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New batch and adaptive methods are proposed to optimize the Volterra kernels expansions on a set of Laguerre functions. Each
kernel is expanded on an independent Laguerre basis. The expansion coefficients, also called Fourier coefficients, are estimated in
the MMSE sense or by applying the gradient technique. An analytical solution to Laguerre poles optimization is provided using
the knowledge of the Fourier coefficients associated with an arbitrary Laguerre basis. The proposed methods allow optimization
of both the Fourier coefficients and the Laguerre poles.
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1. INTRODUCTION

Truncated Volterra filters constitute a class of nonrecursive
polynomial models. The main drawback of these models is
their over-parameterization. During the last decade, in order
to reduce the parametric complexity, that is, the number of
parameters, three main approaches have been considered:

(i) approximations by means of parallel-cascade struc-
tures composed of linear filters and memoryless non-
linearities [1];

(ii) algebraic decompositions of matrices or tensors
formed with kernels coefficients [2, 3, 4];

(iii) expansions on discrete orthonormal bases of functions
(OBFs) [5, 6, 7, 8].

The class of OBFs generally used for modeling purposes is
that of rational orthonormal bases, such as Laguerre basis
[9].

The Laguerre functions have the property of being com-
pletely characterized by a single parameter, the Laguerre pole.
When expanding a Volterra kernel on a Laguerre basis, the

parsimony of the expansion is strongly linked to the choice
of the Laguerre pole. Expansion of Volterra kernels on La-
guerre basis was first suggested by Wiener in the 1960s [10].
To the best of our knowledge, Campello et al. [11] were the
first to derive an analytical solution to the Laguerre pole op-
timization for Volterra models. They have generalized the
work in [12] and have also shown that using independent
bases to expand each kernel gives better results than the use
of a single basis. However the obtained analytical solution re-
quires the knowledge of the Volterra kernels. Consequently, a
step of Volterra kernels estimation or reconstruction is nec-
essary before computing the Laguerre pole. Note again that
this method is applicable if and only if the kernels are strictly
causal, that is, the Volterra kernels must satisfy the unit delay
condition.

In order to circumvent these limitations, a new approach
is proposed in this paper. It is based on the knowledge of the
estimated expansion coefficients, also called Fourier coeffi-
cients, rather than the Volterra kernels coefficients. The re-
quirement of a unit delay is relaxed. This approach can be
viewed as a generalization of both [11, 13].
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The organization of the paper is as follows. In the next
section, the principle of Volterra model expansion on OBFs
is recalled and the analytical expression of the optimal La-
guerre pole is given for each kernel. In Section 3, this pole
is expressed in terms of the Fourier coefficients relative to
the corresponding kernel. Then batch and adaptive identifi-
cation methods are described in Section 4 and illustrated by
means of simulation results in Section 5, before concluding
the paper in Section 6.

2. BACKGROUND

A discrete-time Pth order Volterra filter is generally described
as

y(n) =
P∑

p=1

∞∑
n1=0

· · ·
∞∑

np=0
hp
(
n1, . . . ,np

) p∏
j=1

u
(
n− nj

)
, (1)

where u, y, and hp denote respectively the input, the out-
put, and the pth-order Volterra kernel. Boyd and Chua [14]
showed that any causal, time invariant, nonlinear system,
with fading memory, can be represented to an arbitrary de-
gree of accuracy by a finite expansion in Volterra series.

Considering the expansion of the kernel hp on an OBF,
Bp = {bk,p}∞k=0, yields

hp
(
n1, . . . ,np

) = ∞∑
k1=0

· · ·
∞∑

kp=0
gk1,...,kpbk1,p

(
n1
) · · · bkp ,p(np

)
,

(2)

where the coefficients

gk1,...,kp =
∞∑

n1=0
· · ·

∞∑
np=0

hp
(
n1, . . . ,np

)
bk1,p

(
n1
) · · · bkp ,p(np

)
(3)

are called the Fourier coefficients associated with the pth-
order kernel. When the used OBFs are Laguerre functions,
the set of Fourier coefficients {gk1,...,kp} constitutes the La-
guerre spectrum of the pth-order kernel.

Then the input-output equation (1) can be rewritten as

y(n) =
P∑

p=1

∞∑
k1=0

· · ·
∞∑

kp=0
gk1,...,kp

p∏
j=1

skj ,p(n), (4)

where skj ,p(n) =
∑∞

i=0 bkj ,p(i)u(n− i).
The OBFs used in this work are discrete-time Laguerre

functions defined by their z-transforms as follows:

Bk,p(z) =
√
1− ξ2p

z

z − ξp

(
1− ξpz

z − ξp

)k

. (5)

One can note that only the parameter ξp, called the Laguerre
pole, characterizes the set of Laguerre functions {bk,p(i)}.

The derivations presented in this paper are mainly based
on the two following properties of Laguerre functions [13,
15, 16]:

kbk,p(i) = −
(i + 1)ξp
1− ξ2p

bk,p(i + 1) +
i
(
1 + ξ2p

)
+ ξ2p

1− ξ2p
bk,p(i)

− iξp
1− ξ2p

bk,p(i− 1),

(6)

∂bk,p(i)

∂ξp
= 1

1− ξ2p

(
(k + 1)bk+1,p(i)− kbk−1,p(i)

)
. (7)

In the sequel, the basis associated with each kernel is sepa-
rately optimized. We define the following cost function:

Jp = 1

p
∥∥hp

∥∥2
∞∑

k1=0
· · ·

∞∑
kp=0

(
k1 + · · · + kp

)
g2k1,...,kp , (8)

where ‖hp‖2 =
∑∞

n1=0 · · ·
∑∞

np=0 h
2
p(n1, . . . ,np). It was shown

in [11] that this cost function is an upper bound of the mod-
eling squared error due to the truncation with a finite order
of the Laguerre expansion.

By defining

Qj,p = 1
p

p∑
l=1

Mj,l, (9)

with j = 1, 2 and

M1,l = 1∥∥hp

∥∥2
∞∑

n1=0
· · ·

∞∑
np=0

nlh
2
p

(
n1, . . . ,np

)
,

M2,l = 1∥∥hp

∥∥2
∞∑

n1=0
. . .

∞∑
nl−1=0

∞∑
nl=1

∞∑
nl+1=0

· · ·

∞∑
np=0

nlhp
(
n1, . . . ,nl−1,nl,nl+1, . . . ,np

)
× hp

(
n1, . . . ,nl−1,nl − 1,nl+1, . . . ,np

)
,

(10)

where l = 1, . . . , p, the cost function (8) can be explicitly ex-
pressed in terms of the Laguerre pole as follows:

Jp =
(
1 +Q1,p

)
ξ2p − 2Q2,pξp +Q1,p

1− ξ2p
. (11)

This result follows the same steps of calculation as in [11].
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Note that the numerator of the cost function is a convex,
differentiable, and nonnegative function defined on the open
convex set P = {ξp ∈ � : |ξp| < 1} while its denominator
is a concave function, differentiable and positive on P . Con-
sequently, Jp is a pseudoconvex function inside P . Then any
solution to ∂Jp/∂ξp = 0 is a global minimum of Jp [17]. It is
straightforward to show that this minimum is reached for

ξp,opt =
ρo,p −

√
ρ2o,p − 1, if ρo,p ≥ 1,

ρo,p +
√
ρ2o,p − 1, if ρo,p ≤ −1,

(12)

where

ρo,p =
2Q1,p + 1

2Q2,p
. (13)

It should be noted that ρo,p is a characteristic of the kernel hp

since it depends only on Qj,p, j = 1, 2, and therefore on the
Volterra kernel coefficients hp(n1, . . . ,np).

3. OPTIMAL POLES EXPRESSIONS BASED ON
THE LAGUERRE SPECTRA

The optimal pole (12) is related to ρo,p that depends on the
Volterra kernel hp, which means that it is necessary to carry
out an estimation of the kernel before determining the op-
timal pole. In this section, an expression of ρo,p in terms of
the Laguerre spectrum of the pth-order kernel expanded on
any Laguerre basis is investigated. Such an expression will en-
able us to determine the optimal pole directly from the es-
timated Laguerre spectrum without computing the Volterra
kernel coefficients.

Similarly to definitions (9) and (10) associated with the
Volterra kernel coefficients, we define the following quanti-
ties that depend on the Laguerre spectrum of the pth-order
kernel:

Rj,p =
p∑

l=1
Tj,l, (14)

with j = 1, 2, and

T1,l =
∞∑

k1=0
· · ·

∞∑
kp=0

(
2kl + 1

)
g2k1,...,kp , (15)

T2,l = 2
∞∑

k1=0
· · ·

∞∑
kl−1=0

∞∑
kl=1

∞∑
kl+1=0

. . .
∞∑

kp=0
klgk1,...,kl−1,kl ,kl+1,...,kp

× gk1,...,kl−1,kl−1,kl+1,...,kp ,
(16)

where l = 1, . . . , p.

Example 1. For the quadratic case, that is, p = 2, we get

T1,l =
∞∑

k1=0

∞∑
k2=0

(
2kl + 1

)
g2k1,k2 , l = 1, 2,

T2,1 = 2
∞∑

k1=1

∞∑
k2=0

k1gk1,k2gk1−1,k2 ,

T2,2 = 2
∞∑

k1=0

∞∑
k2=1

k2gk1,k2gk1,k2−1,

R1,2 = T1,1 + T1,2, R2,2 = T2,1 + T2,2.

(17)

Now, the objective is to express Qj,p, j = 1, 2, as a func-
tion of Rj,p. First of all, one can notice that, as described
in Appendix A, the property (7) combined with formula (3)
yields

∂

∂ξp
gk1,...,kp =

1
1− ξ2p

p∑
l=1

((
kl + 1

)
gk1,...,kl−1,kl+1,kl+1,...,kp

− klgk1,...,kl−1,kl−1,kl+1,...,kp
)
.

(18)

For example,

∂

∂ξp
gk1,k2 =

1
1− ξ2p

((
k1 + 1

)
gk1+1,k2 − k1gk1−1,k2

+
(
k2 + 1

)
gk1,k2+1 − k2gk1,k2−1

)
.

(19)

Thanks to relation (18), the following lemma is derived.

Lemma 1. R1,p and R2,p are linked by means of their deriva-
tives with respect to ξp as follows:

∂R1,p

∂ξp
= −2

1− ξ2p
R2,p, (20)

∂R2,p

∂ξp
= −2

1− ξ2p
R1,p. (21)

The proof of this lemma is based on a simple but long
calculation summarized in Appendix B.

By remembering that ‖hp‖2 is a characteristic of the non-
linear system to be identified, and consequently indepen-
dent of the Laguerre basis, the orthonormality of the La-
guerre basis allows to get the following expression: ‖hp‖2 =∑∞

k1=0 · · ·
∑∞

kp=0 g
2
k1,...,kp . Then, from the definitions of R1,p

and of Jp, a simple calculation yields

R1,p = 2p
∥∥hp

∥∥2Jp + p
∥∥hp

∥∥2, (22)
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thus

∂R1,p

∂ξp
= 2p

∥∥hp

∥∥2 ∂Jp
∂ξp

. (23)

From (22), one can note that R1,p is strictly positive. Conse-
quently R2,p is strictly decreasing inside P .

We derive a second lemma proved in Appendix C.

Lemma 2. The terms Qj,p associated with the Volterra kernel
hp and Rj,p, j = 1, 2, associated with its Laguerre spectrum are
linked by

R1,p =
p
∥∥hp

∥∥2
1− ξ2p

(
2
(
1 + ξ2p

)
Q1,p − 4ξpQ2,p + 1 + ξ2p

)
, (24)

R2,p =
2p
∥∥hp

∥∥2
1− ξ2p

(− 2ξpQ1,p +
(
1 + ξ2p

)
Q2,p − ξp

)
. (25)

Obviously, Qj,p can be expressed as a function of Rj,p,
j = 1, 2, by solving the linear system of (24) and (25):

Q1,p =
(
1 + ξ2p

)
R1,p + 2ξpR2,p

2
(
1− ξ2p

)
p
∥∥hp

∥∥2 − 1
2
,

Q2,p =
2ξpR1,p +

(
1 + ξ2p

)
R2,p

2
(
1− ξ2p

)
p
∥∥hp

∥∥2 .

(26)

Thus ρo,p, given by (13), can be expressed as a function of
R1,p and R2,p that depend only on the Laguerre spectrum as
follows:

ρo,p =
(
1 + ξ2p

)
R1,p + 2ξpR2,p

2ξpR1,p +
(
1 + ξ2p

)
R2,p

. (27)

This result is summarized by the following theorem.

Theorem 1. The pole of the optimal Laguerre basis, associated
with the expansion of the Volterra kernel hp, is obtained from
the Laguerre spectrum, associated with the expansion of the
same kernel on an arbitrary Laguerre basis characterized by the
pole ξp, as follows:

ξp,opt =
ρo,p −

√
ρ2o,p − 1, if ρo,p ≥ 1,

ρo,p +
√
ρ2o,p − 1, if ρo,p ≤ −1,

(28)

where ρo,p is given by the formula (27).

This result is particularly useful. When the Volterra ker-
nel expansion on an arbitrary Laguerre basis characterized
by the pole ξp is infinite, ρo,p can be recovered in using the
associated Laguerre spectrum as stated by formula (27) with
(14), (15), and (16) for the calculation of R1,p and R2,p.

4. PARAMETERS ESTIMATIONMETHODS FOR
LAGUERRE-VOLTERRAMODELS

In practical cases, the expansion of the Volterra kernels on a
Laguerre basis is truncated to a finite-order K . Consequently,
for a given Laguerre pole ξp, by using truncated expressions
of (15) and (16), we get ρ̂o,p, which is an approximation of
ρo,p, the actual characteristic of the system. This approxima-
tion depends on the Laguerre pole and on the Laguerre spec-
trum, via R1,p and R2,p. For a fixed pole ξp, the optimization
of the Laguerre spectrum improves the approximation ρ̂o,p. It
is then possible to determine the optimal pole corresponding
to the current approximation ρ̂o,p. This process is iterated un-
til convergence. For a fixed Laguerre pole, the optimization of
Fourier coefficients, therefore of R1,p and R2,p, is done either
by using the MMSE estimator (batch method) or by using a
stochastic-gradient-based algorithm (adaptive method). The
Laguerre pole optimization is done by using (28) with the
approximated value ρ̂o,p.

We consider the Laguerre-Volterra filter described by (4):

y(n) =
P∑

p=1

K−1∑
k1=0

· · ·
K−1∑
kp=0

gk1,...,kp

p∏
j=1

skj ,p(n) = GTS(n), (29)

where G = (GT
1 · · ·GT

p · · ·GT
P )

T and S(n) = (ST1 (n) · · ·
STp (n) · · · STP (n))T , Gp containing the Fourier coefficients
gk1,...,kp and Sp(n) the pth-order cross-products of the sk,p(n)
signals. In the sequel d(n) will denote the actual output of the
system to be modeled.

4.1. Batchmethod
With a batch method, for fixed Laguerre poles, the Fourier
coefficients can be estimated using the well-known MMSE
(minimum mean square error)-based solution such as

Ĝ = ΓΓΓ−1C, (30)

where ΓΓΓ = E[S(n)ST(n)], C = E[d(n)S(n)], and E denotes
the mathematical expectation. Note that to avoid eventual ill
conditioning of the ΓΓΓ matrix, an orthogonal formulation of
the MMSE estimator can be used instead of the standard for-
mula (30) (see, e.g., [10, 18, 19, 20]).

In order to derive an iterative procedure for Laguerre
poles estimation, note that the combination of (20) with (23)
yields

∂Jp
∂ξp

= −R2,p(
1− ξ2p

)
p
∥∥hp

∥∥2 . (31)

As stated before, since Jp is a pseudoconvex function inside
P , then R2,p is zero when Jp is minimal and the reciprocal
is true; that is, when R2,p is nearly zero, then Jp is close to
its minimal value and consequently the pole ξp is close to its
optimal value. In other words, when R2,p is nearly zero, the
approximation ρ̂o,p is the best possible one. Thus the iterative
procedure can be stopped. This property enables us to derive
the following batch estimation method.
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Table 1: Computational complexity.

Operations Proposed method Campello’s method

Add. 3pK p − pK p−1 + 3 (2p + 1)Mp − pMp−1 − 1

Pole estimation Mult. + Div. 6pK p − 3pK p−1 + 8 (3p + 1)Mp − pMp−1 + 6

Square root 1 1

Kernel reconstruction
Add. —

(
Kp − 1

)
MP

Mult. — pK pMp

Total O
(
pK p

)
O
(
(p + 1)KpMp

)

(1) Select arbitrary poles in the domain P and build the
corresponding Laguerre bases.

(2) For n = 0, . . . ,N − 1, filter the input u(n) by the La-
guerre filters defined by (5), calculate the cross prod-
ucts of the filtered inputs sk,p(n) for generating the vec-
tors Sp(n) and then S(n).

(3) Estimate the Laguerre spectrum for each kernel by
means of (30) in replacing ΓΓΓ and C by estimated val-
ues obtained as time-averaged values of the products
S(n)ST(n) and d(n)S(n).

(4) For each basis, that is, p = 1, . . . ,P, evaluate Tj,l and
Rj,p, l = 1, . . . , p, j = 1, 2, by using truncated versions
of (15), (16), and formula (14).

(5) For p = 1, . . . ,P, if R2,p is close to zero, stop; else
(a) evaluate

ρ̂o,p =
(
1 + ξ2p

)
R1,p + 2ξpR2,p

2ξpR1,p +
(
1 + ξ2p

)
R2,p

, (32)

(b) determine a new pole ξp using (28),
(c) build a Laguerre basis associated with the pole ξp

determined in the previous step, and return to 2 un-
til convergence.

By comparing with Campello’s method [11], the main ad-
vantage of the algorithm proposed herein is its low com-
putational complexity (See Table 1). Without considering
the Laguerre spectrum estimation and the input filtering by
the OBFs, because they are common to both the proposed
method and the method in [11], at each iteration the esti-
mation of the Laguerre pole associated with the pth-order
kernel requires O(pK p) operations. The computational cost
reduction is due to the fact that, unlike Campello’s method,
no Volterra kernel reconstruction is required.

4.2. Adaptivemethod

This second method can be seen as a block-NLMS (nor-
malized least mean square) method. The principle of this
method is to adapt the Fourier coefficients until a given con-
vergence criterion is satisfied, then the Laguerre poles are es-
timated, and the calculation is iterated with new data. Note
that the Fourier coefficients are adapted by means of the
NLMS algorithm (33) while the Laguerre poles are estimated

by using (28):

G(n + 1) = G(n) +
µ

a +
∥∥S(n)∥∥2 (d(n)−GT(n)S(n)

)
S(n),

(33)

where a is a small positive constant and µ the step size. The
estimation of a new Laguerre pole occurs when the estimated
Fourier coefficients are nearly constant during a given time
window of lengthNO. The adaptive procedure is summarized
as follows.

(a) Parameters
(i) K : truncation order.
(ii) µ: step size (0 < µ < 2).
(iii) a: small positive constant.
(iv) εp: convergence threshold.
(v) NO: window length.

(b) Initialization
(i) Set the vector G(0) equal to zero and n = 0.
(ii) Set arbitrary initial values for ξp, p = 1, . . . ,P, and

build the associated Laguerre bases.

(c) Computation
(1) Calculate the filtered inputs sk,p(n) associated with the

Laguerre filters Bk,p(z) defined by (5), organize the
cross products of the filtered inputs into the vectors
Sp(n) to generate the vector S(n).

(2) Estimate the Laguerre spectra

G(n + 1) = G(n) +
µ

a +
∥∥S(n)∥∥2 (d(n)−GT(n)S(n)

)
S(n).

(34)

(3) For p = 1, . . . ,P,

(i) if ‖Gp(n + 1)−Gp(n)‖2 < εp during the interval
[n + 2−NO,n + 1],
(a) calculate R1,p,n and R2,p,n by using truncated

expressions of (15), (16), and (14),
(b) evaluate ρ̂o,p,n by using (27),
(c) determine new Laguerre poles according to

(28),
(d) build the associated Laguerre basis, incre-

ment n, and return to step 1;
(ii) else increment n and return to step 1.



Laguerre-Volterra Filters Optimization 2879

Note that the experimental convergence of this algorithm
is similar to that of a standard NLMS algorithm in a non-
stationary environment due to the modification of the esti-
mated Laguerre poles.

5. SIMULATION RESULTS

In this section, we present the results of two experiments that
illustrate the good properties of the proposed algorithms. In
the first example, the optimized Volterra filter is run with
the same structure as that of the system to be identified. The
second example involves experimenting with the Volterra fil-
ter under conditions of model mismatch. The measurement
noise is assumed to be a white Gaussian process with zero
mean. All the simulation results are obtained as ensemble
averages over 50 independent runs. Note that, for the batch
method, the iteration number 1 corresponds to the initial-
ized values of the Laguerre poles in Figures 2, 3, 4, 5, and 9.

5.1. Example 1

The problem under consideration is that of identifying a
second-order Volterra system described by

(i) first-order kernel

H1(z) = z(z + 0.5)
(z − 0.3)(z − 0.2)

, (35)

(ii) second-order kernel

h2(i, j) = 0.25h(i)h( j), (36)

where

h(i) = Z−1
{

z(z + 1)
(z − 0.8)(z + 0.8)

}
. (37)

This system is simulated as a Volterra system with memory
M = 20. Taking the symmetry of the quadratic kernel into
account, this filter has 230 parameters to estimate. The in-
put signal is a centered, white, Gaussian process with a unit
variance. The output signal-to-noise ratio (SNR) is equal to
30 dB. N = 5000 input/output data are simulated. The iden-
tification performances are evaluated in terms of the normal-
ized mean square error (NMSE):

NMSE =
∑N−1

n=0
(
d(n)− y(n)

)2∑N−1
n=0 d2(n)

,

NMSEdB = 10log10 NMSE .

(38)

To validate the theoretical analysis presented in the previous
sections and to evaluate the quality of the estimated Laguerre
poles, the cost functions J1 and J2 defined in (8) are plotted
in Figure 1. As stated before, these functions have a single
minimum respectively located at ξ1,opt = 0.525 and ξ2,opt =
0.733.

103

102

101

100

10−1−1 −0.5 0 0.5 1

Laguerre pole

C
os
t
fu
n
ct
io
n
va
lu
es

1st-order kernel
2nd-order kernel

Figure 1: Cost functions J1 (solid line) and J2 (dotted line).

Table 2: Optimal poles and NMSE for different values of the trun-
cation order.

K ξ1 ξ2 NMSEdB

3 0.543± 0.013 0.820± 0.012 −9.394± 0.443

4 0.573± 0.018 0.824± 0.014 −12.010± 0.587

5 0.540± 0.013 0.806± 0.006 −14.495± 0.199

6 0.526± 0.011 0.819± 0.003 −14.868± 0.182

7 0.511± 0.011 0.812± 0.006 −15.212± 0.220

8 0.517± 0.010 0.815± 0.003 −15.377± 0.219

9 0.504± 0.010 0.813± 0.005 −15.645± 0.195

10 0.509± 0.008 0.801± 0.003 −15.870± 0.165

One can note that the described system is not strictly
causal, so the method of [11] cannot be applied. In incor-
porating a unit delay in the transfer functions, the resulting
system fills the requirements of [11], and by applying this
method we find, respectively, ξ1,cam = 0.525 and ξ2,cam =
0.734. These values are similar to the theoretical optimal val-
ues previously determined and are to be compared with those
provided by the proposed estimation methods.

5.1.1. Batch estimation

The system identification is considered in a batch mode. The
behavior of the proposed algorithm is particularly studied to
point out the influence of three factors: the truncation order
of the Laguerre expansions of the Volterra kernels, the initial
choice of the Laguerre poles, and the stop criterion.

To evaluate the truncation order effects, several runs are
done with different truncation orders. The Laguerre poles
are initialized with the value 0.001. The obtained results are
given in Table 2. Figure 2 illustrates the behavior of the esti-
mated Laguerre poles during the iterations of the proposed
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Figure 2: Laguerre poles estimation for different truncation orders: (a) first-order kernel and (b) second-order kernel.

algorithm. From the figure we can conclude that the algo-
rithm converges in relatively few iterations. For a high trun-
cation order (K = 18, e.g.), one iteration is sufficient to
reach the optimal value while more iterations are needed for
smaller truncation orders. Table 2 shows that the variations
of the estimated poles values are very small when the trun-
cation order varies between 3 and 10. However, for a larger
truncation order, one can note an improvement of the value
of the pole, more remarkable in the case of the quadratic ker-
nel (Figure 2), and that of the convergence speed of the algo-
rithm, with a higher computation cost. On the other hand,
in the context of system identification, obviously the trunca-
tion order has a great influence on the precision of the identi-
fied model as indicated by the NMSE (Table 2). With a fixed
truncation order, one can see that increasing the number of
iterations improves not only the estimation of the Laguerre
pole but also the overall precision of the identified model
(Figure 3).

Figure 4 shows the effects of the Laguerre poles initializa-
tion on the convergence speed of the proposed batch algo-
rithm, when the truncation order is fixed at K = 7. Although
the initial values of the Laguerre poles are different, the algo-
rithm converges toward the same Laguerre poles estimated
values in few iterations. However, the convergence is faster
when the initial value of the Laguerre pole is closer to the
optimal value.

We have shown that when the estimated pole ξp reaches
its optimal value, R2,p is equal to zero. We have also shown
that R2,p is strictly decreasing inP . Figure 5a plots the varia-
tions of R2,1 and R2,2. One can note that when these terms
become almost null, the poles reach their optimal values
(Figure 5b).
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Figure 3: NMSE for different truncation orders.

From these simulation results we can conclude that

(i) generally few iterations are needed to find the optimal
poles;

(ii) the convergence is faster when high truncation orders
are considered and when the initial values of the La-
guerre poles are close to their optimal values;

(iii) when the Laguerre poles reach their optimal value, R2,1

and R2,2 are almost null, so these quantities can be used
as a stop criterion for the proposed algorithm;

(iv) the estimated poles are close to the theoretical values
and to those obtained by applying the method in [11].
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Figure 4: Laguerre poles estimation for different initial values. (a) Pole associated with the first-order kernel and (b) pole associated with
the second-order kernel.
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Figure 5: Variation of R2,p (a) and estimated poles (b) for K = 7.

5.1.2. Adaptive estimation
The same Volterra system is simulated with the same exper-
imental conditions. Laguerre poles are initialized to 0. The
Volterra kernels expansions on Laguerre bases are truncated
to K = 7; thus the resulting Laguerre-Volterra filter has

only 35 Fourier coefficients to estimate while the standard
Volterra model has 230 parameters. The step size of the
NLMS algorithm is chosen as µ = 0.3. The convergence
thresholds are chosen equal to εp = 10−3, p = 1, 2, and the
window length is NO = 50.
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The variations of the estimated Laguerre poles and of two
Fourier coefficients are plotted in Figure 6 for both the linear
and the quadratic kernels. One can note that the poles con-
verge towards values close to those obtained with the block
estimation method. One important question is that of the
choice of the convergence threshold εp and of the window
length NO. When the value of εp is chosen too small, a huge
number of iterations can be necessary for the convergence of
a new estimated Laguerre pole. Consequently, particular care
should be taken for choosing these parameters.

To illustrate the convergence of the overall identifica-
tion procedure, the NMSE is also plotted (Figure 7). The
evolution of the NMSE associated with the proposed adap-
tive algorithm is compared with that obtained when the La-
guerre poles are arbitrarily chosen equal to 0.2 and when
the Laguerre poles are chosen equal to their optimal val-
ues obtained from the plots of the cost functions J1 and J2
(Figure 1).

We also compare the proposed algorithm with the gra-
dient method [5, 13] for Laguerre pole estimation. Recall
that the gradient method consists in minimizing the output
squared error both with respect to the Laguerre pole and the
Fourier coefficients. Two different initializations are consid-
ered for bothmethods: (ξ1 = ξ2 = 0) and (ξ1 = 0.3; ξ2 = 0.5).
The step sizes of the gradient method are chosen equal to
1/300 and 1/1000 for the adaptation of the Laguerre pole
respectively associated with the linear and the second-order
kernel.

As depicted in Figure 8, the proposed adaptive method
performs much better than the gradient method. The gradi-
ent method is very sensitive to the choice of the step size, and
its convergence to the optimal value is not guaranteed. The
convergence can lead to local minima, under the influence of
the initialization.

From these simulation results we can note the following.

(i) In steady state, the performances of the proposed algo-
rithm are similar to those obtained with the Laguerre-
Volterra filter the poles of which are optimal. Obvi-
ously its convergence is slower.

(ii) Both the adaptive and batch methods provide es-
timated poles close to the poles obtained with
Campello’s method and also close to those deduced
from the plots of Figure 1. As previously stated, the
advantage of the proposed methods is that the a pri-
ori knowledge of the Volterra kernels is not needed,
and both Fourier coefficients and Laguerre poles are
simultaneously estimated.

(iii) The adaptive method performs better than the gradi-
ent method.

5.2. Example 2
Power amplifiers (PAs) are important elements in radio com-
munication systems and they are inherently nonlinear. Some
of PAs are modeled by a static nonlinearity such as a polyno-
mial. However, for wideband applications (e.g., in wideband
CDMA) and/or with high-power amplifiers (HPA) (e.g., base
stations PAs), memory effects show up in the PA [21]. Hav-
ing a memory means that the output of the PA is not only a
function of the current input but also of past inputs. A rela-
tively simple baseband behavioral model that accommodates
memory as well as nonlinear behavior is the Wiener model,
that is, a linear filter followed by a memoryless nonlinearity
given by the Saleh model [22, 23]:

A(r) = 2r
1 + r2

, (39)

where A(r) and r are respectively the amplitude of the signal
at the output and at the input of the memoryless HPA. The
linear filter is a fourth-order Butterworth filter described in
[24]:

H(z) =
(
0.078 + 0.1559z−1 + 0.078z−2

)(
0.0619 + 0.1238z−1 + 0.0619z−2

)(
1.0− 1.3209z−1 + 0.6327z−2

)(
1.0− 1.0486z−1 + 0.2961z−2

) . (40)

The input signal is real and Gaussian. We consider its trans-
mission over an AWGN (additive white Gaussian noise)
channel with SNR= 30dB. The overall channel constituted
by an HPA with memory followed by an AWGN channel is
nonlinear. In this example, we consider the identification of
the HPA with memory modeled as a linear-cubic Volterra
system by using N = 15000 data. We first evaluate the batch
estimation method.

The truncation order is chosen equal to K = 9.
This choice corresponds to a trade-off between the model

complexity and the model precision. From Figure 9 we can
conclude that the Laguerre poles respectively associated with
the linear and the cubic kernels converge to the same value.
This behavior was predictable since the dominant dynamics
associated with the linear and the cubic kernels are the same
for a Wiener model.

Moreover, we evaluate the proposed adaptive algorithm
for two kinds of input: a white Gaussian signal and a uni-
formly distributed 8-PAM signal, which is a signal often used
in digital communications. One can see that the estimated
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Figure 6: (a), (b) Estimated Laguerre poles and (c), (d) two Fourier coefficients corresponding to the (c) linear and (d) quadratic kernels.
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Figure 7: Comparison of four configurations of Laguerre-Volterra
filters: (1) Laguerre poles optimized with the proposed adaptive al-
gorithm, (2) arbitrarily fixed Laguerre poles for K = 7, (3) arbitrar-
ily fixed Laguerre poles for K = 9, and (4) Laguerre poles fixed at
their optimal values.

poles converge to the same values as those obtained with
the block estimation method (Figure 10). The performances,
in terms of NMSE, of the Laguerre-Volterra filter with opti-
mized poles are plotted in Figure 11. Obviously the Gaussian
input allows to get better performance since it is more ex-
citing than the 8-PAM input. However, in terms of Laguerre
poles estimation, the proposed algorithm delivers quite sim-
ilar estimated poles with a Gaussian signal and a PAM signal,
the algorithm convergence speed being faster with the Gaus-
sian signal.

6. CONCLUSION

In this paper, the optimization of Volterra kernels expan-
sions on Laguerre bases has been addressed. An analyt-
ical solution to this optimization problem has been ob-
tained using Volterra kernels expansions on independent
Laguerre bases. This solution has been expressed in terms
of the estimated Laguerre spectrum associated with each
Volterra kernel. Then batch and adaptive methods have been
proposed to optimize both Laguerre spectra and Laguerre
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Figure 8: Adaptive estimation of Laguerre poles: (1) proposed algorithm and (2) gradient method. (a) First-order kernel and (b) second-
order kernel.
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Figure 9: Laguerre poles estimated with the block estimation
method.

poles. This approach generalizes previous works for lin-
ear [13] and nonlinear systems [11]. The performance of
the proposed identification methods has been illustrated
by means of simulation results that show the usefulness
of the proposed methods. Theoretical stability and conver-
gence analysis of the adaptive method will be the subject
of further study. Among the OBFs of rational type, the
Laguerre basis is the simplest one to optimize. However,

they generally present worse performances for system ap-
proximation compared with generalized orthonormal bases
(GOB) [25]. The authors have recently proposed some
GOB selection procedures for Volterra kernels expansions
[7, 26]. These methods based on the minimization of a
least squares criterion are exhaustive in nature, that is,
they search the optimal poles in a finite set resulting from
the discretization of the interval ] − 1, 1[. In future works
the authors intend to investigate analytical solution to the
problem of GOB optimization for Volterra kernels expan-
sions.

APPENDICES

A. DERIVATION OF FORMULA (18)

By assuming that
∑∞

i1=0 · · ·
∑∞

ip=0 |hp(i1, . . . , ip)| < ∞, and
using formula (3), the derivative of the Fourier coefficient
with respect to the pole ξp is given by

∂gk1,...,kp
∂ξp

= ∂

∂ξp

∞∑
i1=0

· · ·
∞∑

ip=0
hp
(
i1, . . . , ip

) p∏
j=1

bkj ,p
(
i j
)

=
p∑

l=1

∞∑
i1=0

· · ·
∞∑

ip=0
hp
(
i1, . . . , ip)

∂bkl ,p
(
il
)

∂ξp

p∏
j=1, j �=l

bkj ,p
(
i j
)
.

(A.1)
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Figure 10: Laguerre poles estimated with the adaptive algorithm: (a) first-order kernel and (b) third-order kernel.
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Then the relation (7) yields

∂gk1,...,kp
∂ξp

= 1
1− ξ2p

p∑
l=1

[(
kl + 1

) ∞∑
i1=0

· · ·
∞∑

ip=0
hp
(
i1, . . . , ip

)
bkl+1,p

(
il
)

×
p∏

j=1, j �=l
bkj ,p

(
i j
)]

− 1
1− ξ2p

p∑
l=1

kl

∞∑
i1=0

· · ·
∞∑

ip=0
hp
(
i1, . . . , ip

)
bkl−1,p

(
il
)

×
p∏

j=1, j �=l
bkj ,p

(
i j
)

= 1
1− ξ2p

p∑
l=1

[(
kl + 1

)
gk1,...,kl+1,...,kp − klgk1,...,kl−1,...,kp

]
.

(A.2)

B. PROOF OF LEMMA 1

We assume that all series involved in this proof are uniformly
convergent. The derivative of T1,l, l = 1, . . . , p, is given by

∂T1,l

∂ξp
= 2

∞∑
k1=0

· · ·
∞∑

kp=0

(
2kl + 1

)
gk1,...,kp

∂gk1,...,kp
∂ξp

. (B.1)

By using (18), we get

∂T1,l

∂ξp
= 2

1− ξ2p

∞∑
k1=0

· · ·
∞∑

kp=0

(
2kl + 1

)
gk1,...,kp

×
p∑
j=1

((
kj + 1

)
gk1,...,kj+1,...,kp − kjgk1,...,kj−1,...,kp

)
.

(B.2)

Thus, we have

1− ξ2p
2

∂T1,l

∂ξp

=
p∑
j=1

∞∑
k1=0

· · ·
∞∑

kp=0

(
2kl + 1

)(
kj + 1

)
gk1,...,kj+1,...,kp gk1,...,kp

−
p∑
j=1

∞∑
k1=0

· · ·
∞∑

kp=0

(
2kl + 1

)
kjgk1,...,kj−1,...,kp gk1,...,kp .

(B.3)

Expanding the above relation gives

1− ξ2p
2

∂T1,l

∂ξp
= −2

∞∑
k1=0

· · ·
∞∑

kp=0
klgk1,...,kl−1,...,kp gk1,...,kp . (B.4)

From this relation and definition (16) we get

∂T1,l

∂ξp
= −2

1− ξ2p
T2,l . (B.5)
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Similarly it can be shown that

∂T2,l

∂ξp
= −2

1− ξ2p
T1,l . (B.6)

With these relations the derivative of R1,p is given by

∂R1,p

∂ξp
=

p∑
l=1

∂T1,l

∂ξp
= −2

1− ξ2p

p∑
l=1

T2,l = −2
1− ξ2p

R2,p. (B.7)

Similarly, we have

∂R2,p

∂ξp
= −2

1− ξ2p
R1,p. (B.8)

C. PROOF OF LEMMA 2

Recall that from (23) we have

∂R1,p

∂ξp
= 2p

∥∥hp

∥∥2 ∂Jp
∂ξp

. (C.1)

Knowing that

∂Jp
∂ξp

= −2(
1− ξ2p

)2 ((1 + ξ2p
)
Q2,p − 2ξpQ1,p − ξp

)
, (C.2)

we get

∂R1,p

∂ξp
= −4p∥∥hp

∥∥2(
1− ξ2p

)2 ((1 + ξ2p
)
Q2,p − 2ξpQ1,p − ξp

)
. (C.3)

Using (20) leads to

R2,p =
2p
∥∥hp

∥∥2
1− ξ2p

((
1 + ξ2p

)
Q2,p − 2ξpQ1,p − ξp

)
, (C.4)

which is one of the desired results, that is, formula (25) of
Lemma 2.

Moreover, by taking the derivative of R2,p, that is,

∂R2,p

∂ξp
= 2p

∥∥hp

∥∥2 4ξpQ2,p − 2
(
1 + ξ2p

)
Q1,p −

(
1 + ξ2p

)
(
1− ξ2p

)2 ,

(C.5)

and by substituting it in (21), the result (24) follows.
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timization of the time scale in adaptive Laguerre-based fil-
ters,” IEEE Trans. Signal Processing, vol. 48, no. 4, pp. 1184–
1187, 2000.

[14] S. Boyd and L. O. Chua, “Fading memory and the problem of
approximating nonlinear operators with Volterra series,” IEEE
Trans. Circuits Syst., vol. 32, no. 11, pp. 1150–1161, 1985.

[15] T. Oliveira e Silva, “On the determination of the optimal pole
position of Laguerre filters,” IEEE Trans. Signal Processing,
vol. 43, no. 9, pp. 2079–2087, 1995.
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