signal processing examples will
be presented in Section 6. Section 7 presents some remarks
and ideas for future works.

2. MULTILAG HIGH-ORDER AMBIGUITY FUNCTION

The high-order ambiguity function (HAF) was originally de-
signed for estimation of a single component, constant ampli-
tude PPS, given by the relation (1). The HAF is defined as the
Fourier transform of the high-order instantaneous moments
(HIM) given, for a signal s(t), by the following relation:

HIMK
[
s(t); τ

]
�

K−1∏
q=0

[
s(
∗q)(t − qτ)

](
K−1
q

)
, (2)

whereK is the HIM order, τ is the lag, and (∗q) is an operator
defined as

s(
∗q)(t) =

s(t), if q is even,

s∗(t), if q is odd,
(3)

where q is the number of conjugate operator “∗” applica-
tions. From the computational point of view, the main prop-
erty of the HIM [1] states that the K th-order HIM can be
computed as the 2nd-order HIM of the (K−1)th-order HIM:

HIMK
[
s(t); τ

] = HIM2
[
HIMK−1

[
s(t); τ

]
; τ

]
. (4)
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Another remarkable property, which makes HIM an at-
tractive tool in the polynomial phase modeling context, is
that the Nth-order HIM of a PPS given in (1) is reduced to
a constant amplitude harmonic with amplitude A2N−2 , fre-
quency ω̃N , and phase φ̃N [1]:

HIMN
[
s(t); τ

] = A2N−1 exp j
(
ω̃N · t + φ̃N

)
, (5)

where

ω̃N = N !τN−1aN ,

φ̃N = (N − 1)!τN−1aN−1 − 0.5N !(N − 1)τNaN .
(6)

A natural idea to take advantage of this property is to
compute the Fourier transform of Nth-order HIM, which
leads to the HAF definition [1]:

HAFN [s;ω, τ] =
∫∞
−∞

HIMN
[
s(t); τ

]
e− jωt dt. (7)

Obviously, taking into consideration the relation (5), the
Nth-order HAF of the signal given in (1) peaks at the fre-
quency ω̃N . This property gives a practical method for poly-
nomial coefficients estimation [1]. Starting with the highest-
order coefficient aN , the maximum of the HAF is evaluated
at each order. The Nth-order polynomial coefficient is esti-
mated via

âN = 1
N !τN−1

argmax
ω

{∣∣HAFN (s;ω, τ)
∣∣}
. (8)

Using this estimation, the effect of the phase term of the
higher order is removed:

s(N−1)(t) = s(t) · e− jâN tN . (9)

Once theNth-order is reduced, the (N−1)th-order HAF
is computed. The coefficient aN−1 is also estimated thanks to
relation (8). The algorithm is iterated through the inferior
orders until all polynomial coefficients are estimated.

As it was illustrated in [1, 2], the classical procedure for
polynomial phase modeling, based on HAF method, is prac-
tically affected by some limitations regarding the noise ro-
bustness and the cross-terms presence. To overcome these
problems, the multilag HAF (mlHAF) concept has been ini-
tially proposed in [2]. In fact, the mlHAF is based on the gen-
eralization of the high-order instantaneous moment HIM
[2], based on the property expressed in relation (4):

mlHIMN
[
s(t); τN−1

]
= mlHIMN−1

[
s
(
t + τN−1

)
; τN−2

]
×mlHIM∗

N−1
[
s
(
t − τN−1

)
; τN−2

]
,

(10)

where τN = (τ1, τ2, . . . , τN ) is the set of lags. Applying the
Fourier transform, exactly as for the case of the HAF (7), we
obtain the mlHAF of the signal s(t):

mlHAFN
[
s;ω, τN

] = ∫∞
−∞

mlHIMN
[
s(t); τN

]
e− jωt dt. (11)

In practical applications, the choice of the lags set
(τ1, τ2, . . . , τN ) is often difficult to do. One possible solution,
proposed in [2], is

∏N−1
i=1 τi = const = τN−1. Based on the res-

olution capability criterion [2], it can be shown that τ = L/N
(L-signal length) represents the optimal choice.

Using the mlHAF computed for a lag set provided in this
manner, the polynomial coefficients are estimated with rela-
tion (8). In [2], the performances of themlHAF-based proce-
dure are proved. Nevertheless, there are still some limitations
related to the noise reduction and cross-terms. To surmount
these limitations, Barbarossa et al. [2] introduced the prod-
uct HAF (PHAF). The mlHAFs computed, via relation (11),
for different lag sets:

T =
{
τ

(l)

N−1
}
1≤l≤P ; τ

(l)

N−1 =
{
τi

}
1≤i≤N−1, (12)

are multiplied, obtaining in this way a robust method and a
cross-term free representation:

PHAF( f ;T) =
P∏
l=1

mlHAFN

[
s;

∏N−1
i=1 τ(l)i∏N−1
i=1 τ(1)i

f , τ(l)N−1

]
, (13)

where P is the number of the lags set used at each order.
The next example illustrates the PHAF superiority

(Figure 1b) with respect to mlHAF-based procedure. We
consider, as a test signal, a two component 3rd-order PPS:

s(t) = exp
[
j2π

(
0.25 · t − 0.05

L
t2 +

0.28
L2

t3
)]

+ exp
[
j2π

(
0.45 · t + 0.15

L
t2 − 0.12

L2
t3

)]
(L = 306)

(14)

embedded in an additive white Gaussian noise (SNR =
10dB).

In order to illustrate the differences between mlHAF and
PHAF, Figure 1 is structured in two parts associated with
both methods: Figure 1a—mlHAF and Figure 1b—PHAF.
Each part contains six subplots organized as follows: each
subplot row is associated to a signal component and, inside
the row, each subplot corresponds to mlHAF estimation of
order 3 (right subplot) to 1 (left subplot). The x-axis of each
subplot corresponds to the frequency and the y-axis to mag-
nitude. Values of estimated coefficients are also given. The
same rule is used throughout this paper.

As illustrated in this figure, in the mlHAF case, the
reduced number of lags affects the IFL estimation qual-
ity (Figure 1a). This result can be explained by the spu-
rious spectral peaks which appear in the mlHAF spectra
(Figure 1a—the subplots associated to each component at a
given order). Consequently, the estimation of the polynomial
coefficients becomes poor especially for lower orders.

On the other hand, the PHAF solves the noise robust-
ness and multicomponent estimation problems, providing
also a correct IFL estimation (Figure 1b). The PHAF-based
estimated values of the polynomial coefficients are close to
the real ones. This is also illustrated in Figure 1b by a cor-
rect localization of each PHAF maximum, corresponding to
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Figure 1: (a) mlHAF-based procedure versus (b) PHAF-based procedure.

the associated polynomial coefficient. Namely, as illustrated
by the subplots associated to each polynomial order, the co-
efficients belonging to each signal component are accurately
estimated.

Still, this “nice” result was obtained for a signal having a
smooth time-frequency behavior. If this condition is not ver-
ified (the signals whose phases are modeled by a high poly-
nomial order, such as underwater transient signals [17]), a
limitation that cannot be neglected acts. It is related to the
error propagation effect evaluated in the next section.

3. ERROR PROPAGATION EFFECT IN
POLYNOMIAL PHASEMODELING

The approach presented in this paper constitutes a partic-
ularization of the results obtained in [5]. In this section,
we will evaluate the dependence expression of the errors for
two consecutive orders and for a particular value of the lag.
The purpose is to provide a suggestive overview on the error
propagation effect.

We consider the signal given in (1) and we denote with
âN the estimation of the Nth-order polynomial coefficient.
In real applications [1], since the mlHAF-based polynomial
coefficients evaluation involves a spectral estimation step (8)
of a discrete sequence, the estimated value differs from the
theoretic one by εN = aN − âN . This quantity denotes the

approximation error and it is directly related to the number
of Fourier points and the SNR [2]. Using this estimate, we
remove the Nth-order coefficient via (9). Consequently, the
corresponding (N − 1)th-order PPS becomes

s(N−1)(t) = Aej(
∑N−1

k=0 aktk+(aN−âN ) tN ) = Aej
∑N−1

k=0 aktk · e jεN tN .
(15)

For simplicity reasons we consider A = 1. With relation

(2) and the notation s̃(t) = e j
∑N−1

k=0 aktk , the (N − 1)th-order
HIM is expressed as

HIMN−1
[
s(N−1)(t); τ

]
=

{N−1∏
q=0

[
s̃(
∗q)(t−qτ)

](
N−1
q

)}{N−1∏
q=0

[
e jεN (−1)

q(t−qτ)N
](

N−1
q

)}
.

(16)

According to the property stated by the relation (5), we
can write

HIMN−1
[
s(N−1)(t); τ

]
= e j[(N−1)!τ

N−2âN−1t+φ̂N−1], (17)

where φ̂N−1 = (N − 2)!τN−2aN−2 − 0.5(N − 1)!(N
− 2)τN−1âN−1 as obtained with relation (6).
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Figure 1: Continued.

This expression is the consequence of the main HAF
property previously presented: the (N −1)th-order HIM of a
given signal is a sinusoid with an angular frequency related,
via (6), to the (N − 1)th-order polynomial coefficient. Nev-
ertheless, due to the measurement error which occurs for the
Nth order, the coefficient âN−1 is not equal to the theoretical
(N − 1)th-order polynomial coefficient, aN−1, of signal s. To
find the relation between the errors at two successive orders,
N and (N − 1), we evaluate the two products which appear
in relation (16).

With property (5) and observing that s̃(t) = e j
∑N−1

k=0 aktk is
an (N − 1)th-order PPS, which could be ideally obtained if
εN = 0, the first product becomes

HIMN−1
[
s̃(t); τ

] = N−1∏
q=0

[
s̃(
∗q)(t − qτ)

](
N−1
q

)

= e j[(N−1)!τ
N−2aN−1t+φN−1],

(18)

where φN−1 can be expressed, thanks to (6), as follows:

φN−1 = (N − 2)!τN−2aN−2 − 0.5(N − 1)!(N − 2)τN−1aN−1.
(19)

The second term of the product in (16) can be writ-
ten, applying the Newton’s binomial formula to the term
(t − qτ)N , as

N−1∏
q=0

[
e jεN (−1)

q(t−qτ)N
](

N−1
q

)

= exp

[
jεN

N−1∑
q=0

(−1)q
(
N−1
q

)
(t − qτ)N

]

= exp

[
jεN

N−1∑
q=0

(−1)q
(
N−1
q

) N∑
i=0

(
N
i

)
ti(−q)N−iτN−i

]
.

(20)

Since the peak corresponding to a polynomial coefficient
is extracted by the HAF (i.e., Fourier transform of the HIM),
at a given order, in the expression of the corresponding HIM,
we always look for the term which weights t. Consequently,
from (20), we retain the term

exp

[
jNεNτ

N−1
N−1∑
q=0

(−1)q
(
N−1
q

)
(−q)N−1

]
t. (21)
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Figure 2: Error propagation effect (N = 8, L = 10).

Introducing (17), (18), and (21) in (16) and identifying
the terms weighting t, we obtain the relation between the es-
timation of the (N − 1)th-order polynomial coefficient (âN ),
the theoretical (N − 1)th-order polynomial coefficient (aN ),
and the error at order N(εN ):

(N − 1)!τN−2âN−1

=(N−1)!τN−2aN−1+NεNτ
N−1

N−1∑
q=0

(−1)q
(
N−1
q

)
(−q)N−1.

(22)

With the notation εN−1 = âN−1 − aN−1, (22) becomes

εN−1 = NεNτ

(N − 1)!

N−1∑
q=0

(−1)q
(
N−1
q

)
(−q)N−1

︸ ︷︷ ︸
Sq

. (23)

In [12], it is shown that the summation Sq is (N − 1)!.
With this result, the dependence between the errors existing
for two successive polynomial orders is

εN−1 = NεNτ (24)

and, using the optimal value of the lag previously defined,
that is, τ = L/N , we get

εN−1 = LεN . (25)

This relation shows that the error existing at a given order
is transmitted at the inferior order by multiplication of L—
the number of samples of the signal. Figure 2 illustrates this
dependence for L = 10 samples.

From this figure, it can be observed that even if the mea-
surement error for the highest order is insignificant, its effect
through the lower orders becomes deeply disturbing.

On the other hand, we remark that this effect becomes
“visible” after the polynomial estimation at some orders. It
explains why the error propagation effect does not affect

the polynomial estimation when a small approximation or-
der is required (3 or 4). Anyway, there are many situations
which impose a high approximation order: digital modula-
tions, transitory signals, and so forth. One example is given
in Figure 3 where we process, via the PHAF-based phase
modeling method, a sixth-order PPS whose analytical form
is given by

s(t) = exp
[
j2π

(
0.17 · t − 9.7 · 10−4 · t2 − 2.35 · 10−7 · t3
+ 3.8 · 10−8 · t4 + 2.8 · 10−10 · t5
− 3.29 · 10−13 · t6)].

(26)

The theoretical IFL is plotted in Figure 3b. Note that the
SNR is about 30 dB.

The PHAF-based estimation procedure was applied,
starting with order 6. The successive PHAF spectra are de-
picted in Figure 3a. The values of the estimated coefficients
are depicted in the Table 1. They are obtained via the relation
âN = 1/N !τN−1argmax f |PHAFN ( f ;T)|, where τ = L/N

(L is the signal length) and α̂N = argmax f |PHAFN ( f ;T)| is
the normalized frequency coordinate associated to the most
energetic Nth-order PHAF peak. This value ranges between
−0.5 and 0.5 and, for the considered example, they are given
in Table 1. Dividing such value by N ! τN−1 explains the very
small values of the polynomial coefficients at the high orders.

For higher orders (6, 5), PHAF performs quite well: the
propagation error is insignificant, but its effect is accumu-
lated and it becomes disturbing for lower orders (down to 5).
The error propagation is materialized by a more accentuated
presence of spurious peaks with order decreasing (Figure 3a).
The estimated coefficients (Table 1) are different in compar-
ison with the real coefficients given in (26). Consequently,
the estimation of the polynomial coefficient is not correct
(Figure 3b); the evaluated IFL does not match the correct
time-frequency behavior of the analyzed PPS.

This example illustrates the error propagation effect that
was analyzed in this section. We have shown that this effect is
caused by the classical phase removing the step illustrated in
(15).

In the Section 5 we propose an alternative method to
reduce the polynomial order. This method is based on the
warping technique concept briefly presented in the next sec-
tion.

4. WARPING OPERATOR PRINCIPLE

Unitary similarity transformations furnish a simple powerful
tool for generating new classes of joint distributions based
on concepts different from time, frequency, and scale [10].
These new signal representations focus on the critical charac-
teristics of large classes of signals, and, hence, prove useful for
representing and processing signals that are not well matched
by current techniques. Actually, it is possible to construct (via
unitary transformations) distributions to match almost any
one-to-one group delay or instantaneous frequency charac-
teristics. One of the most used unitary transforms is the axis
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Figure 3: PHAF-based phase modeling of a sixth-order PPS. (a) Classical phase removing. (b) Theoretical and estimated IFL.

Table 1: Polynomial coefficients estimated by PHAF.

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

Values 0.425 −0.112 −0.0961 0.084 0.4714 −0.0817
â1 â2 â3 â4 â5 â6

Values 0.425 −3.634 · 10−4 −1.54 · 10−6 7.82 · 10−9 2.8 · 10−10 −3.29 · 10−13

transformation [10], defined for a signal s(t) as an operatorU
on L2(R), whose effect is given by

(Us)(x) = ∣∣ẇ(x)∣∣1/2
s
[
w(x)

]
, (27)

where w is a smooth, one-to-one function, including a large
subclass of unitary transformations [10]. The term ẇ(x) de-
notes the first-order derivative of the function w. The func-
tions w(x) = ex and w(x) = |x|k sgn(x), k �= 0, provide

examples of useful warpings [13, 14]. Generally, these func-
tions are chosen to ensure the “linearization” of the signal
time-frequency behavior. So, for a signal expressed as

s(t) = e j2π( f0t+βm(t)), (28)

where m(t) is the frequency modulation law and β the rate
modulation, the associated warping function is given by [10]

w(t) = m−1(t). (29)
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Figure 4: Warping technique: implementation scheme.

As shown in [10], the application of this operator pro-
duces the linearization of the time-frequency content.

Practically, the application of a warping operator is sim-
ilar to the coordinate changing stated by the warping law.
In [17] an efficient implementation scheme is proposed:
the warping operator application effect is done according to
stages depicted in Figure 4.

Firstly, the original axis of the signal, whose length is L,
is oversampled with a rate u. The new finest sampling grid
leads to a more accurate evaluation of the new coordinates
[17]. This operation is done in the second stage. Using the
discrete version of the warping function, w(x), we evaluate
the new coordinates. Since the warping function gives gener-
ally a noninteger number, an interpolation procedure will be
used to generate the appropriate integer coordinates. Then,
the warped signal is generated by resampling the signal for
these new coordinates.

Furthermore, the linearization of the time-frequency
content is taken into account by computing the Wigner-Ville
distribution (WVD) of the warped signal [17]:

WVDUs(t̃, f̃ ) =
∫
(Us)

(
t̃ +

τ

2

)
(Us)∗

(
t̃ − τ

2

)
e− j2π f̃ τdτ.

(30)

The new time-frequency coordinates are related to the
standard ones via [16]

t̃ = w−1(t), f̃ = f ẇ
(
w−1(t)

)
, (31)

where w−1 is the inverse function of w(t). We note that this
relation is available in the case of time warping operators. An
alternative formula can be devised for the frequency warping
operators [16, 17].

The following example illustrates the property of warp-
ing operators related to the linearization of the time-
frequency behavior. For a signal given by

s(t) = e j2π(0.38t−0.02t
1.3), (32)

the associated warping operator can be defined as [15]

U1/k : w(t) = t1/k, k = 1.3,

ẇ(t) = 1
k
t(1/k)−1.

(33)

According to this operator, the mathematical expression
of the warped signal is

(
U1/ks

)
(t) = e j2π(0.38t

1/1.3−0.02t). (34)

The evaluation of the WVD of this signal in original
time and frequency coordinates leads to a complicate time-
frequency behavior as indicated in Figure 5.

Obviously, the nonlinear time-frequency content of the
original signal (Figure 5a) is transformed, via WVD com-
puted for conventional time-frequency coordinates, in a new
nonlinear time-frequency form.

Therefore, in order to take advantage of the warped form
of the oversampled signal, the WVD must be computed, via
(30), in the new time and frequency coordinates associated to
the warping operators. Thanks to (31) for the warping func-
tion devised in (33), the new time-frequency coordinates are
written as

t̃ = w−1(t) = tk,

f̃ = f ẇ
(
tk

) = f
1
k

(
tk

)1/k−1 = f

k
t1−k

(35)

and, for k = 1.3,

t̃ = t1.3, f̃ = f

1.3
t−0.3. (36)

As indicated in Figure 4, in order to obtain a more ac-
curate evaluation of the warped time axis, an oversampling
procedure is applied to the original signal [17]. The oversam-
pled signal, su, represented in a finer time axis coordinates,
tu, is warped via (33). The WVD of the warped version of
the oversampled signal ((U1/ksu)(tu), u = 10) is plotted in
Figure 6b. Comparing this figure with Figure 5b, we remark
that the time-frequency content of (U1/ksu)(tu) is less nonlin-
ear than the one of the (U1/ks)(t) (Figure 5b). This is related
to the advantage of the warping application on the oversam-
pled signal.

As we can see in Figure 6a, due to the term 0.38t1/1.3u of the
warped signal (34), nonlinearity is still visible in the interval
of 0÷ 100 samples. That is, even if the signal is warped after
oversampling, this term is again visible. This nonlinearity is
eliminated by computing, using (30), the WVD for new time
and frequency coordinates depicted in (36). As illustrated in
Figure 6b, the result is a linear time-frequency structure.

This example illustrates the capability of the warping op-
erator concept to linearize the time-frequency content of a
signal. As theoretically shown in [17], two steps are involved.
Firstly, the signal is warped according to its modulation na-
ture. Secondly, the WVD of warped signal is evaluated, using
the new time and frequency coordinates.

Both theoretical and practical issues, previously pre-
sented, suppose some knowledge on the time-frequency na-
ture of the signal (the warping function w(t) has to be
known). Nevertheless, there are some applications where this
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Figure 5: WVD of (a) original signal (WVDs(t, f )) and (b) warped signals in conventional time-frequency coordinates (WVDU1/K s(t, f )).
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Figure 6: The effect of the warping operator in new time-frequency plane. (a) WVDU1/K su (t, f ). (b) WVDU1/K su(t̃, f̃ ).

information is not available (passive sonar and radar fields,
recognition of digital modulations, etc.). In order to deal
with these situations, many methods have been developed
[18, 19]. The common used technique is the signal decom-
position on an extended dictionary composed of elemen-
tary functions with nonlinear time-frequency behavior. Af-
ter the signal decomposition with such dictionary, the ex-
tracted elementary functions are optimally represented in a
time-frequency plane, using the associated warping opera-
tors. These methods, which constitute the generalization of
the chirplet-transform-based methods [20], are often lim-
ited in practical applications by a required huge dictionary
size.

An alternative to characterize the nonlinear time-
frequency behavior of an unknown signal is described in the
next section. This method is based on the polynomial phase
modeling associated with a new polynomial phase removing
procedure. The objective is to reduce the error propagation
effect described in Section 3. Conceptually, a warping oper-
ator is designed to replace the polynomial order reduction
stage described in relation (9). This warping operator is gen-
erally defined as

Uk : wk(t) =
(
t

âk

)1/k

, (37)

where âk is the estimation of the kth-order polynomial co-
efficient. The following example illustrates the effect of this

warping operator for a 3rd-order PPS given by

s(t) = e j2π(0.37t−4.6·10
−4·t2+3·10−6·t3) (38)

whose WVD is plotted in Figure 7a.
Applying the warping operator (37) (for k = 3 and â3

close to the real value a3) to the oversampled version of the
signal (38), we obtain the warped signal

(
U3su

)(
tu

) ≈ e j2π[0.37(tu/â3)
1/3−4.6·10−4(tu/â3)2/3+tu]

= e j2π[0.37(tu/â3)
1/3−4.6·10−4(tu/â3)2/3] · e j2πtu ,

(39)

where tu is the time axis issued after oversampling (u = 10).
As shown in [17] and practically illustrated in the ex-

ample previously presented, the effect of the time-frequency
content linearization provided by a general warping opera-
tor is “visible” by the evaluation of the WVD for new time-
frequency coordinates.

Alternatively, if the warping operator is designed to re-
duce the polynomial order of a signal, its effect will be de-
picted by computing the HIM corresponding to the new
polynomial order. Knowing that the 2nd-order HIM is the
classical instantaneous correlation function which appears in
the WVD definition [16], the effect of 2nd-order HIM appli-
cation is equivalent to the evaluation of the WVD. For this
reason, we illustrate, in Figure 7c, the WVD of that signal
(39). We remark that a linear time-frequency structure was
generated. This result explains, for the example considered
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Figure 7: Polynomial order reduction using the warping operator (37). (a) WVD of original signal. (b) Warping law. (c) WVD of warped
signal.

above, that the warping operator defined by (37) has, in as-
sociation with the correspondingHIM, an order-reducing ef-
fect.

Applying the warping procedure described in Figure 4,
some artifacts appear in practice (Figure 7c). They are caused
by the errors induced by numerical computations. As illus-
trated in these figures, these artifacts are not disturbing since
the main linear time-frequency component is much more
energetic. However, these errorsmight be reduced by increas-
ing the oversampling rate u [17]. Nevertheless, from com-
putational tractability point of view, this rate cannot be ar-
bitrarily high. In the case of the warping operator defined
by the expression (37), the method for the evaluation of the
value of oversampling parameter u is described in the ap-
pendix.

The polynomial order removing of the warping operator
defined in (27) is used in the following section. Also, we will
prove, in a more rigorous manner, that it is possible to suc-
cessively reduce the order of the phase modeling by iterative
applications of this warping operator.

5. WARPED-BASED POLYNOMIAL
ORDER REDUCTION

In this section, we will mathematically prove the property of
the warping operator (37) to reduce the polynomial order of
the signal.

We consider an Nth-order PPS defined by the relation
(1). Using a modern version of the HAF-based polynomial
modeling procedure (PHAF operator or the approach pro-
posed in [11]), we can obtain an accurate estimate of the
Nth-order polynomial coefficient, denoted by âN . With this
estimation, we design, via (37), the corresponding warping
operator:

wN : t
UN−→ t(N)

w = wN (t) =
(

t∣∣âN∣∣
)1/N

. (40)

Some implementation issues associated to this warping
operator are commented in the appendix. Mathematically,
the effect of the associated unitary operator U on the PPS

is depicted, in the new time coordinate, as

(
UNs

)(
t(N)
w

)
= Ã exp

{
jaN

[(
t∣∣âN∣∣

)1/N]N}
· exp

{
j
N−1∑
m=0

am
[
t(N)
w

]m}

= Ã exp

{
j
N−1∑
m=0

am
[
t(N)
w

]m}
︸ ︷︷ ︸

(N−1)th-order PPS(s(N−1))

· exp
{
j
aN∣∣âN∣∣ t

}
︸ ︷︷ ︸

residual r(t)

,

(41)

where

Ã = A

√√√√√ 1
N

∣∣âN∣∣
(

t∣∣âN∣∣
)1/N−1

. (42)

Since all the terms in (42) are known and nonrandom,
the induced amplitude modulation can be compensated, for
example, through an amplitude weighting using the inverse
of relation (42).

Therefore, the result of the warping transform of anNth-
order PPS consists in a (K − 1)th-order PPS with a new tem-
poral variable t(N)

w . The (N − 1)th-order PHAF of this signal,

with respect to the variable t(N)
w , peaks to a frequency loca-

tion related, via relation (6), to the aN−1 coefficient. To prove
that, we compute the (N−1)th-order HIM of theUNs signal:

HIMN−1
[
UNs

(N); τ
]

= HIMN−1
[
s(N−1)

(
t(N)
w

)
; τ

] ·HIMN−1
[
r(t); τ

]
.
(43)

The first term of the product (43) is a sinusoid associated
to the (N − 1)th-order polynomial coefficient:

HIMN−1
[
s(N−1)

(
t(N)
w

)
; τ

] = A2N−2e j(N−1)!aN−1τ
N−2t(N)

w (44)

because it represents the (N − 1)th-order HIM of the (N −
1)th-order PPS which appears in (41).
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From property (4), it is easy to show that the second term
of (41) is 1 for N > 2:

HIM2
[
r(t); τ

] = e j(aN /âN )t · e− j(aN /âN )(t−τ) = e j(aN /âN )τ ,

HIM3
[
r(t); τ

] = e j(aN /âN )τ · e− j(aN /âN )τ = 1,

...

HIMN
[
r(t); τ

] = 1 · 1 = 1, N ≥ 3.

(45)

Consequently, the (N − 1)th-order HIM of the UNs signal is

HIMN−1
[
UNs

(N); τ
](
t(N)
w

)
= A2N−2e j(N−1)!aN−1τ

N−2t(N)
w . (46)

As stated by this relation, for N > 2, the (N − 1)th-order
HIM of the warped signal UNs does not contain any term
related to the residual r given by (41). Consequently, the es-
timated value of the Nth-order coefficient does not act in the
estimation procedure of the (N − 1)th order. Actually, from
a theoretical point of view, we could eliminate the |âN | from
the structure of the warping operator defined in (40). In this
case, we should have obtained the same results as in (45): the
Nth-order HIM of r(t) is 1 for N > 2. This proves the inde-
pendence of the estimation procedure at a given order on the
coefficients already estimated.

Hence, as shown in the appendix, the presence of |âN |
in the definition of the warping operator (40) is dictated by
practical reasons: the necessary values of the oversampling
rate will have a reasonable value.

Then, we use the PHAF-basedmethod to estimate the co-
efficient aN−1. Via (37), with this new value we construct a
new warping operator used to reduce the (N − 1)th order as
described in (41).

This procedure is iterated until all polynomial coeffi-
cients are estimated. Practically, the new polynomial estima-
tion method is depicted in the block diagram (Figure 8).

Unlike the classical order reduction technique (relation
(9)), the warping-based order reduction eliminates from the
expression of the warped signal the terms related to the es-
timation at the higher orders. In consequence, as it is the-
oretically proved by the relations (41) and (46), the perfor-
mances of the PHAF-based estimation procedure theoreti-
cally depend only on the result at the given order. This fact,
proved by relations (43), (44), (45), and (46), constitutes the
main important feature of the warping operator (40) and its
use for order reduction (41).

However, as the error analysis (provided through simula-
tions) will prove in the next section, the estimation error at
a given order is practically independent of the errors which
occur for higher orders.

6. SIMULATION RESULTS

To demonstrate the capabilities of the warping-based order
reduction, some simulation results will be presented. The
method proposed in the previous section will be compared
with the conventional PHAF (i.e., the polynomial order re-
duction is done by the classical procedure depicted in (9)).

PHAF-based estimation
method

s(m−1) Ums(m) s(m−1) Ums(m)

s(m)(t)
{
ãm

}
m=1,N

Phase term removing
Construction of
warping operator

Over sampling + warping

Figure 8: Polynomial coefficient estimation based on warping
phase order removing.

Since the PHAF performing for a polynomial order larger
than 3 is influenced by the error propagation effect, we limit
our simulations to the third order. However, as shown in
Section 3, the error propagation effect becomes “visible” af-
ter three iterations. Consequently, the choice of third-order
phase modeling in our simulation should be enough to ob-
jectively compare the second-order reducing procedures.

The performances of this new approach are firstly proved
in terms of estimation error variances as a function of
the SNR. We assumed a 3rd-order PPS, given by the rela-
tion (38), embedded in white Gaussian noise. Two meth-
ods have been compared—PHAF-based estimation method
and PHAF-based estimation method with warping-based
phase compensation (denoted by “WarpComp” method).
Each variance was computed for 500 trials and, for each or-
der, it was compared with the Cramer-Rao bound (CRB)
evaluated in [21].

The first plot proves that, for the highest-order, the per-
formances of both methods are similar: the estimation of the
highest-order coefficient (a3) depends on the noise level. The
next two pictures show that, using the warping-based phase
compensation, the estimation performances remain close to
the CRB as in the case of the highest-order coefficient. Con-
sequently, the performances of this method depend only on
the noise, whereas in the PHAF case they are affected also by
the error propagation phenomenon.

The statistical analysis provided by the Figure 9 shows
clearly the reduction of the error propagation effect which
acts in the case of the classical phase order compensation (re-
lation (9)).

The cancellation of the error propagation effect is also
illustrated in Figure 10, using the signal proposed in (14).

The estimated values of the polynomial coefficients and
of the PHAF peaks are depicted in Table 2.

As the figure shows, the proposedmethod for polynomial
order reduction provides a much more accurate estimation
of the IFL than methods which use the classical phase order
reduction (for comparison see Figure 3).

As pictured in the PHAF subplots at each order, the de-
pendence between the errors occurred at these orders is prac-
tically eliminated: there is a single prominent peak corre-
sponding to the polynomial coefficients. No spurious peaks,
independent of the considered order (Figure 10a), are identi-
fied. Accordingly, these coefficients are accurately estimated
with respect to the real one (26). Therefore, the polynomial
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Figure 9: The estimated variances versus SNR.

order reduction through the procedure based on the warp-
ing operators improves considerably the performances of the
PHAF-based estimation procedure.

This property is also pointed up in Figure 11, in the case
of some signals of different types: sinusoidal frequency mod-
ulation (SFM) (Figure 11a), a signal emitted by a Diesel en-
gine [23] (Figure 11b), and a signal received from an under-
water mobile emitting a chirp (Figure 11c).

For each of those signal types, we note that the polyno-
mial approximations provided by the proposed approach are
correctly related to the theoretical IFL or with the informa-
tion provided by a classical method (spectrogram). In the
case of the signal emitted by a Diesel engine (Figure 11b), the
polynomial phase approximation provided by the proposed

approach is expressed as

φ(t) = 539 · t + 2.32 · 10−2 · t2 − 1.32 · 10−6 · t3
+ 3.67 · 10−11 · t4 − 5.4 · 10−16 · t5. (47)

In Figure 11c, we analyze the signal received from an un-
derwater moving source (having a velocity v = 6m/s and
an acceleration a = 0.07m/s2; the source moves away from
the receiver). We supposed that the source transmits a chirp
given by exp[ j2π(410t + 2.48t2)] and the receiver sampling
frequency is Fs = 1000Hz. In this configuration, as shown
in [24], received signal phase becomes a fourth-order poly-
nomial. Its estimation, provided by the method proposed in
this paper, is given by

φ(t) = 0.41 · t + 3.82 · 10−4 · t2
− 3.15 · 10−6 · t3 + 1.63 · 10−9 · t4. (48)

Its representation is illustrated in Figure 11c. Using the
estimated values of the polynomial coefficients (relation
(48)) we can evaluate the motion parameters [24].

As illustrated by these examples, the warped-based phase
modeling provides a high-order polynomial parametric in-
formation about the analyzed process which consists in a set
of polynomial coefficients. This information could be used in
various applications such as modulation recognition process,
machinery diagnostic, or motion tracking [24].

The following example shows the capability of the pro-
posed approach to deal with multicomponent real signals. As
a test signal we have considered an emission of an underwater
mammal (Tursiop Marineland) (see Figure 12) [22].

The IFLs of the time-frequency components of the ana-
lyzed signal are superposed on the spectrogram of this signal.
Two remarks can be made. Firstly, the approximation shapes
given by the polynomial modeling are characterized by an
improved resolution with respect to the spectrogram one.
Secondly, the analytical description of the time-frequency
content offers useful information about the studied process.

These results have been obtained for an assumed highest
polynomial order. Nevertheless, in practice, this assumption,
based on a priori information, is often inappropriate to the
studied processes. Two cases could be devised.

In the first case, the estimation of the highest order of
polynomial approximation is directly related to the analyzed
processes. For example, in the case of an underwater mobile
emitting a chirp, a second-order motion law (characterized
by a velocity and an acceleration) transforms the received
signal in a fourth-order PPS [19]. It is the case of the signal
studied in Figure 11c where the fourth-order warping-based
phase modeling provides the information about the motion
law.

In the second case, if the analyzed processes cannot be the
subject of any physical assumption or the signal cannot be
assimilated to a PPS, the choice of the highest order is often
accomplished after many tries and a postprocessing analysis.

Generally, the choice is based on a tradeoff between the
accuracy of the IFL estimation and the artifacts induced by
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Figure 10: PHAF-based phase modeling using warping order reduction. (a) Warped-based phase removing. (b) Theoretical and estimated
IFL.

Table 2: Polynomial coefficients estimated by PHAF using warping order reduction.

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

Values 0.1719 −0.2987 −0.0147 0.381 0.4714 −0.0817
â1 â2 â3 â4 â5 â6

Values 0.1719 −9.762 · 10−4 −2.36 · 10−7 3.798 · 10−8 2.8 · 10−10 −3.29 · 10−13

an order higher than a real one. To illustrate this tradeoff,
we consider the high-order warping modeling of the signal
defined in (26), embedded in a white Gaussian noise (SNR =
10 dB).

If the approximation order is 4, inferior to the real one
(N = 6), the 5th- and 6th-order coefficients are ignored.
Consequently, the estimated IFL does not contain all the real

IFL details (Figure 13a). Alternatively, if the approximation
order is superior to 6 (Figure 13b), the estimation of the 7th-
and 8th orders is strongly affected by the noise. More pre-
cisely, since the 6th-order PPS is noise corrupted, the esti-
mations of 7th- and 8th-order coefficients are given by the
spectral peaks associated to the noise. These ones are plotted
in Figure 14.
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Figure 11: Several signal-type characterizations by warped-based high-order phase modeling. (a) SFM characterization via WarpComp. (b)
Characterization, via WarpComp, of a diesel engine sound. (c) Characterization, via WarpComp, of a received signal from a moving target.

The estimated values of the polynomial coefficients are
given in Table 3.

These coefficients, which ideally (noise free signal)
should be 0, have nonzero values as indicated in Figure 14.
Using the proposed approach, these nonzero values do not
affect the lower-order estimations. This is proved by the
position of PHAFs peaks which are almost similar to the
ones obtained when the correct highest order has been used
(see Figure 10). Nevertheless, the 7th and 8th polynomial
coefficients introduce some artifacts in the IFL structure
(Figure 13b).

In practice, the problem becomes more difficult since the
signal is not analytical (its phase cannot be expressed in a
polynomial form). However, since the general purpose of the
polynomial phase modeling is to provide a more detailed and
accurate description of the time-frequency content, an arbi-
trary order, even if it is not the “optimal” one, gives better re-
sults than the conventional methods (Cohen’s class, warping-
based TFRs, etc.) do.

The proposed method (warping-based phase modeling)
allows, by reducing the error propagation effect, to increase
the highest polynomial order of the classical procedures for
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Table 3: Polynomial coefficients estimated by PHAF using warping order reduction.

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8

Values 0.1719 −0.2987 −0.0147 0.381 0.4714 −0.0817 0.0355 0.0493

â1 â2 â3 â4 â5 â6 â7 â8

Values 0.1719 −9.762 · 10−4 −2.36 · 10−7 3.798 · 10−8 2.8 · 10−10 −3.29 · 10−13 1.01 · 10−15 1.02 · 10−17
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Figure 12: Polynomial phase modeling of an underwater signal us-
ing the warped-based order reduction. φ1(t) = 7105 · t− 2.69 · t2 +
7.619 · 10−4 · t3 − 8.21 · 10−8 · t4; φ2(t) = 6050 · t − 3.68 · t2 + 14 ·
10−4 · t3 − 2.26 · 10−7 · t4; and φ3(t) = 6250 · t − 1.77 · t2 + 4.4 ·
10−4 · t3 − 5.6 · 10−8 · t4.

polynomial phase modeling. As illustrated in the previous
examples, this property leads naturally to an improved time-
frequency analysis of the signal.

7. CONCLUSION AND FUTUREWORK

In this paper we proposed a new method for polynomial or-
der reduction, based on the axis warping principle, applied
to each polynomial order. This method constitutes an attrac-
tive way to attenuate the effect of error propagation which
inherently appears in any PPS estimation algorithm. Actu-
ally, the involved warping operator is designed to reduce, in
association with the HIM evaluated for the current order, the
phase order of the signal as illustrated in Section 4. Thence,
its iterative application associated with a modern polynomial
estimation method (e.g., PHAF) guarantees good results for
the polynomial modeling procedure.

Conceptually speaking, the proposed technique is an al-
ternative to the conventional tandem warping operator and
bilinear time-frequency distribution. Since the last one is de-
vised to linearize the time-frequency content of the signal,
the new warping operator structure and the HIMs provide a
new way for polynomial coefficient estimation. In this con-
text, the main property is the reduction of the error influence
between the polynomial orders.

In practical terms, the performing of this combination
does not involve the knowledge about the nature of the sig-
nal as the classical warping operators do. Assuming a poly-
nomial phase model, which is generally for a large class of
signals, the phase modeling is done by applying iteratively
an order-depending warping operator and the main tool for
polynomial coefficient estimation, the HIM.

The statistical analysis and the several examples prove
that this method can be successfully used to estimate the
polynomial model of a general class of signals. Transitory sig-
nals, digital modulations, and speech are only some exam-
ples of signals whose polynomial phase modeling demands a
high polynomial order. Consequently, the proposed method
represents a potential solution to deal with these signals. As
demonstrated by the results, this method, associated with a
modern procedure of polynomial coefficient estimation (e.g.,
PHAF) gives accurate time-frequency information about the
analyzed signal. The examples of real signals show the poten-
tial of the proposed approach to manage with real-life sig-
nals.

In further works, assuming a polynomial model of the
signal, we will try to define its generalized warping operator
as the mathematical composition of the particular operators
defined for each polynomial order.

On the other hand, since the “optimal” highest order
seems to be depending on the time-frequency structure of
the signal, we intend to study some criteria to establish, in a
given context (application and signal type), the most appro-
priate highest order. For example, one of the criteria could
be the correlation between the real signal and the synthesized
one from the estimated polynomial coefficients.

In the application field, the development of a sig-
nal classification and identification system, based on the
proposed approach, will be investigated. In the configu-
ration, this method can be used as a feature extraction
stage. The information concerning different signals is pro-
vided by the polynomial coefficients issued by estima-
tion. Based on the richness of the information given by
these coefficients, we can separate two signals with a close
time-frequency behavior. As a practical application, we in-
tend to apply this feature extraction method in the pas-
sive oceanic acoustic tomography [19]. The particularity
of this application—signals emitted by marine mammals—
involves the use of a method able to provide an accurate
characterization of these signals. Knowing that these sig-
nals have generally a nonlinear time-frequency behavior, the
method proposed in this paper constitutes a potential solu-
tion in the context of the passive oceanic acoustic tomogra-
phy.
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Figure 13: Influence of the choice of the highest polynomial order. (a) Fourth-order phase modeling. (b) Eighth-order phase modeling.
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Figure 14: Noise influence on the polynomial phase modeling via WarpCom using an overestimated polynomial order (8 instead of 6).
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APPENDIX

CONSIDERATIONS ON COMPUTATIONAL ISSUES

In this section some implementation details are treated to
demonstrate several claims included in this paper. First, we
demonstrate the motivation for the warping operator de-
fined in (40) giving also a method for choosing the oversam-
pling rate at each order.

We consider firstly the warping operator defined by (33).
Its discrete version can be written as

w[i] = (i∆)1/k, k ≥ 1, i = 1, . . . ,L, (A.1)

where ∆ is the sampling rate of the original signal x and L
is the number of samples. According to this expression, the
points of the new time axis, tw, produced by this operator will
be nonuniformly spaced. The distances between two consec-
utive points, ∆w, are given by

∆w[i] = w[i + 1]−w[i] = [
(
i + 1)∆

]1/k − (i∆)1/k

= [
(i + 1)1/k − i1/k

]
∆1/k, i = 1, . . . ,L− 1.

(A.2)

For an initial sampling rate ∆ = 1 and L = 64 samples,
the values of ∆w provided by the warping operator (A.1) of
order 3 are plotted in Figure 15.

As proved by (A.2) and illustrated in Figure 15, the dif-
ferences between the points of warped axes tw are inferior to
the initial sampling rate ∆. Consequently, by using the orig-
inal sampling rate, the samples of the warped signal cannot
be evaluated for these points. This can be solved by consider-
ing an oversampling procedure before the evaluation of the
warped signal samples (as indicated in Figure 4). The value
of oversampling rate u must be sufficiently high to ensure
the evaluation of warped signal for all new time coordinates.
Mathematically, this condition can be written as

∆

u
≤ min

1≤i≤L−1
{
∆w[i]

}
. (A.3)

This condition, mentioned in [17], states that points
generated by oversampling of rate u are closer than the

minimum of the sampling rate requested by the new warped
axis. This ensures that all the warped time coordinates will be
taken into account.

With the observation that the minima of the ∆w[i] is ob-
tained for i = L − 1, a general method for the choice of u is
expressed as

u ≥ ∆1−1/k[
L1/k − (L− 1)1/k

] . (A.4)

The expression (A.4) introduces an inferior limit for the
oversampling rate. To avoid situations when a large value of
u affects the computational performances of the machine, we
set u as this bound.

Furthermore, samples of the warped signal xw are ob-
tained from samples of the oversampled signal x̃ by a linear
interpolation procedure, used also in [17]:

xw
(
w[i]

) = x̃
(
i∆u

)
+

[
x̃
(
(i + 1)∆u

)− x̃
(
i∆u

)](
w[i]− i∆u

)
,

(A.5)

where ∆u = ∆/u is the new sampling rate.

Remark 1. We consider the example considered in Figure 7:
k = 3, L = 256, and ∆ = 1. According to (A.4), the suffi-
cient value for the u should be larger than 121. In order to
avoid the increasing of signal length with a such large value,
the idea, we adopted, consists in introducing the associated
polynomial coefficient ak in the structure of the warping op-
erator as follows:

w[i] =
(

i∆∣∣âk∣∣
)1/k

, k ≥ 1, i = 1, . . . ,L. (A.6)

Namely, since the value of ak is superiorly limited by
π/k!∆(∆τ)k−1 (τ lag used for HIM computation) (condition
imposed by a Nyquist-like depicted in [1, page 398]), the in-
ferior borne of u,

u ≥ 1[
L1/k − (L− 1)1/k

](
∆∣∣âk∣∣

)1−1/k
, (A.7)

decreases through a more reliable value from the computa-
tional point of view.

For the previous example (a3 = 2 · 10−6), the new value
of u is about 20.

In conclusion, the presence of âk in the warping operator
structure defined in (40) is justified by practical considera-
tions: the complexity remains reasonable in spite of signal
length or phase order.

According to this new definition, it is easy to show that
the value of u at the polynomial order k can be computed as

u(k) = 1[
L1/k − (L− 1)1/k

](
∆∣∣âk∣∣

)1−1/k
. (A.8)
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